
Microprocessing and Microprogramming 36 (1993) 205-213 205
North-Holland

Exploiting multi-way
superscalar processor

branches to boost
performance*

Yen-Jen Oyang

Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

Received 10 January 1993
Revised 7 April 1993
Accepted 13 May 1993

Abstract

Oyang, Y.-J., Exploiting multi-way branches to boost superscalar processor performance, Microprocessing and Microprogramming
36 (1993) 205-213.

This paper addresses exploiting multi-way branches to boost superscalar processor performance. The work presented in this paper
comprises two conjunctive parts. The first part is a compiler technique called the SV (Shadow Variable) transformation. The second
part is a new multi-way branch scheme developed in conjunction with the SV transformation. The SV transformation can transform
program segments in which multi-way branches are originally not applicable into ones in which multi-way branches are applicable.
The proposed multi-way branch scheme is able to carry out multi-way branches efficiently, especially for those derived from applying
the SV transformation. An effectiveness evaluation shows the SV transformation and the proposed multi-way branch mechanism
together can boost superscalar processor performance by 11-14%.

Keywords. Superscalar microprocessor; multi-way branch; instruction-level parallelism; instruction scheduling; control dependence.

1. Introduction

Superscalar microprocessors have emerged as the
new-generation microprocessors beyond RISC [1].
However, for non-numerical applications, which
most general-purpose microprocessors are devel-
oped for, the speedups that can be achieved with su-
perscalar microprocessors are severely limited by
the great number of branch instructions in the pro-
gram, one out of every three to seven instructions
[2,3]. Branch instructions cause two negative effects
to superscalar processors. The first effect is the in-
ducing of control dependence in the program,
which, in turn, seriously limits the exploitation of
instruction-level parallelism. The second negative
effect is the penalty due to carrying out a branch op-

*This research was sponsored by National Science Council of
R.O.C. under contract NSC 80-0408- E-002-15.

eration. Though branches always cause some forms
of penalty on pipelined processors, the effect is
more severe to a superscalar processor. For a su-
perscalar processor that executes N instructions per
clock cycle, the waste of one clock cycle due to a
branch operation will result in a degradation of per-
formance by the same percentage as the waste of N
clock cycles in a processor that executes one instruc-
tion per clock cycle.

In acknowledging the impact of branch instruc-
tions on superscalar processor performance, we in-
vestigated the idea of exploiting multi-way branches
to reduce the number of branch operations in the
program. This effort leads to the development of a
compiler technique called the SV (Shadow Varia-
ble) transformation and a new hardware multi-way
branch scheme. The SV transformation is proposed
to promote the applicability of multi-way branches
by transforming program segments in which multi-
way branches are originally not applicable into ones

206 Y.-J. Oyang

in which multi-way branches are applicable. The
new multi-way branch scheme is developed to carry
out multi-way branches, especially those derived
from applying the SV transformation, in an effi-
cient way.

The discussion of this paper is conducted through
first presenting the SV transformation in Section 2.
Then, in Section 3, the proposed multi-way scheme
is described. Section 4 evaluates the effectiveness of
the SV transformation and the proposed multi-way
branch mechanism. Section 5 concludes the discus-
sion of this paper.

2. The SV transformation

The SV transformation works by invoking shad-
ow variables to transform program segments in
which multi-way branches are originally not applic-
able into ones in which multi-way branches are ap-
plicable. In 2.1, two examples are used to illustrate

True

J J

~ ~ True

crop ~, NUI.L I

Return(NULL) Return(ptr)

Fig. 1. Flow diagram of the core loop for searching in a linear
list.

how the SV transformation works. Then, in 2.2, the
procedural description of the SV transformation is
presented.

