
434 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 5, MAY 1992

On Parallel Processing Systems: Amdahl’s Law
Generalized and Some Results on Optimal Design

Leonard Kleinrock, Fellow, IEEE, and Jau-Hsiung Huang

Abstract-We model a job in a parallel processing system as
a sequence of stages, each of which requires a certain integral
number of processors for a certain interval of time. With this
model we derive the speedup of the system for two cases: systems
with no arrivals, and systems with arrivals. In the case with
no arrivals, our speedup result is a generalization of Amdahl’s
Law. We extend the notion of “power” (the simplest definition
is power = throughput/response time) as previously applied to
general queueing and computer-communication systems to our
case of parallel processing systems. With this definition of power
we are able to find the optimal system operating point (i.e., the
optimal input rate of jobs) and the optimal number of processors
to use in the parallel processing system such that power is
maximized. Many of the results for the case of arrivals are the
same as for the case of no arrivals. A familiar and intuitively
pleasing result is obtained, which states that the average number
of jobs in the system with arrivals equals unity when power is
maximized.

We also model a job in a way such that the number of proces-
sors required is a continuous variable that changes continuously
over time. The same performance indices and parameters studied
in the discrete model are evaluated for this continuous model.
These continuous results are more easily obtained, are easier to
state, and are simpler to interpret than for the discrete model.

Index Terms-Amdahl’s Law, multiprocessing, optimal design,
parallel processing, power, processor efficiency, speedup, system
utilization.

I . INTRODUCTION

S parallel computing systems proliferate, the need for A effective performance evaluation techniques becomes
ever more important. In this paper, we study certain funda-
mental performance indices, namely, speedup, response time,
eficiency, and power, and solve for the optimal operating point
of these systems. Specifically, by maximizing “power,” we are
able to find the optimal input rate of jobs and the optimal
number of processors to use, given a characterization of the
workload.

We model a parallel processing system as a system with a
single queue of waiting jobs. Our first model (in Section IV)
assumes that only a single job needs to be processed. Our
second model (in Section V) allows a stream of arrivals to
enter the system; however, only one job may be admitted

Manuscript received April 1, 1991; revised September 20, 1991. Recom-
mended by E. Gelenbe. This work was supported by the Defense Advanced
Research Projects Agency, Department of Defensellnder Contract MDA903-

L. Kleinrock is with the Computer Science Department, University of

J.-H. Huang is with the Department of Computer Science and Information

IEEE Log Number 9105395.

87-C-0663.

California, Los Angeles, Los Angeles, CA 90024.

Engineering, National Taiwan University, Taipei, Taiwan.

SSOR CAPACITY 2

p 4

1 ;*
a

f 0 2 4 6 8 10

(b)

of processors (P = 4) .
Fig. 1. Job profile. (a) Unlimited number of processors. (b) Limited number

into service at a time, following a FCFS discipline, while
the others wait in the queue. Both models deal with jobs as
follows. While in service, the system provides a maximum of
P parallel processors to work on the job. A job is modeled
as a sequence of independent stages which must be processed,
where the number of processors desired by the job in each
stage may be different. If, for some stage, the job in service
requires fewer processors than the system provides, then the
job will use all that it needs and the other processors will be
idle for that stage. If, for some other stage, the job in service
requires more processors than the system provides, then it will
use all the processors in the system (in a processor sharing
fashion [lo]) for an extended period of time such that the
total work served in that stage is conserved. An example is
given in Fig. 1 in which the total processing work required by
a job is LV = 24 s. In this example, if P 2 6 , then it takes
8 s to complete the job as shown in Fig. l(a), whereas if only
P = 4 processors are provided, then it takes 9 s as shown in

0098-5589/92$03.00 0 1992 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

KLEINROCK AND HUANG: AMDAHL’S LAW GENERALIZED AND SOME RESULTS ON OPTIMAL DESIGN 435

Fig. l(b), in which case 12 s of processor capacity are wasted.
The model described above has been highly idealized.

