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Abstract

Recent studies have shown that the chromosome
recombination only takes places at some narrow
hotspots. Within segments between these hotspots,
called haplotype block, little or even no recombi-
nation occurs and a small subset of SNPs, called
tag SNPs, are sufficient to capture the entire block
pattern. However, the tag SNP may be genotyped
as missing data if it does not pass the threshold of
data quality, and the DNA sample may fail to be
identified due to the ambiguity caused by missing
data. In this paper, we formulate this problem as
finding a set of SNPs, called auxiliary tag SNPs,
which is able to resolve the ambiguity caused by
missing data. In addition, we also consider an-
other set of SNPs, called robust tag SNPs, which
guarantees no ambiguity regardless of the occur-
rence of missing data at any tag SNP. Both prob-
lems of finding minimum auxiliary and robust tag
SNPs are shown to be NP-complete. Our study
indicates that auxiliary tag SNPs can be found ef-
ficiently when robust tag SNPs have been computed
in advance. To find robust tag SNPs, we propose
two greedy approximation algorithms. These two
approximation algorithms have approximation ra-
tio (m + 1) ln K(K−1)

2 and ln((m + 1)K(K−1)
2 ) re-

spectively, where m is the number of missing data
and K is the number of distinct block patterns.

1 Introduction

In recent years, Single Nucleotide Polymor-
phisms (SNPs) [1] have become more and more
popular for association studies1 of genetic diseases

1To perform association study, scientists first collect
DNA samples and extract (genotype) SNPs from diseased
and non-diseased individuals. Next, the SNPs from dis-
eased individuals are compared to those from non-diseased
ones. Eventually, a profile that contains SNP patterns cor-
responding to diseases will be established.

or traits. Although the cost of genotyping SNPs
is gradually decreasing, it is still uneconomical to
genotype all SNPs for association study [2]. How-
ever, recent findings showed that the chromoso-
mal recombination only occurs at some narrow
hotspots. The chromosomal region between these
hotspots is called a “haplotype block.” Within a
haplotype block, there is little or even no recombi-
nation occurred, and the SNPs (in the block) tend
to be inherited together. Due to the low diver-
sity of SNPs in a haplotype block, the informa-
tion they carry is highly redundant. Thus, a small
subset of SNPs (called “tag SNPs”) is sufficient to
capture the entire SNP pattern of the haplotype
block. Haplotype blocks with corresponding tag
SNPs are quite useful and cost-effective in asso-
ciation studies as it does not require genotyping
all SNPs. Many studies have tried to minimize
the number of tag SNPs required in each block.
In a large-scale study of chromosome 21, Patil
et al. [6] developed a greedy algorithm to parti-
tion the haplotypes into 4,135 blocks with 4,563
tag SNPs. Zhang et al. [7, 8] used a dynamic
programming approach to reduce the number of
blocks and tag SNPs to 2,575 and 3,562, respec-
tively. Bafna et al. [2] showed that the problem of
minimizing tag SNPs is NP-hard and gave efficient
algorithms for special cases of this problem.

When identifying an unknown DNA sample,
the tag SNPs of the DNA sample are genotyped
and compared to those of diseases. However, the
genotyped tag SNP is considered as the missing
data if it does not pass the threshold of data qual-
ity [3, 6, 9]. In this case, the DNA sample may
fail to be identified. Figure 1 illustrates the influ-
ence of the missing data on DNA samples. In this
figure, a haplotype block2 (Figure 1 (A)) defined