2.1. Examples of the SV transformation

The first example used is searching in a linear list.
Figure 1 shows a typical flow diagram of the core
loop for searching in a linear list. In this diagram,
the embedded control dependence and data depen-
dence rule out the possibility of parallel instruction
execution as well as merging the two conditional
branches to form a multi-way branch. The major
blockade is the control dependence imposed by
branch 'Is v = = x?' on instruction 'load p t r -
> next = = > ptr'. The control dependence dictates
that the load instruction must be scheduled after the
conditional branch instruction since the value of
'ptr ' must be preserved in case execution proceeds
to another path of the conditional branch.

The SV transformation handles this case by in-
troducing a shadow variable 's_ptr' and substitut-
ing instructions 'load p t r - > n e x t = = > ptr ' and
'cmp pt r ,NULL' with 'load p t r - > n e x t = = >
s_ptr' and 'cmp s_ptr ,NULL', respectively. The
substitution makes these two instructions no longer
cause irreversible side-effect to another path
branching from 'Is v = = x?'. Figure 2(a) shows the
flow diagram after the shadow variable is in-
troduced. In Fig. 2(a), a compensation code is
added at the end of the loop to copy the value of
's_ptr' into 'ptr'.

With the flow diagram in Fig. 2(a), the two con-
ditional branches can be merged to form a multi-
way branch by moving instructions 'load p t r -
>next = = > s_ptr' and 'cmp s_ptr ,NULL' up
ahead of conditional branch 'Is v = = x?'. Figure
2(b) shows the flow diagram after the merge is
done.

The benefits gained by performing the SV trans-
formation are manifest. First, the loop now con-
tains only one branch operation instead of two. Sec-
ond, instructions now can be scheduled for parallel
execution in order to speedup the loop.

The first example is a fairly simple one. Let us use
a more complicated case for illustration. The sec-
ond example is searching in a binary tree. Figure 3
shows a typical flow diagram of the core loop for

Exploiting mulE-way branches to boost superscalar processor performance 207

mov s_p6" ===> pU"]

J

True

I l o a d p~'->value ~ > v
cmp v.x

i
crop load s_p~', p~'->next NULL a > s_p~" II

!

@__
ReturnlNULLl Return(ptr)

(a) The intermediate stage

J

load pit->value -=> v load ptr-->next.=> s_ptr
crop v~ cn~ s_.plr, NULL

I ~ S_~i>~ I [
v l= x & s p t r .~ N U L L ~

J v!=x & s ptr~NULL

v ~ x

return(NULL)

1
return(p~')

(b) The final loop structure

Fig. 2. Loop structures of the linear search example after the SV transformation is applied.

208 Y.-J. Oyang

I -o I o °

-+-

load IXr->valul ~ > v
cmp v,x

X < V

v x

X > V

I - , ,

ptr I- NULL

return(NULL) retum(ptr)

LLtr k,, NULL

return(NULL)

Fig. 3. F low diagram of the core loop for searching in a binary tree.

searching in a binary tree. In this diagram, there is
already a multi-way branch, 'Is v < x? Is v > x?',
but further merging of branch operations is not
possible. The major blockade is the control depen-
dence imposed by multi-way branch 'Is v < x? Is v
> x?' on instructions 'load p t r - > lchild = = > ptr '
and 'load p t r - > rchild = = > ptr'.

The SV transformation handles this case by in-
troducing shadow variables 's_lchild' and 's_rchild'
and making the following substitutions:
• substitute 'load p t r - > lchild = = > ptr ' and 'cmp

pt r ,NULL' on the left path branching from 'Is v
< x? Is v > x?' with 'load p t r - > l c h i l d = = >
s_lchild' and 'cmp s_lchild,NULL', respectively.

±

T
I load pCr->vaiue ~ > v load ptr->lchild ~ > =__ichild load ptr->mhild -=> !rchtld

crop v,x crop s._lchUd, NULL amp s_rchil¢ NULL

mtumlNULL) retumlptr) retumlNULL)

Fig. 4. Loop structure of the binary search example after the SV transformat ion is appl ied.

