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Abstract

We are given a sequence A of n real num-
bers which is to be preprocessed. In the Range
Maximum-Sum Segment Query (RMSQ) problem,
a query is comprised of two intervals [i, j] and
[k, l] and our goal is to return the maximum-sum
segment of A where the staring index of the seg-
ment lies in [i, j] and the ending index lies in [k, l].
We provide the ¯rst known optimal algorithm with
O(n) preprocessing time and O(1) query time.

Keywords: RMQ, maximum sum interval, se-
quence analysis

1 Introduction

Sequence analysis in bioinformatics has been
studied for decades. One important line of in-
vestigation in sequence analysis is to locate the
biologically meaningful segments, like conserved
regions or GC-rich regions in DNA sequences. A
common approach is to assign a real number(also
called scores) to each residue, and then look for
the maximum-sum or maximum-average segment
[3, 5, 10].

Ruzzo and Tompa [12] proposed a linear time
algorithm for ¯nding all maximal scoring subse-
quences. Huang [9] extended the well-known re-
currence relation used by Bentley [2] for solving
the maximum sum consecutive subsequence prob-
lem, and derived a linear-time algorithm for com-
puting the optimal segments with lengths at least
L. Lin, Jiang, and Chao [10] and Fan et al. [5]
studied the maximum-sum segment problem with
length at least L and at most U .

In this paper, we consider a more general prob-
lem in which we wish to ¯nd the maximum-sum

segment whose staring and ending indices of the
segment lie in given intervals. By preprocessing
the sequence in O(n) time, each query can be
answered in O(1) time. This also yields an al-
ternative linear-time algorithm for computing the
maximum-sum segment with length constraints.

The rest of the paper is organized as follows.
Section 2 gives the formal de¯nition of the RMSQ
problem and introduces the RMQ techniques [6].
Section 3 coping with the special case of the
RMSQ problem(called the SRMSQ problem). Sec-
tion 4 gives the optimal algorithm for the RMSQ
problem.

2 Problem Definition and Prelimi-

naries

The input is a sequence A = 〈a1, a2, . . . , an〉
of (not necessarily positive) real numbers. The
maximum-sum segment of A is the contiguous sub-
sequence having the greatest total sum, where the
sum of a subsequence S(i, j) = 〈ai, . . . , aj〉 is sim-

ply w(S(i, j)) =
∑j

k=i ak. For simplicity, through-
out the paper, the term ”subsequence” will be
taken to mean ”contiguous subsequence”. To
avoid ambiguity, we disallow nonempty, zero-sum
pre¯x or su±x (also called ties) in the maximum-

sum segments. We de¯ne c[i] =
∑i

k=1 ak as the
cumulative sum of A for all 1 6 i 6 n and c[0] = 0.
Notice that w(S(i, j)) = c(j)− c(i− 1).

As an example, consider the input sequence
A = 〈4,−5, 2,−2, 4, 3,−2, 6〉. The maximum-sum
segment of A is M = 〈4, 3,−2, 6〉, with a total
sum of 11. There is another subsequence tied for
this sum by appending 〈2,−2〉 to the left end of
M, but this subsequence is not the maximum-sum
segment, since it has a nonempty zero-sum pre¯x.
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2.1 Problem De¯nition

We start with a special case of the RMSQ prob-
lem, called the SRMSQ problem.

Problem 1. A Special Case of the RMSQ prob-
lem(SRMSQ)
Structure to Preprocess: A = 〈a1, a2, . . . , an〉
is a sequence of n real numbers.
Query: For an interval I = (i, j), 1 6 i 6

j 6 n, SRMSQA(i, j) returns a pair of indices
(x, y), i 6 x 6 y 6 j, such that segment S(x, y)
is the maximum-sum segment of the subsequence
〈ai, . . . , aj〉.

A näıve algorithm is to build a n×n table stor-
ing answers to all of the O(n2) possible queries.
Each entry (i, j) in the table represents an interval
(i, j) so we only have to ¯ll in the upper-triangular
part of the table. By applying the well known
linear time algorithm for ¯nding the maximum-
sum segments of a sequence, we have an O(n3)
preprocessing algorithm. Notice that answering a
SRMSQ query now requires just one lookup to the
table. To achieve O(n2) preprocessing rather than
the O(n3) näıve preprocessing, we use the online
property of the algorithm, ¯lling the table row-by-
row. In the paper, our algorithm can achieve O(n)
time and space preprocessing, and O(1) time for
each query.