2This haplotype block is redrawn from the haplotype
database of chromosome 21 published by Patil et al. [6] at
http://www.perlegen.com/haplotype/. We follow the same
assumption as Patil et al., Zhang et al., and Bafna et al.
that all SNPs are biallelic (i.e., taking on only two values).
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Figure 1: The influence of the missing data on
DNA samples and corresponding auxiliary tag
SNPs
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Figure 2: The robust tag SNPs and haplotype
samples with missing data occurred at any locus

by 12 SNPs on chromosome 21 is presented. Each
column represents a SNP pattern (P1, P2, P3, and
P4) and each row represents a SNP locus (S1, S2,
..., and S12). The black and grey boxes stands
for the major and minor alleles at the SNP locus,
respectively. Suppose we select SNPs S1 and S12

as tag SNPs. The DNA sample h1 is identified
as SNP pattern P3 unambiguously (Figure 1 (B)).
Consider DNA samples D2 and D3 with one tag
SNP genotyped as the missing data (Figure 1 (C)).
h2 can be identified as SNP patterns P2 or P3, and
h3 can be identified as P1 or P3. As a result, the
missing data results in ambiguity when identifying
DNA samples.

Although the selected tag SNPs fail to iden-
tify the sample due to missing data, the remain-
ing SNPs within the haplotype block may pro-
vide abundant information to resolve the ambi-
guity. For example, suppose we genotype an ad-
ditional SNP S5 for h2 (Figure 1 (D)). h2 is iden-
tified as SNP pattern P3 unambiguously. On the
other hand, if SNP S8 is genotyped (Figure 1 (E)),
h3 is also identified unambiguously. These addi-
tional SNPs are referred to “auxiliary tag SNPs,”
which can be found from the remaining SNPs in
the block and are able to resolve the ambiguity
caused by the missing data.

Alternatively, instead of re-genotyping auxil-
iary tag SNPs each time when encountering miss-
ing data, we can work on a set of SNPs which

is not affected by the the occurrence of missing
data. For example, suppose we select SNPs S1, S5,
S8, and S12 to be genotyped. Note that no mat-
ter which SNP is genotyped as missing data, the
remaining three SNPs can still identify the DNA
sample unambiguously (see Figure 1). We refer to
these SNPs as “robust tag SNPs,” which correctly
identify the DNA sample regardless of the missing
data occurred at any SNP locus. When the oc-
currence of missing data is frequently, the cost of
re-genotyping processes can be reduced by using
robust tag SNPs instead of auxiliary tag SNPs.

This paper studies the problems of finding ro-
bust and auxiliary tag SNPs. Our study indicates
that auxiliary tag SNPs can be found efficiently if
robust tag SNPs have been computed in advance.
The result of the paper is organized as follows.
In Section 2, we formulate the problem of finding
the robust tag SNPs mathematically and prove its
NP-hardness. Section 3 gives an efficient approx-
imation algorithm to find robust tag SNPs. Its
approximation ratio is (m + 1) ln(K(K−1)

2 ), where
m is the number of SNPs genotyped as missing
data and K is the number of patterns in the block.
Section 4 illustrates the second approximation al-
gorithm which achieves a better approximation ra-
tio ln((m + 1)K(K−1)

2 ). In Section 5, we show the
NP-hardness of finding auxiliary tag SNPs and
describe an efficient algorithm when robust tag
SNPs have been computed in advance. Section 6
presents the experimental result of our algorithms
applied to the public haplotype database. Finally,
concluding remarks are given in Section 7.

2 Finding Robust Tag SNPs

Assume we are given a haplotype block con-
sisting of N SNPs and K SNP patterns, which is
denoted by an N × K matrix Mh (see Figure 2
(A)). Let Mh[i, j] ∈ {1,2} for each i ∈ 1..N and
j ∈ 1..K, where 1 and 2 represent the major and
minor alleles, respectively. The set of robust tag
SNPs C ′ which allows m SNPs genotyped as miss-
ing data must satisfy the following two properties:
(1) each sample can be identified unambiguously
(as one of the K patterns) by SNPs in C ′; (2) when
m SNPs in C ′ are genotyped as missing data, (1)
still holds. This problem is referred to as Mini-
mum Robust Tag SNPs (MRTS) and the formal
definition is given below.