Exploiting multi- way branches to boost superscalar processor performance 209

~ No other path ! h

• I I Bfl Bf2 Bfn

Fig. 5. Structure of program segments eligible for applying the
SV transformation on.

• substitute ' load p t r - > r c h i l d = = > ptr ' and
'cmp ptr, N U L L ' on the right path branching
from 'Is v < x? Is v > x?' with ' load p t r - > rchild
- - > s_rchild' and 'cmp s_rchild, N U L L ' , re-
spectively.
The substitutions make the instructions involved

no longer cause irreversible side-effect to the other
paths branching f rom 'Is v < x? Is v > x?' and,
therefore, can be moved up across 'Is v < x? Is v >

x?'. Figure 4 shows the flow diagram after the SV
transformation is carried out.

2.2. Procedural description of the SV transformation

The procedural description of the SV transforma-
tion is presented in the following:
(1) Identify a group of branch operations as the

target. The group of branch operations should
contain a branch operation as the header, de-
noted by Bh, with all other branch operations,
denoted by B/l, B:2 B:,, located on the im-
mediately following basic blocks branching
from Bh. For the time being, we only consider
the cases in which the basic block containing Bh
is the only entry to the whole structure• Figure 5
depicts the structure of the program segments
eligible for applying the SV transformation on.
In Fig. 5, each box represents a basic block.

(2) For branch B:~, 1 < = i < = n, if there is no in-
struction on the path from Bh to B:~ other than
Bh and B:~, then Byg can be merged with Bh
without further actions.

Bh

12

From somewhere e~se

Bh

\
Bf i

I1
I2

From somewhere e~se

(a) The original program (b) After 11 is duplicated and relocated

Fig. 6. Example of code duplication and relocation.

210

(3)

(4)

K-J. Oyang

If there are instructions on the path from Bh to
B:~ other than Bh and Bj-~ and B:~ is not data-
dependent on any of these instructions, then
these instructions can be relocated into the
paths branching from B:i. The relocation of in-
structions generally invokes code duplication.
Figure 6 demonstrates the action of code dupli-
cation and relocation performed for this case.
Again, in Fig. 6, each box represents a basic
block. Once the code duplication and reloca-
tion is done, B:~ can be merged with Bh just like
the case in Step 2.
If B:~ is data-dependent on some of the instruc-
tions, 11, 12 Ik, on the path from B h to B:~,
then this is a case where shadow variables need
to be introduced. Before we introduce shadow
variables, we first invoke the action in Step 3
above to relocate those instructions on the path
from Bh to B:~ that B~-~ is not data-dependent
on. These instructions can be moved into the
paths branching from B:~. Then, we introduce a
shadow variable for each of the variables that
I1, 12 I~ write to and make necessary substi-

tutions. The substitution of shadow variables
will transform I1, 12 , I k into a new group of
instructions, denoted by I'~, I~ , I;,, that no
longer cause irreversible side-effects to the
other paths branching from B h. As a result, 1'1,
I~ I;, can be moved up across Bh safely.
With I'1, I~ I;, relocated, the path from Bh to
B:i now contains no instructions and B:i, with
necessary substitutions of shadow variables,
can be merged with Bh just like the case in Step
2. Certainly, due to the introduction of shadow
variables, compensation codes must be added
to copy the values of the shadow variables into
their corresponding authentic variables. The
compensation codes can be added in the paths
branching from B:~. In the discussion above,
we assume that the superscalar processor fea-
tures the capability to handle false traps caused
by speculative execution [4,5]. If it is not the
case, then instructions I1, 12 , I k must not in-
voke memory reference or division operations
for the SV transformation to be applied. Other-
wise, the memory reference and division opera-

/

Bcc

J Execution
Unit 1 I

Enable
control

Conditional Conditional Conditional
Branch 1 Branch 2 Branch N

.... V

ioood 1 i deSl 1 B¢¢ i co,rz¢l 2 i dest 2

/ \

B= icondNi d ~ N

/ \ /

Executi°n I Unit 2 [Execution 1 Unit N

Enable Enable
control control

iiii::i::::iiii~ :: generation i i i ! i i ! ~ : ~ generaton

Loaded into the Program Counter
if any of the conditions is satisfied

Fig. 7. Operation of the proposed mult i -way branching mechanism.

