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Abstract 

Oyang, Y.-J., Exploiting multi-way branches to boost superscalar processor performance, Microprocessing and Microprogramming 
36 (1993) 205-213. 

This paper addresses exploiting multi-way branches to boost superscalar processor performance. The work presented in this paper 
comprises two conjunctive parts. The first part is a compiler technique called the SV (Shadow Variable) transformation. The second 
part is a new multi-way branch scheme developed in conjunction with the SV transformation. The SV transformation can transform 
program segments in which multi-way branches are originally not applicable into ones in which multi-way branches are applicable. 
The proposed multi-way branch scheme is able to carry out multi-way branches efficiently, especially for those derived from applying 
the SV transformation. An effectiveness evaluation shows the SV transformation and the proposed multi-way branch mechanism 
together can boost superscalar processor performance by 11-14%. 
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1. Introduction 

Superscalar microprocessors have emerged as the 
new-generation microprocessors beyond RISC [1]. 
However, for non-numerical applications, which 
most general-purpose microprocessors are devel- 
oped for, the speedups that can be achieved with su- 
perscalar microprocessors are severely limited by 
the great number of branch instructions in the pro- 
gram, one out of  every three to seven instructions 
[2,3]. Branch instructions cause two negative effects 
to superscalar processors. The first effect is the in- 
ducing of  control dependence in the program, 
which, in turn, seriously limits the exploitation of  
instruction-level parallelism. The second negative 
effect is the penalty due to carrying out a branch op- 
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eration. Though branches always cause some forms 
of  penalty on pipelined processors, the effect is 
more severe to a superscalar processor. For  a su- 
perscalar processor that executes N instructions per 
clock cycle, the waste of  one clock cycle due to a 
branch operation will result in a degradation of per- 
formance by the same percentage as the waste of  N 
clock cycles in a processor that executes one instruc- 
tion per clock cycle. 

In acknowledging the impact of branch instruc- 
tions on superscalar processor performance, we in- 
vestigated the idea of exploiting multi-way branches 
to reduce the number of  branch operations in the 
program. This effort leads to the development of a 
compiler technique called the SV (Shadow Varia- 
ble) transformation and a new hardware multi-way 
branch scheme. The SV transformation is proposed 
to promote the applicability of  multi-way branches 
by transforming program segments in which multi- 
way branches are originally not applicable into ones 
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in which multi-way branches are applicable. The 
new multi-way branch scheme is developed to carry 
out multi-way branches, especially those derived 
from applying the SV transformation, in an effi- 
cient way. 

The discussion of  this paper is conducted through 
first presenting the SV transformation in Section 2. 
Then, in Section 3, the proposed multi-way scheme 
is described. Section 4 evaluates the effectiveness of  
the SV transformation and the proposed multi-way 
branch mechanism. Section 5 concludes the discus- 
sion of this paper. 

2. The SV transformation 

The SV transformation works by invoking shad- 
ow variables to transform program segments in 
which multi-way branches are originally not applic- 
able into ones in which multi-way branches are ap- 
plicable. In 2.1, two examples are used to illustrate 

True 

J J 

~ ~ True 

crop ~, NUI.L I 

Return(NULL) Return(ptr) 

Fig. 1. Flow diagram of the core loop for searching in a linear 
list. 

how the SV transformation works. Then, in 2.2, the 
procedural description of  the SV transformation is 
presented. 

2.1. Examples of the SV transformation 

The first example used is searching in a linear list. 
Figure 1 shows a typical flow diagram of the core 
loop for searching in a linear list. In this diagram, 
the embedded control dependence and data depen- 
dence rule out the possibility of  parallel instruction 
execution as well as merging the two conditional 
branches to form a multi-way branch. The major 
blockade is the control dependence imposed by 
branch 'Is v = =  x?' on instruction 'load p t r -  
> next = = > ptr'. The control dependence dictates 
that the load instruction must be scheduled after the 
conditional branch instruction since the value of 
'ptr '  must be preserved in case execution proceeds 
to another path of  the conditional branch. 