Problem 2. the Range Maximum-Sum Segment
Query problem(RMSQ)
Structure to Preprocess: A = 〈a1, a2, . . . , an〉
is a sequence of n real numbers.
Query: For two intervals S = (i, j) and E =
(k, l), 1 6 i 6 j 6 n and 1 6 k 6 l 6 n,
RMSQA(i,j,k,l) returns a pair of indices (x, y),
such that w(S(x, y)) is maximized for i 6 x 6 j

and k 6 y 6 l.

This is a generalized version of the SRMSQ
problem because when i = k and j = l we are actu-
ally querying SRMSQA(i, j). The näıve algorithm
will have to build a 4-dimensional table and the
time complexity for preprocess will achieve Ω(n4).
This is de¯nitely ine±cient for practical use. We
will also provide an algorithm with O(n) prepro-
cessing time and O(1) query time.

2.2 The RMQ Techniques

We next introduce an important technique,
called RMQ, used in our algorithm. We are given a
sequence A = 〈a1, a2, . . . , an〉 to be preprocessed.
A Range Minima Query(RMQ) speci¯es an inter-
val I and the goal is to ¯nd the index k with min-
imum value ak for k ∈ I.

Lemma 1. The RMQ problem can be solved in
O(n) time and space prerpocessing and O(1) time
per query. [1, 6]

The well known algorithm for the RMQ prob-
lem is to ¯rst construct the Cartesian tree(de¯ned
by Vuillemin 1980) of the sequence, then be
preprocessed for LCA(Least Common Ancestor)
queries [8, 4]. This algorithm can be easily modi-
¯ed to output the index k for which ak achieves the
minimum or the maximum. We denote RMQmin

as the minimum query and RMQmax as the max-
imum query. That is, RMQmin(A, i, j) will return
index k such that ak achieves the minimum for
i 6 k 6 j, and RMQmax(A, i, j) will return index
k such that ak achieves the maximum. For the
correctness of our algorithm if there are more than
two minimums(maximums) in the query interval,
it always outputs the rightmost(leftmost) index k

for which ak achieves the minimum(maximum).
This can be done by constructing the Cartesian
tree in a particular order.

3 Coping with the SRMSQ Prob-

lem

A key idea to solve the SRMSQ problem is to
view the problem in the sense of the cumulative
sum. For convenience of later proof, we give the
following de¯nition.

Definition 1. Let A be any nonempty real num-
ber sequence. We de¯ne l[j] for each index j of A

to be the largest index k such that c[k] ≥ c[j] and
1 6 k 6 j − 1. But if no such k exists, that is,
c[j] > c[k] for all 1 6 k 6 j−1, we assign l[j] = 0.

Such largest index l[j] and the cumulative sum
c[j] for each index j of A can be computed by the
PREPROCESS1 algorithm as illustrated in Figure
1.
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Algorithm preprocess1

Input: An array of n real numbers A[1 . . . n].
Output: A length n array l[·] and a length n + 1 array c[·]
1 c[0]← 0;
2 for j ← 1 to n do

3 c[j]← c[j − 1] + A[j];
4 l[j]← j − 1;
5 while c[l[j]] < c[j] and l[j] > 0 do

6 l[j]← l[l[j]];
7 end while

8 end for

Figure 1: Algorithm for computing c[·] and l[·]

Lemma 2. Let A be any nonempty real number
sequence. If segment S(i, j) is the maximum-sum
segment of A, then index i is the largest index such
that the cumulative sum c[i − 1] is minimized for
l[j] 6 i − 1 < j(that is, c[i − 1] is the rightmost
minimum).

Proof. Suppose not, then either (1) index i−1 lies
in the interval [0, l[j]− 1] or (2) index i− 1 lies in
the interval [l[j], j−1] but is not the largest index
such that the cumulative sum c[i−1] is minimized
for l[j] 6 i− 1 < j. We discuss it as follows.
(1) Suppose index i−1 lies in the interval [0, l[j]−
1]:
When l[j] = 0, it’s obvious that i − 1 cannot lie
in the interval [0, l[j] − 1]. When l[j] > 0, we
have w(S(i, l[j])) = c[l[j]] − c[i − 1] ≥ c[j] − c[i −
1] = w(S(i, j)). If equality holds, then w(S(l[j] +
1, j)) = c[j]−c[l[j]] = 0. So S(l[j]+1, j) would be a
zero-sum pre¯x of S(i, j). Thus, w(S(i, l[j])) must
be strictly greater than w(S(i, j)). But, this con-
tradicts to the fact that S(i, j) is the maximum-
sum segment of A. So index i−1 cannot lie in the
interval [0, l[j]− 1].
(2) Suppose index i−1 lies in the interval [l[j], j−
1]:
If c[i − 1] is not minimized for l[j] 6 i − 1 < j.
That is, there exists an index k, k 6= i and
l[j] 6 k − 1 < j, such that c[k − 1] < c[i − 1].
Then we have w(S(k, j)) = c[j] − c[k − 1] >