Exploiting multi- way branches to boost superscalar processor performance 21 1

tions in 11, 12, . . . , I k could cause false fatal
faults [4, 5].

branch conditions for concurrent execution. Figure
7 illustrates the operation of the proposed multi-
way branching mechanism.

3. The proposed multi-way branch mechanism

The proposed multi-way branch mechanism is
developed in conjunction with the SV transforma-
tion. The multi-way branching mechanism is devel-
oped to carry out multi-way branches, especially
those that are derived from applying the SV trans-
formation, efficiently. The proposed multi-way
branching mechanism operates by executing multi-
ple conditional branch instructions concurrently.
The parallel execution of multiple branch instruc-
tions involves first dispatching each of the branch
instructions that constitute the multi-way branch
instance to the corresponding execution unit for
concurrent evaluation of the branch conditions.
Then, the destination address of the branch instruc-
tion whose condition is satisfied is selected and
loaded into the program counter. In the case where
no condition is satisfied, execution proceeds to next
instruction as normal. Here, it is assumed that no
more than one condition is satisfied at the same
time. This assumption imposes a rule that the com-
piler or the programmer must follow. The compiler
or the programmer can only schedule conditional
branch instructions that have mutually-exclusive

Table1
Options for utilizing the delayed slots of multi-way branches

Option 1 Option 2 Option 3

Execute the in-
structions in the
delay slot before
taking the
branch action

Before taking
the branch ac-
tion, execute the
instruction in the
delay slot that is
to be executed
by the same exe-
cution unit as
the conditional
branch instruc-
t ion whose ac-
tion is taken and
nullify the rest of
the instructions
in the delay slot

Nullify the in-
structions in the
delay slot

4. Evaluation of effectiveness

This section evaluates the effectiveness of the SV
transformation and the proposed multi-way branch
mechanism. The evaluation is conducted through
measuring the performance of a superscalar proces-
sor model that features the proposed multi-way
branch mechanism. Other features of the supersca-
lar processor model include:
(1) An extended instruction set that is derived from

the Sparc processor [7].
(2) Static scheduling [6].
(3) A 5-stage pipeline with single-cycle delay for

load and branch operations. The 5 pipeline
stages are, in their execution order: (1) Instruc-
tion fetch, (2) Instruction decode and register

C program

I C compiler
for the Sparc

~ Sparc
object code

Post-pass
scheduler for

the superscalar
processor model

L Superscalar
processor
object code

' "Archi tectura l
simulator for

the superscalar
processor model

performance measurement

Fig. 8. Simulation environment for measuring the effective-
Bess.

212 Y.-J. Oyang

fetch, (3) ALU operation, (4) Memory opera-
tion, (5) Register write back.

(4) Three options for utilizing the delay slots of
multi-way branches as illustrated in Table 1.

Figure 8 illustrates the simulation environment
set up for measuring the performance of the super-
scalar processor model. First, the object code gene-
rated by a C compiler for the Sparc microprocessor
[7] is fed into a post-pass scheduler. The post-pass
scheduler performs instruction scheduling on the
Sparc object file and outputs an executable file for
the superscalar processor model. The executable file
along with input data, are then fed into an architec-
ture simulator that emulates the operation of the
superscalar processor model. The execution time
taken by the superscalar processor model is meas-
ured by counting the number of clock cycles the si-
mulator takes to complete the task.