In particular, we are neglecting some of the following im-
portant aspects of the workload. First, we do not allow
general precedence relations among the tasks. Our precedence
structure is equivalent to a series-parallel task graph with
deterministic task service times (see [6] for the definition of
the task graph model of computation). Second, we do not
separately model the communication times between tasks (i.e.,
the interprocess communication overhead). We hasten to point
out that incorporating this overhead is not simply a matter of
adding additional time to each task’s processing time, since
such overhead only occurs when a task on one processor must
pass its results to a task on a different processor; thus to
properly include interprocess communication costs, one must
model the way in which tasks are assigned to processors (i.e.,
the task partitioning problem), an assignment that we choose to
neglect. Third, we ignore I/O communication overhead related
to the management and execution of parallel programs. Lastly,
we assume that the program structure is infinitely divisible,
in that the time to execute w units of work is equal to
max (w / P , w/P‘), where P . i s the number of processors that
the system provides for execution of this work, and P’ is the
maximum number of processors that the program is able to
use for this work (i.e., the parallelism for this work). These
assumptions simplify our analysis and lead to idealized results.

Our workload model was first reported by us in [8]. Later,
Gelenbe [6] described a very similar model, as did Sevcik
[15]. Gelenbe extended his model, which he referred to as the
“Activity Set Model,” to include the effect of inefficient use of
processors, imbalance of the workload among the processors,
and interprocess communication times. Sevcik also described
ways in which this idealized model could be extended to
include the effect of I/O communications, overhead, and
dependencies among parallel threads assigned to different
processors.

For such a parallel processing system there are two perfor-
mance measures which compete with each other: processor
eflciency and mean response time. One can increase the
processor efficiency of the system (by reducing the number
of processors), but then the mean response time will also
be increased. Similarly, one can lower the mean response
time (by increasing the number of processors), but then the
processor efficiency of the system will also be lowered. In
this paper these two performance measures are combined into
a single measure, known as power, which increases by either
lowering the mean response time or by raising the processor
efficiency of the system. We seek to find that number of
processors which maximizes power.

Power, studied in [5], [ll], and [12], was defined for a
general queueing system in [12] as

c

P e
where p is defined as the system utilization, T is defined as the
mean response time, and ?F is defined as the average service
time. With this measure we see that an increase in system
utilization (p) or a decrease in response time (T) increases

the power. (Note that this normalized definition is such that
since 0 5 p < 1, and since 1 5 T/ z, then 0 5 power < 1.)
The symbol “*” will be used throughout to denote variables
which are optimized with respect to power. In [12] it was found
that for any M/G/l queueing system [9], power is maximized
when r* = 1, where = the average number of jobs in the
system. This result says that an M/G/l system has maximum
power when on the average there is only one job in the system.
This result is intuitively pleasing, since it corresponds to our
deterministic reasoning that the proper operating point for a
single-server system is exactly when only one job is being
served in the system and no others are waiting for service at
the same time. In this paper, our results also show that N* = 1
when power is maximized with respect to the job arrival rate

One might argue that power, as here defined, is an arbitrary
performance measure. In response to this argument we point
out that one can generalize the definition of power in a way
which allows the reader to emphasize delay (or efficiency) in
a variety of ways so as to match his or her needs. This issue
is discussed below in Section I1 as well as in [5] and [12].
Moreover, other researchers have seen fit to optimize power
for models similar to ours (see, for example [4]). An extensive
study of power applied to computer networks is given in [5].

An alternative, and much more familiar, performance mea-
sure for parallel processing systems is speedup, which de-
scribes how much faster a job can be processed using multiple
processors, as compared to using a single processor. Specifi-
cally, speedup is the ratio of the mean response time of a job
processed by a single processor to that of a job executed in a
parallel processing system with, say, P processors. Speedup
and power are related and we discuss how they interact
throughout this paper. Eager et al. [4] also discuss issues
similar to those in this paper. Their focus is on estimating
speedup and efficiency (for the no arrivals case only) simply
from the value of the “average parallelism,” which is defined
as W , the total processing work required by a job, divided
by the time it would take to service the job if there were an
unlimited number of processors available; in Fig. l(a) we have
W = 24, and service time = 8, giving an average parallelism
equal to 3. They also use the definition of power as we had
defined in [l l] and [12] and obtain the same result as we obtain
in Corollary 7 below. They consider the case of deterministic
workloads. Gelenbe [6] introduced an alternate model for the
workload for which he also calculates speedup in the case
of an infinite number of available processors. He models a
job as having a random task graph in which the density of
precedence relations between tasks is given by p (0 5 p 5 1);
he then derives an approximation for an upper bound on the
speedup; namely, (1 + p) / 2 p .