c[j] − c[i − 1] = w(S(i, j)). This contradicts to
the fact that S(i, j) is the maximum-sum segment
of A. So the cumulative sum c[i − 1] must be
minimized for l[j] 6 i − 1 < j. We further sup-

pose that c[i − 1] is not the rightmost minimum,
that is, there exists an index k′ > i such that
c[k′−1] is also a minimum. Then w(S(i, k′−1)) =
c[k′ − 1] − c[i − 1] = 0. So S(i, j) has a zero-sum
pre¯x S(i, k′ − 1) which also contradicts to the
de¯nition of the maximum-sum segment. Hence,
index i must be the largest index such that c[i−1]
is minimized for l[j] 6 i− 1 < j.

Definition 2. Let A be any nonempty real number
sequence. We de¯ne the ”good partner”, p[j], of
each index j in A as the largest index k such that
c[k − 1] is minimized for l[j] 6 k − 1 < j. And
segment S(p[j], j) is called a candidate segment

of A at j. We also de¯ne m[j] to be the sum of
the candidate segment of A at j, that is m[j] =
w(S(p[j], j)).

By Lemma 2, we know that each pair (p[j], j)
constitutes a candidate solution of the maximum-
sum segment of A, that is, segment S(p[j], j). The
relationship between l[j] and p[j] as de¯ned above
is illustrated in Figure 2. The left side of the ¯gure
shows the case that there exists a largest index l[j]
such that c[l[j]] ≥ c[j] and 1 6 l[j] 6 j. And the
right side of the ¯gure shows the case that c[j] is
the unique maximum of c[k] for all 1 6 k 6 j.

The good partner p[j] and the sum of the can-
didate segment m[j] for each index j of A can be
computed by the PREPROCESS2 algorithm as
illustrated in Figure 3.
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Figure 2: An illustration for l[·] and p[·].

Algorithm preprocess2

Input: An array of n real numbers A[1 . . . n], array c[·] and array l[·].
Output: Two length n arrays, p[·] and m[·].
1 Apply RMQmin preprocess to array c[·].
2 for j ← 1 to n do

3 p[j]← RMQmin(c, l[j], j − 1) + 1;
4 m[j]← c[j]− c[p[j]− 1];
5 end for

Figure 3: Algorithm for computing p[·] and m[·]

Lemma 3. Let A be any nonempty real number
sequence of length n. If index i satis¯es m[i] ≥
m[k] for all 1 6 k 6 n, then S(p[i], i) is the
maximum-sum segment.

Proof. Suppose on the contrary, segment S(s, t),
(s, t) 6= (p[i], i), is the maximum-sum segment.
By Lemma 2, we have s = p[t]. So m[t] =
w(S(p[t], t)) = w(S(s, t)) > w(S(p[i], i) =
m[i] which contradicts to m[i] is the maximum
value.

Lemma 3 tells us, once we have computed m[j]
and p[j] for each index j of A. To ¯nd the
maximum-sum segment of A, we only have to re-
trieve the index i such that m[i] ≥ m[k] for all
1 6 k 6 n. Then, S(p[i], i) is the maximum-sum
segment of A. Lemma 4-6 will show some impor-
tant properties of the candidate segments.

Lemma 4. Let A be any nonempty real number
sequence. If p[j] is the good partner of index j

and p[j] < j, then c[p[j] − 1] < c[k] < c[j] for all
p[j]− 1 < k < j.