Problem: Minimum Robust Tag SNPs

Input: An N ×K matrix Mh and an integer m.
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Figure 3: The haplotype matrix Mh and the cor-
responding bipartite graph G

Output: The minimum subset of rows (SNPs) C ′

in Mh which satisfies:
(1) for each pair of patterns Pi and Pj , these is
a row k in C ′ such that Mh[k, i] 6= Mh[k, j]3;
(2) when m rows are discarded from C ′ arbi-
trarily, (1) still holds.

Now we show that the MRTS problem can be re-
formulated as a variation of the set covering prob-
lem [5]. Each row k in Mh is reformulated as a set
S
′
k = {(i, j) | M [k, i] 6= M [k, j] and i < j}. For

example, suppose the row k in Mh is {1,1,1,2}.
The corresponding set S

′
k = {(1, 4), (2, 4), (3, 4)}.

Let C be the collection of S
′
k, where 1 ≤ k ≤ N .

Let P be the set that contains each pair of these
K patterns (i.e., P = {(i, j) | 1 ≤ i < j ≤
K} = {(1, 2), (1, 3), · · · , (K − 1,K)}). The follow-
ing lemma implies that the set of robust tag SNPs
C ′ is a collection such that each element in P is
covered by corresponding sets of C ′ for at least
(m + 1) times.

Lemma 1 C ′ ⊆ C is the set of robust tag SNPs
which allow m SNPs genotyped as missing data iff
each element in P is covered by the sets in C ′ for
at least (m + 1) times.
Proof:
Consider each element (i, j) in P and each set S

′
k

in C as nodes in an undirected bipartite graph G
(see Figure 2 (B)). There is an edge connecting
the node (i, j) and S

′
k iff (i, j) ∈ S

′
k. Consider a

subset of nodes C ′ ⊆ C such that each node in P
has at least (m+1) edges connected to some node
in C ′ (i.e., C ′ covers P for at least (m+1) times).
Suppose the SNP Sr of the sample is genotyped
as missing data, where S

′
r ∈ C ′. This implies that

the row r in Mh can not be used to distinguish the
sample, which has the same effect as the removal
of the node S

′
r and its edges from C ′. If m nodes in

C ′ are removed (i.e., m SNPs genotyped as miss-
ing data), each node in P still connects to some

3To identify the sample unambiguously, each pair of pat-
terns must be distinguished by some row in C′. For ex-
ample (see Figure 2 (A)), the patterns P1 and P2 can be
distinguished by SNP S2 since Mh[2, 1] 6= Mh[2, 2].

node in C ′ (i.e., each pair of patterns can still be
distinguished by the remaining SNPs in C). Thus,
the SNPs corresponding to C ′ are the robust tag
SNPs which allow m SNPs genotyped as missing
data. The proof of the other direction is similar.
¤

Now we show that the NP-hardness of the MRTS
problem.

Theorem 1 The MRTS problem is NP-hard.
Proof:
By Lemma 1, the set covering problem [5] can be
reduced to a special case of MRTS when m = 0.
Since the the set covering problem is NP-hard,
MRTS is NP-hard. ¤

¿From Theorem 1, there is no polynomial time al-
gorithm for solving MRTS unless P = NP . In
Sections 3 and 4, we give two efficient approxima-
tion algorithms to solve MRTS.

3 The First Approximation Algo-
rithm

In this section, we describe an approximation
algorithm to solve MRTS by a greedy approach.
By Lemma 1, we can solve MRTS by finding a
subcollection C

′ ⊆ C that covers (distinguishes)
each element (pair of patterns) in P for at least
(m + 1) times. Assume that each element in P
and the corresponding SNPs that distinguish it
are stored in a (m + 1)×|P | table (see Figure 3
(A)). If a SNP Sk is picked, Sk is written into the
grid of the column (i, j), where (i, j) is the pair
of patterns distinguished by Sk. At each step, the
first algorithm picks a SNP that can write most
grids in the row by a row-by-row manner. Figure 3
illustrates an example for this algorithm to cover
P twice, where SNPs S1, S4, S2, and S3 are picked
in order. Let Ri be the set of unwritten grids at
row i. While writing Ri, this algorithm picks a
set S ∈ C that maximizes |S ∩ Ri|) (i.e., the set
that writes most unwritten grids in Ri). Then, S
is added to C

′
, and the rest elements in S (i.e.,

S − Ri) are written into the remaining unwritten
grids in other rows. When all grids in this table are
covered, C

′
is thus the collection that can cover P

for (m + 1) times. The detail of this algorithm is
given below.