Table 2 lists the speedup of the superscalar pro-
cessor model over a conceptual scalar RISC proces-
sor that is derived from reducing the superscalar
processor model to one execution unit. In Table 2,
the performance of the scalar RISC processor is
normalized to 1. The effectiveness of the SV trans-
formation and the proposed multi-way branch
mechanism is demonstrated by the improvement
from the first two columns of the data to the third
and fourth columns. The speedup data in the first
two columns are the performance of the superscalar
processor model without exploiting the SV trans-
formation and the proposed multi-way branch
mechanism. The speedup data in the third and
fourth columns are the performance of the supers-
calar processor model when the SV transformation
and the proposed multi-way branch mechanism are
applied. Table 2 shows that SV transformation and
the proposed multi-way branch mechanism contrib-
ute to an increase of performance by 11% to 14%.

5. Conclusion

In this paper, we presented a compiler technique
called SV transformation and a multi-way branch
mechanism for exploiting multi-way branches in su-
perscalar instruction scheduling. The SV transfor-

mation can transform program segments in which
multi-way branches are not applicable into ones in
which multi-way branch are applicable. The pro-
posed multi-way branch scheme is able to carry out
multi-way branches efficiently, especially for those
derived from applying the SV transformation. The
simulation-based effectiveness evaluation conduc-
ted in this paper shows the SV transformation and
the proposed multi-way branch mechanism to-
gether can boost superscalar processor performance
by 11-14%.

Table 2
Speedup of the superscalar processor model over the concep-
tual scalar RISC processor

Bench- Speedupswithout SV Speedupswith SV
mark trans. & multi-way trans. & multi-way
programs branches branches

With 2 With 4 With 2 With 4
parallel parallel parallel parallel
execution execution execution execution
units units units units

Shortest
path 1.36 1.37 1.75 1.81

Binary
search 1.31 1.32 1.44 1.56

Binary
tree
traverse 1.27 1.29 1.35 1.38

Bucket
sort 1.50 1.54 1.54 1.61

Fibo-
nacci
number 1.80 1.85 1.85 1.92

GCD 1.1 5 1.1 6 1.54 1.55

Find the
minimum 1.26 1.26 1.51 1.66

Merge
sort 1.60 1.67 1.80 2.00

Pattern
match 1.48 1.58 1.52 1.63

String
compare 1.35 1.50 1.38 1.54

Average 1.41 1.46 1.57 1.67

Exploiting multi- way branches to boost superscalar processor performance 213

References

[1] M. Johnson, Superscalar Microprocessor Design (Pren-
tice-Hall, Englewood Cliffs, N J, 1991).

[2] N.P. Jouppi, The nonuniform distribution of instruction-
level and machine parallelism and its effect on perform-
ance, IEEE Trans. Comput. 38, (12) (Dec. 1989).

E3] M.D. Smith, M. Johnson and M.A. Horowitz, Limits on
multiple instruction issue, Proc. 3rd lnternat. Conf. on Ar-
chitectural Support for Programming Languages and
Operating System (1989).

[4] P.,P. Chang, S.A. Mahlke, W.Y. Chen, N.J. Warter and
W.M. Hwu, IMPACT: An architectural framework for
multiple-instruction-issue processors, Proc. 18th Annual
Internat. Symp. on Computer Architecture (May 1991).

[5] M.D. Smith, M. Horowitz and M.S. Lam, Efficient super-
scalar performance through boosting, Proc. 5th Internat.
Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (1992).

[6] M.S. Lam, Instruction scheduling for superscalar arch-
itectures, Ann. Rev. Comput. ScL (1990).

[7] Sun Microsystems Inc., The Sparc Architecture Manual
Version 7 (Sun Microsystems Inc., 1987).

Yen-Jen Oyang received the B.S.
degree in information Engineering
from National Taiwan University in
1982, the M.S. degree in Computer
Science from California Institute of
Technology in 1984, and the Ph.D.
degree in Electrical Engineering
from Stanford University in 1988.
He is currently an Associate Profes-
sor in the Department of Computer
Science and Information Engineer-
ing, National Taiwan University. His
research interests include computer

architecture and VLSI system design.