Proof. Suppose not. That is, there exists an index
k′, p[j] − 1 < k′ < j, such that c[k′] ≤ c[p[j] − 1]
or c[k′] ≥ c[j]. (1) If c[k′] ≤ c[p[j] − 1]. By
de¯nition of p[j], we know that l[j] ≤ p[j] < j.
Since p[j] − 1 < k′, we have l[j] < k′ < j and
c[k′] ≤ c[p[j] − 1]. This contradicts to the de¯ni-
tion of p[j] to be the largest index and c[p[j]−1] is
minimized for l[j] 6 p[j]−1 < j. (2) If c[k′] ≥ c[j],
then by de¯nition of p[j], we have k′ ≤ p[j]−1 < j.
So k′ ≤ p[j]− 1 < k′. A contradiction occurs.

That is, c[p[j] − 1] is the unique minimum
and c[j] is the unique maximum of c[k] for all
p[j] − 1 6 k 6 j. The following lemma shows the
nesting property of the candidate segments. See
Figure 5. Notice that, the pointer of each index j

points to the position of p[j].
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Algorithm Preprocess of SRMSQA(i, j)
1 Run algorithm PREPROCESS1 to compute array c[·], l[·] of A.
2 Run algorithm PREPROCESS2 to compute array p[·],m[·] of A.
3 Apply RMQmax preprocess to array m[·].
4 Apply RMQmin preprocess to array c[·].

Algorithm Query of SRMSQA(i, j)
1 r ← RMQmax(m, i, j)
2 if p[r] < i then

3 r1 ← RMQmin(c, i− 1, r − 1) + 1;
4 r2 ← RMQmax(m, r + 1, j);
5 if c[r]− c[r1 − 1] < m[r2] then
6 OUTPUT (p[r2],r2);
7 else

8 OUTPUT (r1, r);
9 end if

10 else

11 OUTPUT (p[r], r);
12 end if

Figure 4: Algorithm for the SRMSQ problem.

Lemma 5. Let A be any nonempty real num-
ber sequence. For two indices i and j, i < j,
if p[i] is the good partner of i and p[j] is the
good partner of j, then it cannot be the case that
p[i] < p[j] ≤ i < j.

Proof. Suppose p[i] < p[j] ≤ i < j holds. By
Lemma 4, we have
(1) c[p[i]− 1] < c[k′] < c[i] ∀ p[i]− 1 < k′ < i

(2) c[p[j]−1] < c[k′′] < c[j] ∀ p[j]−1 < k′′ < j

Since p[j]− 1 < i, we can substitute p[j]− 1 for k′

in (1) ⇒ c[p[i]− 1] < c[p[j]− 1] < c[i].
Similarly, we can substitute i for k′′ in (2) ⇒
c[p[j]− 1] < c[i] < c[j].
Then we have
(3) c[p[i]−1] < c[p[j]−1] < c[k′′] < c[j] ∀ p[j]−
1 < k′′ < j

(4) c[p[i] − 1] < c[k′] < c[i] < c[j] ∀ p[i] − 1 <

k′ < i

By (3) and (4), we have
(5) c[p[i]−1] < c[k′′′] < c[j] ∀ p[i]−1 < k′′′ < j

So, if there exists an index k such that c[k] ≥ c[j],
then k < p[i] − 1. We also have by (5) that
c[p[i] − 1] < c[p[j] − 1] which is a contradiction
to that c[p[j] − 1] minimizes c[l] for k < l < j. If
there is no such index k, then c[p[i]−1] < c[p[j]−1]
is a contradiction to that c[p[j]− 1] minimizes c[l]
for l < j.

Now, we are about to establish the relationship

between sequence A and its subsequence Q. The
following key lemma will show that a candidate
segment S of A is still a candidate segment of Q

if Q contains the whole candidate segment S.

Lemma 6. Let A = 〈a1, . . . an〉 be any nonempty
real number sequence and Q = 〈as, . . . at〉 be any
subsequence of A. If p[j] is the good partner of
index j for sequence A and s ≤ p[j] ≤ j ≤ t, then
p[j] is still the good partner of index j for sequence
Q.