Algorithm: Greedy-1(C, P, m)
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Figure 4: The sets picked by the first greedy algo-
rithm

1 Ri ← P , for each 1 ≤ i ≤ m + 1
2 C

′ ← φ
3 for i = 1 to m + 1 do
4 while Ri 6= φ do
5 select an S ∈ C that maximizes |S ∩Ri|
6 C

′ ← C
′ ∪ S

7 j ← i
8 while S 6= φ and j ≤ m + 1 do
9 Stmp ← S ∩Rj

10 Rj ← Rj − Stmp

11 S ← S − Stmp

12 j ← j + 1
13 endfor
14 return C

′

The time complexity of this algorithm is analyzed
as follows. At Line 4, the number of iterations of
the intermediate loop is bounded by |Ri| ≤ |P |.
Within the loop body (Lines 5-12), Line 5 takes
O(|P ||C|) because the we need to check each set
in C and compare with each element in Ri ≤ |P |.
The inner loop (Lines 8-12) takes only O(|S|).
Thus, the entire program runs in O(m|C||P |2).

We now calculate the approximation ratio of
|C ′ | to |C∗|, where C∗ is the collection of the op-
timal solution. The approximation ratio is proved
by assigning different scores to the sets picked by
the greedy algorithm [4]. Let |Sw

k | be the num-
ber of grids written by Sk in the row where Sk is
picked by the algorithm. For example (see Fig-
ure 3), |Sw

4 | = 2 since S4 writes two grids, (1,2)
and (3,4), in the first row where the greedy algo-
rithm picks S4. The score Ci

j is assigned to each
grid put at the ith row and jth column, where

Ci
j =





1
|Sw

k |
if the grid is written by Sk while
working the ith row;

0 Otherwise.

Under this score assignment, the summation of
the score Ci

j for each grid in the table is equal to
|C|, that is,

m+1∑

i=1

K(K−1)
2∑

j=1

Ci
j = |C| . (1)

S�={(1,4), (2,4), (3,4)}
S�={(1,2), (1,4), (2,3), (3,4)}
S�={(1,2), (1,3), (1,4)
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1/2 1/4 1/4 1/4 1/4 1/2
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C’

P
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Figure 5: The score Ci
j for each set picked by the

first greedy algorithm

Let Ri
k be the number of grids in the ith row

remaining unwritten before the kth iteration (i.e.,
S1, S2, · · ·,Sk−1 have been picked by the algo-
rithm). Similar to [4], the summation of the score
for each grid can be calculated as

m+1∑

i=1

K(K−1)
2∑

j=1

Ci
j =

m+1∑

i=1

|C|∑

k=1

(Ri
k−1 −Ri

k)
1
|Sw

k |
. (2)

Lemma 2 |Sw

k | ≥ Ri
k

|C∗| .
Proof:
Consider the beginning of the kth iteration. Let
C∗k be the collection of sets in C∗ that has been
picked by the greedy algorithm before the kth it-
eration, and the collection of remaining sets in
C∗ be C ∗̄

k
. We claim that if this algorithm sub-

sequently picks all sets in C ∗̄
k
, the remaining un-

written grids in the table will be all written. Oth-
erwise (i.e., some grids remain unwritten), since
C∗k ∪ C ∗̄

k
= C∗, this implies sets in C∗ fail to write

all grids in the table, which is a contradiction. By
the pigeonhole principle, there exists one set in
C ∗̄

k
with size at least Ri

k

|C∗
k̄
| .