The SV transformation handles this case by in- 
troducing a shadow variable 's_ptr' and substitut- 
ing instructions 'load p t r - > n e x t  = = >  ptr '  and 
'cmp pt r ,NULL'  with 'load p t r - > n e x t  = = >  
s_ptr' and 'cmp s_ptr ,NULL',  respectively. The 
substitution makes these two instructions no longer 
cause irreversible side-effect to another path 
branching from 'Is v = = x?'. Figure 2(a) shows the 
flow diagram after the shadow variable is in- 
troduced. In Fig. 2(a), a compensation code is 
added at the end of the loop to copy the value of  
's_ptr' into 'ptr'. 

With the flow diagram in Fig. 2(a), the two con- 
ditional branches can be merged to form a multi- 
way branch by moving instructions 'load p t r -  
>next  = = >  s_ptr' and 'cmp s_ptr ,NULL'  up 
ahead of  conditional branch 'Is v = =  x?'. Figure 
2(b) shows the flow diagram after the merge is 
done. 

The benefits gained by performing the SV trans- 
formation are manifest. First, the loop now con- 
tains only one branch operation instead of  two. Sec- 
ond, instructions now can be scheduled for parallel 
execution in order to speedup the loop. 

The first example is a fairly simple one. Let us use 
a more complicated case for illustration. The sec- 
ond example is searching in a binary tree. Figure 3 
shows a typical flow diagram of  the core loop for 
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(a) The intermediate stage 
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(b) The final loop structure 

Fig. 2. Loop structures of the linear search example after the SV transformation is applied. 
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Fig. 3. F low diagram of the core loop for searching in a binary tree. 

searching in a binary tree. In this diagram, there is 
already a multi-way branch, 'Is v < x? Is v > x?', 
but further merging of  branch operations is not 
possible. The major blockade is the control depen- 
dence imposed by multi-way branch 'Is v < x? Is v 
> x?' on instructions 'load p t r - >  lchild = = >  ptr '  
and 'load p t r - >  rchild = = >  ptr'. 

The SV transformation handles this case by in- 
troducing shadow variables 's_lchild' and 's_rchild' 
and making the following substitutions: 
• substitute 'load p t r -  > lchild = = > ptr '  and 'cmp 

pt r ,NULL'  on the left path branching from 'Is v 
< x? Is v >  x?' with 'load p t r - > l c h i l d  = = >  
s_lchild' and 'cmp s_lchild,NULL', respectively. 

± 

T 
I load pCr->vaiue ~ >  v load ptr->lchild ~ >  =__ichild load ptr->mhild -=> !rchtld 

crop v,x crop s._lchUd, NULL amp s_rchil¢ NULL 

mtumlNULL) retumlptr) retumlNULL) 

Fig. 4. Loop structure of  the binary search example after the SV transformat ion is appl ied. 
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~ No other path ! h 

• I I Bfl Bf2 Bfn 

Fig. 5. Structure of program segments eligible for applying the 
SV transformation on. 

• substitute ' load p t r - > r c h i l d  = = >  ptr '  and 
'cmp ptr, N U L L '  on the right path branching 
from 'Is v < x? Is v > x?' with ' load p t r - >  rchild 
- - >  s_rchild' and 'cmp s_rchild, N U L L ' ,  re- 
spectively. 
The substitutions make the instructions involved 

no longer cause irreversible side-effect to the other 
paths branching f rom 'Is v < x? Is v > x?' and, 
therefore, can be moved up across 'Is v < x? Is v > 

x?'. Figure 4 shows the flow diagram after the SV 
transformation is carried out. 

2.2. Procedural description of the SV transformation 

The procedural description of the SV transforma- 
tion is presented in the following: 
(1) Identify a group of  branch operations as the 

target. The group of  branch operations should 
contain a branch operation as the header, de- 
noted by Bh, with all other branch operations, 
denoted by B/l, B:2 ..... B:,, located on the im- 
mediately following basic blocks branching 
from Bh. For  the time being, we only consider 
the cases in which the basic block containing Bh 
is the only entry to the whole structure• Figure 5 
depicts the structure of  the program segments 
eligible for applying the SV transformation on. 
In Fig. 5, each box represents a basic block. 

(2) For  branch B:~, 1 < = i < = n, if there is no in- 
struction on the path from Bh to B:~ other than 
Bh and B:~, then Byg can be merged with Bh 
without further actions. 