Proof. Let c¤[j] be the cumulative sum of each in-

dex j in Q. Then, c¤[j] =
∑j

k=s ak =
∑j

k=1 ak −
∑s−1

k=1 ak = c[j]− c[s− 1] for all s− 1 6 j 6 r. Let
l¤[j] be the largest index k such that c¤[k] ≥ c¤[j]
for all s 6 k 6 j − 1. If no such k exists, we as-
sign l¤[j] = s− 1. Our goal is to prove that p[j] is
the largest index k that minimizes c¤[k− 1] for all
l¤[j] 6 k − 1 < j.
(1) If l[j] ≥ s. Since l[j], by de¯nition, is the
largest index k such that c[k] ≥ c[j] for all 1 6

k 6 j − 1. So l[j] is the largest index k such that
c¤[k] = c[k] − c[s − 1] ≥ c[j] − c[s − 1] = c¤[j] for
all 1 6 s 6 k 6 j − 1. Hence, we have l¤[j] = l[j].
And p[j], by de¯nition, is the largest index k that
minimizes c[k − 1] for all l[j] 6 k − 1 < j. So p[j]
is the largest index k that minimizes c¤[k − 1] =
c[k − 1]− c[s− 1] for all l¤[j] = l[j] 6 k − 1 < j.
(2) If l[j] < s. That is, c[k] < c[j] for all
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s 6 k 6 j − 1. So, c¤[k] = c[k] − c[s − 1] <

c[j] − c[s − 1] = c¤[j] for all s 6 k 6 j − 1.
Hence, we have l¤[j] = s − 1. Since p[j] is the
largest index k that minimizes c[k − 1] for all
l[j] 6 k − 1 < j. So, p[j] is the largest index
k that minimizes c¤[k − 1] = c[k − 1] − c[s − 1]
for all l[j] 6 s − 1 6 k − 1 < j. That is, p[j] is
the largest index k that minimizes c¤[k− 1] for all
l¤[j] 6 k − 1 < j.

Corollary 1. Let A = 〈a1, . . . an〉 be any
nonempty real number sequence and Q =
〈as, . . . at〉 be any subsequence of A. If p[j] is the
good partner of index j for sequence A, s ≤ p[j] ≤
j ≤ t, and m[j] is the sum of the candidate seg-
ment of A at j. Then m[j] is also the sum of the
candidate segment of Q at j.

Proof. A direct result of Lemma 6.

Now, we are ready to present our algorithm for
the SRMSQ problem(See Figure 4). Let A be a
sequence of n real numbers and [i, j] is the query
interval, where 1 6 i 6 j 6 n.

For instance, see Figure 5, the input sequence
A has 15 elements. suppose we are querying
SRMSQA(3, 7). The QUERY OF SRMSQ algo-
rithm in Figure 4 will ¯rst query the index r such
that m[r] is maximized for 3 6 r 6 7(line 1). In
this case, r = 5, which means candidate segment
S(p[5], 5) has the largest sum compared to other
segments. The left end of S(p[5], 5), p[5] = 3, lies
in the interval [3, 7]. The algorithm executes line
11, output (p[5], 5), which means segment S(3, 5)
is the maximum-sum segment of the subsequence
A[3 . . . 7].

Suppose we are querying SRMSQA(6, 12),
RMQmax(m, 6, 12) will return index 9(line 1).
Since p[9] = 3 < 6, line 3-9 will be executed. In
line 3, RMQmin(c, 5, 8) will return index 8. In line
4, RMQmax(m, 10, 12) will return index 11. In line
5, since c[9] − c[8] = 6 < m[11] = 8, the QUERY
OF RMSQ algorithm will output (p[11], 11), which
means S(11, 11) is the maximum-sum segment of
the subsequence A[6. . . 12].

Theorem 1. Algorithm QUERY OF
SRMSQA(i, j) will output the maximum-sum seg-
ment of the subsequence S(i, j).

Proof. Let m¤[k] be the sum of the candidate seg-
ment of S(i, j) at k and c¤[k] be the cumulative

sum of S(i, j) for i − 1 6 k 6 j. We have
c¤[k] = c[k]−c[i−1], i−1 6 k 6 j. Let p¤[k] be the
good partner of index k of Q for all i 6 k 6 j. Let
index r satisfy m[r] ≥ m[k] for all i 6 k 6 j(line
1).
(A) If p[r] ≥ i: Our goal is to show that m[r] ≥
m¤[k] for all i 6 k 6 j, and then apply Lemma 3 to
complete the proof. We ¯rst consider each index
k′ such that i 6 k′

6 j and i ≤ p[k′] ≤ k′ ≤ j. By
corollary 1, we can deduce that m¤[k′] = m[k′] ≤
m[r] = m¤[r]. We next consider each index k′′

such that i 6 k′′
6 j and p[k′′] < i. Since

p[k′′] < i ≤ k′′, we can apply Lemma 4 and get
c[p[k′′]− 1] < c[k] < c[k′′] ∀ p[k′′]− 1 < k < k′′