(A) .

11. DEFINITIONS

We have already defined the following:
P = Number of (identical) processors in the server;
W = Average number of seconds required to process a job

N = Average number of jobs in the system.
on a single processor; and -

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

436

Moreover. we now define the following additional quanti-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 5, MAY 1992

ties:
E (P) =

T(X, P) =

A =
P =

- -

.(P) =

Mean service time of a job in a P-processor
system (note that the maximum mean service
time is F(1) = W and that the minimum mean
service time is z(ca));
Mean response time (queueing time plus service
time) of a job in a queueing system with an
input rate X and P processors;
arrival rate of jobs;
system utilization; i.e., the fraction of time
when there is at least one job in the system.
XZ(P); and
processor efficiency in a P-processor system.

Note the difference between U (P) , which is the average
processor efficiency given P processors, and p, which is
the average system utilization. Whenever there is a job in
the system, the system utilization is “1,” but the processor
efficiency need not be “1” in that case, since there may be
some idle processors (i.e., it may be that the job in service does
not require all the processors). Hence the system utilization is
always greater than or equal to the processor efficiency. (Note
that U (1) = p for a single processor queueing system.)

Two cases regarding the number of jobs in the system
are considered in this paper. Case one allows no arrivals of
additional jobs (Section IV). That is, there is only one job in
the system, and we are concerned with Z(P) , its mean service
time in a P-processor system. Case two allows jobs to arrive
from a Poisson process at a rate A, and so queueing effects
are considered (Section V).

For the first case, we define the (no arrivals case) speedup
with P processors, denoted by Sn(P) , to be

Note that

Thus it is natural for us to define the maximum value for
speedup S,,,,, as follows:

W

Furthermore, we see that S, ,max = average parallelism.
For the second case, we define the (arrivals case) speedup

with P processors at system utilization p, denoted by S,(X, P) ,
to be

We must distinguish the processor efficiency u (P) in these

u,(P) = processor efficiency given P processors in the
no arrivals case; and

u,(X, P) = processor efficiency given job arrival rate X
and P processors in the case with job arrivals.

two cases as follows:

We now introduce the appropriate definitions of power,
which we denote by the symbol Q (we would prefer to use
the obvious notation P, but P has already been used to denote
the number of processors). Let

Qn(P) = power given P processors in the no arrivals

Qa(X, P) = power given a job arrival rate X and P pro-

In this paper we are concerned mostly with power which is
defined as processor efficiency divided by the mean response
time.

In the case of no arrivals, the mean response time of the
(single) job is simply its mean service time T(P), and so:

case; and

cessors in the case with job arrivals.

Clearly, power will increase by either raising the processor
efficiency or by lowering the mean service time. A more
general definition of power (as originally introduced in [12])
is given as

where r is a positive real number whose value may be selected
by the system designer. With this generalization, a designer
may express a stronger preference for an increase in the
processor efficiency at the expense of an increase in the mean
service time by simply increasing the value of the parameter
r (and vice-versa). Note that Qn (P) = QA1)(P) .

In the case of job arrivals, the definition of power becomes:

and the generalization in this case is

where again r is a positive real number to be used as a degree
of freedom by the system designer. Note that &,(A, P) =
QP’(X, P) .

With these definitions of power, our goal is to find the
optimal number of processors to use in a parallel processing
system such that power is maximized. Furthermore, in the case
of job arrivals, we also seek the optimal system operating point
(i.e., the optimal input rate of jobs).