4 Because sets in C ∗̄
k

are candidates to the greedy algorithm, |Sw

k | must

be at least Ri
k

|C∗
k̄
| , which implies |Sw

k | ≥ Ri
k

|C∗| since
|C∗| ≥ |C ∗̄

k
|. ¤

Theorem 2 The approximation ratio of the first
greedy algorithm is (m + 1) ln K(K−1)

2 .
Proof:
From (2) and Lemma 2, we have

m+1∑

i=1

K(K−1)
2∑

j=1

Ci
j =

m+1∑

i=1

|C|∑

k=1

(Ri
k−1 −Ri

k)
1
|Sw

k |

≤
m+1∑

i=1

|C|∑

k=1

(Ri
k−1 −Ri

k)
C∗

Ri
k−1

4If each set in C∗̄
k

has size less than
Ri

k
|C∗̄

k
| , the summation

of the size of all sets in C∗̄
k

is <
Ri

k
|C∗̄

k
| × |C∗̄k | = Ri

k. Since

C∗k ∪ C∗̄
k

= C∗, this means that C∗ can not write all grids

in Ri
k, which is a contradiction.
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=
m+1∑

i=1

|C|∑

k=1

(
Ri

k−1∑

l=Ri
k+1

)
C∗

Ri
k−1

≤ C∗
m+1∑

i=1

|C|∑

k=1

Ri
k−1∑

l=Ri
k+1

1
l

= C∗
m+1∑

i=1

|C|∑

k=1

(
Ri

k−1∑

l=1

1
l
−

Ri
k∑

l=1

1
l
)

≤ C∗
m+1∑

i=1

|C|∑

k=1

(H(Ri
k−1)−H(Ri

k))

= C∗
m+1∑

i=1

[(H(Ri
0)−H(Ri

1)) + . . .

+(H(Ri
|C|−1)−H(Ri

|C|))]

= C∗
m+1∑

i=1

[(H(Ri
0)−H(Ri

|C|))]

≤ C∗(m + 1)max(H(Ri
0))

≤ C∗(m + 1) ln |P | . (3)

Combining (1) and (3), we get

C

C∗
≤ (m + 1) ln |P | = (m + 1) ln

K(K − 1)
2

.

¤

4 The Second Approximation Algo-
rithm

This section gives a greedy algorithm which
achieves a better approximation ratio than that
in Section 3. Let U be the collection of Ri, which
is defined in Section 3. In other words, U contains
m + 1 elements corresponding to each element in
P . The greedy algorithm works by picking a set S
that can cover the most uncovered elements from
the union of Ri at each step (i.e., the S that max-
imizes |S ∩ (R1 ∪ · · · ∪ Rm+1)|) and adds S to C.
Then, the elements in S are used to cover the re-
maining elements in Ri and we remove the Ri with
no more uncovered elements from U . When all sets
in U are covered, C can cover P m+1 times. The
algorithm is described as follows:

Algorithm: Greedy-2(C,P, m)
1 Ri ← P , for each 1 ≤ i ≤ m + 1
2 U ← {R1, R2, . . . , Rm+1}
3 C ← φ
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Figure 6: The sets picked by the second greedy
algorithm
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Figure 7: The score Ci
j for each grid in the table

4 while U 6= φ do
5 select and removed an S ∈ C that maximizes

|S ∩ (R1 · · · ∪Rm+1)|
6 C ← C ∪ S
7 for each Ri ∈ U do
8 Stmp ← S ∩Ri

9 Ri ← Ri − Stmp

10 S ← S − Stmp

11 if Ri = φ then U ← U −Ri

12 endfor
13 return C

Figure 4 illustrates an example for this algorithm
to cover P twice. The greedy algorithm picks the
set S1, S2, S4, and S5, in order. At Line 4, the
number of iterations of the loop is bounded by the
number of elements contained in U , which is (m+
1)|P |. Within the loop, Line 5 can be implemented
to take O(|P ||C|) because the union of Ri only
need to be calculated once and then stored in a
separated variable. The inner loop (Lines 7-12) is
also bounded at O(|S| < |P |). Thus, the running
time of this program is O(m|C||P |2).