(1)
Since i ≤ p¤[k′′] < k′′ by de¯nition of p¤[k′′], we
have p[k′′] − 1 < i − 1 ≤ p¤[k′′] − 1 < k′′. So,
we can substitute p¤[k′′] − 1 for k in (6) and get
c[p[k′′]− 1] < c[p¤[k′′]− 1]. Hence, we can deduce
that m¤[k′′] = c¤[k′′] − c¤[p¤[k′′] − 1] = c[k′′] −
c[p¤[k′′] − 1] < c[k′′] − c[p[k′′] − 1] = m[k′′] More-
over, m[k′′] ≤ m[r] = m¤[r]. So, we have m¤[k′′] <

m¤[r]. Till now, we have shown that m[r] ≥ m¤[k]
for all i 6 k 6 j. By Lemma 3, S(p[r], r) is the
maximum-sum segment of S(i, j)(line 11).
(B) If p[r] < i: We ¯rst consider each index k′

such that i 6 k′ < r. Since p[r] < i ≤ r, we can
apply Lemma 4 and obtain
c[p[r]− 1] < c[k] < c[r] ∀ p[r]− 1 < k < r (2)
Since c[k] < c[r] for all p[r] − 1 < i 6 k < r,
we have c¤[k] = c[k] − c[i − 1] < c[r] − c[i − 1] =
c¤[r] ∀ i 6 k < r. For any segment S(k, k′),
i 6 k < r, since w(S(k, k′)) = c¤[k′] − c¤[k] <

c¤[r]− c¤[k] = w(S(k, r)), it’s not hard to see that
S(k, k′) cannot be the maximum-sum segment.

We next consider each index k′′ such that r <

k′′ ≤ j. By Lemma 5, we know that it cannot be
the case p[r] < p[k′′] ≤ r < k′′. If p[k′′] ≤ r, then
it must be the case that p[k′′] ≤ p[r] < r < k′′.
Since p[k′′]−1 ≤ r < k′′ and p[k′′]−1 ≤ p[r]−1 <

k′′, we can apply Lemma 4 and get c[p[k′′]− 1] <

c[r] < c[k′′] and c[p[k′′] − 1] < c[p[r] − 1] < c[k′′].
So, m[k′′] = c[k′′]−c[p[k′′]−1] > c[r]−c[p[r]−1] =
m[r] which contradicts to that m[r] ≥ m[k] for all
i 6 k 6 j. So, p[k′′] £ r, that is, p[k′′] > r.
Hence, by corollary 1, we have m¤[k′′] = m[k′′] for
r < k′′ ≤ j. Let index r2 satis¯es m[r2] ≥ m[k]
for all r + 1 6 k 6 j(line 4). It’s not hard to see
that either S(r1, r) or S(p[r2], r2) is the maximum-
sum segment of S(i, j). By Lemma 3, the one
with greater sum is the maximum-sum segment of
S(i, j)(line 5-9).
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j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
aj - 9 −10 4 −2 4 −5 4 −3 6 −11 8 −3 4 −5 3

c[j] 0 9 −1 3 1 5 0 4 1 7 −4 4 1 5 0 3
l[j] - 0 1 1 3 1 5 5 7 1 9 9 11 9 13 13
p[j] - 1 2 3 4 3 6 7 8 3 10 11 12 11 14 15

m[j] - 9 −10 4 −2 6 −5 4 −3 8 −11 8 −3 9 −5 3

9 -10 4 -2 4 -5 4 -3 6 -11 8 -3 4 -5 3

Figure 5: The candidate segment S(p[j],j) of each index j.

Algorithm Preprocess of RMSQ

1 Apply SRMSQ preprocess.
2 Apply RMQmax preprocess to c[·].

Algorithm Query of RMSQA(i, j, k, l)
1 if j ≤ k then

2 OUTPUT (RMQmin(c, i− 1, j − 1) + 1,RMQmax(c, k, l))
3 else

4 (r1,r
′
1) ← (RMQmin(c, i− 1, k − 1) + 1,RMQmax(c, k, l));

5 (r2,r
′
2) ← (RMQmin(c, k, j − 1) + 1,RMQmax(c, j, l));

6 (r3,r
′
3) ← SRMSQA(k, j);

7 OUTPUT (rm,r′m) such that c[rm]− c[r′m] is maximized for 1 6 m 6 3;
8 end if

Figure 6: Algorithm for the RMSQ problem.