The rest of this paper is organized as follows. In Section I11
we present two models of a job: a discrete model, and a
continuous model. In Section IV we solve the case when
no arrivals are allowed in the system. In this case we find
the speedup of the system given P processors. We also find
P’, the number of processors which maximizes power. In
Section V we solve the case when job arrivals are allowed
in the system. In this case we again solve for the speedup
of the system given P processors. We also find A * and P’,
which maximize power. One interesting result we get is that
the P* for systems with no arrivals and the P” for systems
with arrivals are equal when power is maximized; this provides
a simplification in system design.

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

KLEINROCK AND HUANG: AMDAHL'S LAW GENERALIZED AND SOME RESULTS ON OPTIMAL DESIGN 437

the second vector is called the processor vector, P'. We denote
the fraction and processor vectors as

E
w
0

K
fn 6-

f'= [f : , f ; , f ; , - . j f ? ! l d E -
P' = [Pl, Pi, PA, ' ' ' , PA,] $ 4 -

2 .
8
a

where n' is the number of stages in a job. The ith stage has
the pair (f; , Pi') associated with it. The meaning is as follows:
a fraction f,' of the total tasks in a job can use Pi' processors

a .
m w

111. WORKLOAD MODELS

We consider both a discrete as well as a continuous model
of job requirements.

w

2 - 1 W = 24

TIME

A. A Discrete Job Model -
Here, we model a job as containing a total of W tasks.

Nonoverlapping subsets of these tasks are collected into stages,
and these stages are processed sequentially (howeverdaral-
lelism is exploited within each stage-see below). W is a
random variable with mean W and coefficient of variation
cwl . We assume that the service time distribution for each

TIME
1 0

The example from Fig. 1 is repeated in Fig. 2(a), where
W = 24 and n' = 6. Stage 4 contains 12 tasks, and so
& = l /2; moreover, since Pi = 6 (and if P 2 6), then it
will take 2 s to complete stage 4. This stage-type workload
model comes directly from the usual task graph model of
computation [3] with deterministic task service times. The ith
stage corresponds to the ith level in the computation graph.

For convenience, we may rearrange the elements in f' and
P' as follows in such a way that neither the mean response
time nor the processor efficiency are changed. The elements
of P' are rearranged and renumbered so that its elements are
nondecreasing; that is, 5 Pi'. The elements of f' follow
the identical permutation and renumbering. We may then
merge several stages with the same P;'s into one stage simply
by adding all the corresponding fi's. The new vectors will
be denoted P = [P I , P2,. . . , P,] and f = [f ~ , f 2 , . . . , f ,] ,
where n 5 n' and Pi-1 < Pi. Since the system admits
only one job into service at a time, it can easily be shown
that this rearrangement does not affect the performance at all.
The example in Fig. 2(a) has been rearr9ged as shown in
Fig. 2(b), where the number of stages is now n = 4. Note
that Z(o0) = 8, as it was in Fig. 2(a). One can easily see that
if we choose P = 4, then F(4) will equal 9 in this rearranged
case, as was the case for Fig. l(b).

'The coefficient of variation of a random variable is equal to its standard
deviation divided by its mean.

B. A Continuous Job Model

We now describe a continuous version of the above model.
In this model we assume that the number of processors
required by jobs is a (not necessarily discrete) nondecreas-
ing function of time (recall the rearranging does not affect
performance). That is, we permit nonintegral numbers of
processors (which could correspond to cases where processors
are shared among more than one job). A special model with
a deterministic workload per job will be described first, and
then a more general model with a random workload per job
will be described.

For the special case with a deterministic workload, we
define P (t) = g (t) , where g(t) is a deterministic function,
to be the number of processors that a job desires at time
t (0 5 t <_ b) such that P(b) = B (see Fig. 3). For such a
model, the workload (seconds of work required) for each job
is deterministic with value

b

W = 1 P (t) dt.
0

Note that b = :(NI). Moreover, if we limit the number of
processors to P (P < B) , then A, the (shaded) area of P (t)
which lies above the value of P , will be flattened out and
extended as a rectangle of area A and of height P beginning

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

~

438 IEEE TRANSACI'IONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 5, MAY 1992

t

TIME .

a(P) b W)

Fig. 3. A continuous job profile and the effect of a limited number of processors.

at the point b on the time axis and extending to the new mean
service time ;C(P), as shown in Fig. 3.