Bh 

12 

From somewhere e~se 

Bh 

\ 
Bf i 

I1 
I2 

From somewhere e~se 

(a) The original program (b) After 11 is duplicated and relocated 

Fig. 6. Example of code duplication and relocation. 
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If  there are instructions on the path from Bh to 
B:~ other than Bh and Bj-~ and B:~ is not data- 
dependent on any of  these instructions, then 
these instructions can be relocated into the 
paths branching from B:i. The relocation of in- 
structions generally invokes code duplication. 
Figure 6 demonstrates the action of  code dupli- 
cation and relocation performed for this case. 
Again, in Fig. 6, each box represents a basic 
block. Once the code duplication and reloca- 
tion is done, B:~ can be merged with Bh just like 
the case in Step 2. 
If  B:~ is data-dependent on some of the instruc- 
tions, 11, 12 .. . . .  Ik, on the path from B h to B:~, 
then this is a case where shadow variables need 
to be introduced. Before we introduce shadow 
variables, we first invoke the action in Step 3 
above to relocate those instructions on the path 
from Bh to B:~ that B~-~ is not data-dependent 
on. These instructions can be moved into the 
paths branching from B:~. Then, we introduce a 
shadow variable for each of  the variables that 
I1, 12 ..... I~ write to and make necessary substi- 

tutions. The substitution of  shadow variables 
will transform I1, 12 .. . .  , I k into a new group of  
instructions, denoted by I'~, I~ . . . .  , I;,, that no 
longer cause irreversible side-effects to the 
other paths branching from B h. As a result, 1'1, 
I~ . . . . .  I;, can be moved up across Bh safely. 
With I'1, I~ ..... I;, relocated, the path from Bh to 
B:i now contains no instructions and B:i, with 
necessary substitutions of  shadow variables, 
can be merged with Bh just like the case in Step 
2. Certainly, due to the introduction of  shadow 
variables, compensation codes must be added 
to copy the values of  the shadow variables into 
their corresponding authentic variables. The 
compensation codes can be added in the paths 
branching from B:~. In the discussion above, 
we assume that the superscalar processor fea- 
tures the capability to handle false traps caused 
by speculative execution [4,5]. If  it is not the 
case, then instructions I1, 12 . . . .  , I k must not in- 
voke memory reference or division operations 
for the SV transformation to be applied. Other- 
wise, the memory reference and division opera- 
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/ \ / 
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Loaded into the Program Counter 
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Fig. 7. Operation of the proposed mult i -way branching mechanism. 
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tions in 11, 12,  . . . ,  I k could cause false fatal 
faults [4, 5]. 

branch conditions for concurrent execution. Figure 
7 illustrates the operation of the proposed multi- 
way branching mechanism. 

3. The proposed multi-way branch mechanism 

The proposed multi-way branch mechanism is 
developed in conjunction with the SV transforma- 
tion. The multi-way branching mechanism is devel- 
oped to carry out multi-way branches, especially 
those that are derived from applying the SV trans- 
formation, efficiently. The proposed multi-way 
branching mechanism operates by executing multi- 
ple conditional branch instructions concurrently. 
The parallel execution of multiple branch instruc- 
tions involves first dispatching each of the branch 
instructions that constitute the multi-way branch 
instance to the corresponding execution unit for 
concurrent evaluation of the branch conditions. 
Then, the destination address of the branch instruc- 
tion whose condition is satisfied is selected and 
loaded into the program counter. In the case where 
no condition is satisfied, execution proceeds to next 
instruction as normal. Here, it is assumed that no 
more than one condition is satisfied at the same 
time. This assumption imposes a rule that the com- 
piler or the programmer must follow. The compiler 
or the programmer can only schedule conditional 
branch instructions that have mutually-exclusive 

Table1 
Options for utilizing the delayed slots of multi-way branches 

Option 1 Option 2 Option 3 

Execute the in- 
structions in the 
delay slot before 
taking the 
branch action 

Before taking 
the branch ac- 
tion, execute the 
instruction in the 
delay slot that is 
to be executed 
by the same exe- 
cution unit as 
the conditional 
branch instruc- 
t ion whose ac- 
tion is taken and 
nullify the rest of 
the instructions 
in the delay slot 