Lemma 7. Algorithm PREPROCESS1 runs in
O(n) time.

Proof. It can be shown by a simple amortized
analysis. The total number of operations of the al-
gorithm is clearly bounded by O(n) except for the
while-loop body of Steps 5-7. In the following, we
show that the amortized cost of the while-loop is a
constant. Therefore, the overall time required by
the loop is O(n). We de¯ne the potentialfunction

of A after the ith iteration of the for-loop to be
Φ(i), i.e. the number of times pointer l[i] may
be advanced most. So we have Φ(i) ≥ 0 always
holds in every iteration. Suppose that the pointer
l[·] is advanced ci times in this period. Then the
actual cost of the operations is ci + 1. Observ-
ing that Φ(i) = Φ(i − 1) − ci + 1, the change
of the potential of A during the ith iteration is
Φ(i) − Φ(i − 1) = Φ(i − 1) − ci + 1 − Φ(i − 1) =
1− ci. The amortized cost is therefore calculated
as ĉi = ci + 1 + Φ(i)−Φ(i− 1) = 2. Since exactly

n iterations would be executed in the entire pro-
cess, the while-loop spends at most overall O(n)
time.

Lemma 8. Algorithm PREPROCESS2 runs in
O(n) time.

Proof. By Lemma 1, the preprocessing time for
RMQ is O(n) and the query time is O(1). So, the
cost of each step in the for-loop is a constant and
the overall time required is O(n).

Theorem 2. The SRMSQ problem can be solved
in O(n) preprocessing time and O(1) query time.

Proof. By Lemma 1, Lemma 7, and Lemma 8, the
algorithms for preprocess all run in O(n) time.
So, the time complexity for the PREPROCESS
OF SRMSQ algorithm is O(n). Since each RMQ
query in the QUERY OF SRMSQ algorithm takes
O(1) time, one can easily see that the query time
for the QUERY OF SRMSQ algorithm is O(1).
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It’s not hard to verify that the space complexity
for these algorithms is also O(n).

4 Coping with the RMSQ Problem

The RMSQ problem is to answer the queries
comprising of two intervals [i, j] and [k, l], where
[i, j] speci¯es the range of the starting index of
the maximum-sum segment, and [k, l] speci¯es
the range of the ending index. Since it is mean-
ingless if the range of the starting index is in front
of the range of the ending index. So, without loss
of generality, we assume that i ≤ k and j ≤ l. We
presents our algorithm as follows.

Theorem 3. Algorithm QUERY OF
RMSQA(i, j, k, l) will output the correct answer.

Proof. We discuss it under two possible condi-
tions.
(1) Nonoverlapping(j ≤ k): Suppose the intervals
[i, j] and [k, l] do not overlap. Since w(S(x, y)) =
c(y)−c(x−1), to maximize S(x, y) is equivalent to
maximize c(y) and minimize c(x−1) for i ≤ x ≤ j

and k ≤ y ≤ l. By applying the RMQ technique
to preprocess c[·], the maximum-sum segment can
be easily located.(line 2)
(2) Overlapping(j > k): When it comes to the
overlapping case, just to ¯nd the maximum cu-
mulative sum and the minimum cumulative sum
might go wrong if the minimum is on the right
of the maximum. We discuss it under 3 possible
conditions for the maximum-sum segment S(x, y).
(a) Suppose i ≤ x ≤ k and k ≤ y ≤ l, this
is an nonoverlapping case. So we ¯nd the mini-
mum cumulative sum and the maximum cumula-
tive sum.(line 4) (b) Suppose k + 1 ≤ x ≤ j and
j ≤ y ≤ l, this is also an nonoverlapping case.
We ¯nd the minimum cumulative sum and the
maximum cumulative sum.(line 5) (c) Otherwise,
k + 1 ≤ x ≤ j and k + 1 ≤ y ≤ j, this is exactly
the same as a SRMSQA(k + 1, j) query.(line 6)
The maximum sum segment S(x, y) must be one
of these three possible cases and have the largest
sum(line 7).

Theorem 4. The RMSQ problem can be solved
in O(n) preprocessing time and O(1) query time.

Proof. The time for the RMQmax and the SRMSQ
preprocesses are O(n). So the PREPROCESS OF
RMSQ algorithm costs O(n) time. And the query
time is O(1) since each step in the QUERY OF
RMSQ algorithm costs O(1) time.
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