We analyze the approximation ratio of the sec-
ond greedy algorithm. Let C be the collection of
sets chosen by this greedy algorithm, and C∗ be
the collection of sets chosen by the optimal solu-
tion. Let |S′k| be the number of elements covered
by Sk which contribute to the greedy algorithm.
For example (see Figure 4), |S′4| = 2 since S4 cov-
ers two elements, (1,2) and (3,4), in the table.
With similar techniques as in Section 3, assign the
score Ci

j = 1
|S′k|

to the grid positioned at the ith
row and jth column.

Let Tk be the number of grids in the table re-
maining uncovered before the kth iteration. We
have the following lemma:

Lemma 3 |S′k| ≥ Tk

|C∗| .
Proof:
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C∗k and C ∗̄
k

are defined the same as in the proof
of Lemma 2. We claim that there exists a set in
C ∗̄

k
which has size at least Tk

|C∗
k̄
| . Since the greedy

algorithm always pick a set that covers maximal
uncovered grids and all sets in C ∗̄

k
are available,

|S′k| ≥ Tk

|C∗
k̄
| ≥ Tk

|C∗| . ¤

Theorem 3 The approximation ratio for the sec-
ond greedy algorithm is ln((m + 1)K(K−1)

2 ).
Proof:
The summation of the score for each grid would
be

C =
m+1∑

i=1

K(K−1)
2∑

j=1

Ci
j

=
|C|∑

k=1

(Tk−1 − Tk)
1
|S′k|

≤
|C|∑

k=1

(Tk−1 − Tk)
C∗

Tk−1

≤ C∗H(T0)

≤ C∗ ln((m + 1)
K(K − 1)

2
) . (4)

¿From (4), we get

C

C∗
≤ ln((m + 1)

K(K − 1)
2

) .

¤

5 Finding Auxiliary Tag SNPs

This section describes the problem of finding
the auxiliary tag SNPs corresponding to a set of
tag SNPs S with missing data. Mh is defined as
in Section 2. This problem is referred to as Mini-
mum Auxiliary Tag SNPs (MATS) and defined as
follows.

Problem: Minimum Auxiliary Tag SNPs

Input: An N ×K matrix Mh, and a set S.

Output: The minimum set of auxiliary tag SNPs
A such that A∪ S can identify the haplotype
sample without ambiguity.

Note that when N and K become larger and the
number of missing data increases, it is more diffi-
cult to find the auxiliary tag SNPs.

x
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x
2
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Figure 8: Examples to find the auxiliary tag SNPs
by robust tag SNPs

Theorem 4 MATS is NP-hard.
Proof: Consider that all tag SNPs are genotyped
as missing data. This problem is just like finding
another set of tag SNPs to distinguish those K
patterns, which is known as NP-hard. ¤

Although the MATS problem is NP-complete, we
show that auxiliary tag SNPs can be found effi-
ciently when robust tag SNPs have been computed
in advance. According to Lemma 1, each element
in P must be covered for m + 1 times by these ro-
bust tag SNPs. Without loss of generality, assume
that these robust tag SNPs are implemented and
stored in an (m + 1) × |P | matrix Mr (see Fig-
ure 5). Each column in Mr represents an element
in P and each Mr{∗, j} stores the SNP that cov-
ers the jth element in P . With this matrix, we
can apply the following algorithm to find auxiliary
tag SNPs with respect to S. At first, we compare
the rest SNPs (which are not missing data) in S
with each of the K patterns. If there is only one
pattern matched (e.g., h1 in Figure 5), the hap-
lotype sample is identified as that block pattern
(e.g., P2) and we are done. Otherwise (e.g., h2 in
Figure 5), each pair of the matched patterns (e.g.,
P1 and P3) stands for an uncovered element in
P and requires further disambiguation. Then, for
each pair of the ambiguous patterns, traverse the
corresponding column in Mr to find a set which
can distinguish the pair of patterns (e.g., S4 can
distinguish P1 and P3). Let the collection of these
sets for each ambiguous pair of patterns be A. Ac-
cording to Lemma 1, since all uncovered elements
in P can be covered by A∪S, A is the set of aux-
iliary tag SNPs corresponding to S. The detail of
this algorithm is described as follows:

Algorithm: Finding-Auxiliary-SNPs(Mh, Mr, S)
1 A ← φ
2 counter ← 0
3 for each haplotype pattern h ∈ Mh do
4 if these is no mismatch between each SNP in

S and h then
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Figure 9: The average number of tag SNPs for
each block with respect to m

5 counter ← counter + 1
6 endif
7 endfor
8 if counter = 1 then
9 return “No more SNPs required”;
10 else
11 for each pair of the matched pattern j do
12 i ← 1
13 while Mr[i, j] ∈ S and i ≤ m do
14 i ← i + 1
15 Add Mr[i, j] to A
16 endfor
17 endif
18 return A

As for the running time of this algorithm, the
worst case is that all SNPs in S are geno-
typed as missing data, and we need to tra-
verse each column in the matrix Mr (Lines 11-
16). Note that the size of P is CK

2 = K(K−1)
2 .

Thus, the running time of this algorithm is
O(m|P |)=O(mK(K−1)

2 )=O(mK2).

6 Experimental Result

We apply our two approximation algorithms
mentioned in Sections 3 and 4 on the public hap-
lotype data of Human Chromosome 21 [6]. This
data set includes 20 haplotypes of 24,047 SNPs
spanning over about 32.4MB. We first compare
the number of tag SNPs found by our algorithms
with the optimal number found by Patil et al. over
the same 4,135 blocks. The first and second algo-
rithms both find 4,610 tag SNPs, where the opti-
mal number they found is 4,563. Thus, the ratio
is 4610

4563 ' 1.01, which indicates our approximation
algorithms are quite close to the optimal solution.

Next, we evaluate these two algorithms with
respect to m (i.e., the number of SNPs genotyped
as missing data). Let Sa be the average number
of robust tag SNPs for each block found by these
two algorithms. Figure 6 plots Sa with respect to
m. We observe that Sa grows linearly for both
algorithms. Note that the lower bound of robust
tag SNPs is (m + lg |K|), where K is the num-
ber of patterns. This phenomenon indicates that
the number of robust tag SNPs does not grow too
much when m increases and is quite close to the
lower bound.

Although the theoretical approximation ratio of
the second algorithm is better than that of the first
one, our experimental result indicates that the
first algorithm slightly outperforms the second one
when m becomes large in the longer blocks5. This
is because we search for SNPs to pick from the
beginning of the long block but the SNPs within
do not vary too much (e.g., the SNP with pattern
(1,1,2,2) is repeated continuously at many loci).
The second algorithm tends to pick the former
SNPs in the block, where the first algorithm tends
to pick the latter ones since it finds different pat-
terns at each step. Thus, for long blocks where
SNPs of the optimal solution distributed at two
ends, the first algorithm is slightly better.

7 Conclusion

In this paper, we study the problems of finding
robust and auxiliary tag SNPs. We describe two
greedy approximation algorithms for finding ro-
bust tag SNPs. An efficient algorithm is presented
to find auxiliary tag SNPs when robust tag SNPs
have been computed in advance. Our experimen-
tal result shows that the solution found by both
greedy algorithms is quite close to the optimal so-
lution even when the number of SNPs allowed for
missing data increases. Note that the first greedy
algorithm tries to optimize SNPs in the first row
of the table structure. Therefore, if the occurrence
of missing data is infrequently, we can select the
SNPs in the first row to genotype, and re-genotype
auxiliary tag SNPs only when encountering miss-
ing data. Since the solution found by both greedy
algorithms is similar, the first greedy algorithm
may be more useful than the second one in prac-
tice.

5In the data set from Patil, there are many short blocks
with very few SNPs, which are not biologically meaningful.
We discard blocks that do not contain enough SNPs for the
solution of MRTS in the experiment.
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