Nullify the in- 
structions in the 
delay slot 

4. Evaluation of effectiveness 

This section evaluates the effectiveness of the SV 
transformation and the proposed multi-way branch 
mechanism. The evaluation is conducted through 
measuring the performance of a superscalar proces- 
sor model that features the proposed multi-way 
branch mechanism. Other features of the supersca- 
lar processor model include: 
(1) An extended instruction set that is derived from 

the Sparc processor [7]. 
(2) Static scheduling [6]. 
(3) A 5-stage pipeline with single-cycle delay for 

load and branch operations. The 5 pipeline 
stages are, in their execution order: (1) Instruc- 
tion fetch, (2) Instruction decode and register 

C program 

I C compiler 
for the Sparc 

~ Sparc 
object code 

Post-pass 
scheduler for 

the superscalar 
processor model 

L Superscalar 
processor 
object code 

' "Archi tectura l  
simulator for 

the superscalar 
processor model 

performance measurement 

Fig. 8. Simulation environment for measuring the effective- 
Bess. 
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fetch, (3) ALU operation, (4) Memory opera- 
tion, (5) Register write back. 

(4) Three options for utilizing the delay slots of 
multi-way branches as illustrated in Table 1. 

Figure 8 illustrates the simulation environment 
set up for measuring the performance of the super- 
scalar processor model. First, the object code gene- 
rated by a C compiler for the Sparc microprocessor 
[7] is fed into a post-pass scheduler. The post-pass 
scheduler performs instruction scheduling on the 
Sparc object file and outputs an executable file for 
the superscalar processor model. The executable file 
along with input data, are then fed into an architec- 
ture simulator that emulates the operation of the 
superscalar processor model. The execution time 
taken by the superscalar processor model is meas- 
ured by counting the number of clock cycles the si- 
mulator takes to complete the task. 

Table 2 lists the speedup of the superscalar pro- 
cessor model over a conceptual scalar RISC proces- 
sor that is derived from reducing the superscalar 
processor model to one execution unit. In Table 2, 
the performance of the scalar RISC processor is 
normalized to 1. The effectiveness of the SV trans- 
formation and the proposed multi-way branch 
mechanism is demonstrated by the improvement 
from the first two columns of the data to the third 
and fourth columns. The speedup data in the first 
two columns are the performance of the superscalar 
processor model without exploiting the SV trans- 
formation and the proposed multi-way branch 
mechanism. The speedup data in the third and 
fourth columns are the performance of the supers- 
calar processor model when the SV transformation 
and the proposed multi-way branch mechanism are 
applied. Table 2 shows that SV transformation and 
the proposed multi-way branch mechanism contrib- 
ute to an increase of performance by 11% to 14%. 

5. Conclusion 

In this paper, we presented a compiler technique 
called SV transformation and a multi-way branch 
mechanism for exploiting multi-way branches in su- 
perscalar instruction scheduling. The SV transfor- 

mation can transform program segments in which 
multi-way branches are not applicable into ones in 
which multi-way branch are applicable. The pro- 
posed multi-way branch scheme is able to carry out 
multi-way branches efficiently, especially for those 
derived from applying the SV transformation. The 
simulation-based effectiveness evaluation conduc- 
ted in this paper shows the SV transformation and 
the proposed multi-way branch mechanism to- 
gether can boost superscalar processor performance 
by 11-14%. 

Table 2 
Speedup of the superscalar processor model over the concep- 
tual scalar RISC processor 

Bench- Speedupswithout SV Speedupswith SV 
mark trans. & multi-way trans. & multi-way 
programs branches branches 

With 2 With 4 With 2 With 4 
parallel parallel parallel parallel 
execution execution execution execution 
units units units units 

Shortest 
path 1.36 1.37 1.75 1.81 

Binary 
search 1.31 1.32 1.44 1.56 

Binary 
tree 
traverse 1.27 1.29 1.35 1.38 

Bucket 
sort 1.50 1.54 1.54 1.61 

Fibo- 
nacci 
number 1.80 1.85 1.85 1.92 

GCD 1.1 5 1.1 6 1.54 1.55 

Find the 
minimum 1.26 1.26 1.51 1.66 

Merge 
sort 1.60 1.67 1.80 2.00 

Pattern 
match 1.48 1.58 1.52 1.63 

String 
compare 1.35 1.50 1.38 1.54 

Average 1.41 1.46 1.57 1.67 
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