For the general case with a random workload, we define

to be a random function whicJh gives the number of processors
desired by the job at time t . K is a random variable with mean
I< and coefficient of variation C K , and g is a functign such
that it has a fixEd maximum value B, with 0 5 t 5 K b . The
distribution of K affects the results given in this paper in the
following simple fashion:

i) All time variables should be multiplied by k ;
ii) All mean time variables should be multiplied by ?;;; and

iii) The optimal value of P , namely P*, is independent of

Therefore we assume that ?;; = 1 in the remainder of this paper
at no loss of generality. In addition, C K does affect some of our
later expressions, and in those cases it will appear explicitly.

We remind the reader of some of the limitations of this
workload model as listed in the introduction. These limita-
tions include: the lack of full generality in the precedence
structure among the tasks; the neglect of the interprocess
communication overhead; the neglect of I/O processing and
communication overhead; and the assumption of the infinite
divisibility of the workload.

the distribution of K .

IV. SYSTEMS WITH No ARRIVALS

In this section we examine a system of P processors serving
a single job with no new arrivals. We wish to find the speedup
and the value P* which maximizes power for the processing
of this job. For systems with no arrivaE, we have that the
processor efficiency is

W
.,(P) = -

P Z (P) .
This follows from our earlier definition, since the system

is busy for Z (P) s, and in this time P processors could do

PC(P) s of work; however, they only accomplish W s of
work, since some processors may occasionally be idle. From
the definitions of speedup S, (P) and power Qn(P) , we see
that only W , P , and F(P) are involved in the definitions. Since
W , P , and Z (P) are not affected by the distribution of the
service requirement (but only by the mean W), we conclude
that both the speedup and power only depend upon the mean
values. Therefore we will not see any higher moments of the
job service requirements in this section. Jobs with different
random service requirements will give the same results as long
as they have the same means. We first study the continuous
case, and then apply the results obtained to the discrete case.

A. The Continuous Case

We consider a job profile P (t) such as that shown in Fig. 3.
We wish to determine P*, the optimum number of processors
to use with this job, where power is the objective function we
seek to maximize. We define:

u (P) = length of the interval from when the job first
begins service until it first requires more pro-
cessors than the system supplies; i.e., u (P) =
min(t : P (t) > P) ;

b = the service time of the job if the number of
processors in the system is always greater than
the number of processors required by the job; i.e.,
P 2 B (note that b = Z(c0)); and

I (P) = Jub(p) P(t> dt .
Note from Fig. 3 that I (P) = [;C(P) - U (P)] P. The aver-

age service time is

P (t) dt

P .
Z(P) = U (P) +

The speedup for this system is simply:

W P W
S, (P)= : =

z (p) P u (P) + .f P(t)d t

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

KLEINROCK AND HUANG: AMDAHL‘S LAW GENERALIZED AND SOME RESULTS ON OPTIMAL DESIGN 439

Theorem 1

The power Q,(P) is maximized with respect to P when
P = P*, where P* is the unique (typically nonintegral) value
satisfying

Proof: Since
W

.,(P)= -
Pz(P)

and

we have:

Maximizing Q n (P) with respect to P , we require:

which leads to the general condition
d S (P) S (P) -- --

dP - 2P .
At this point one must consider any problems which might

arise in calculating (d z (P)) / (d P) , if P (t) has: (i) any non-
differentiable points, or (ii) any vertical jumps, or (iii) any
horizontal segments. However, it can easily be shown for these
three cases that an infinitesimal change in P can only make
an infinitesimal change in F(P) , since the change in the area
A must be continuous (see Fig. 3). The only troublesome case
is case (iii), since for any E > 0, .(Po + E) - .(Po - E) = c
when P (t) has a horizontal segment of length c and height
PO. This is troublesome, since F(P) = U(P) + (I (P)) / P , and
thus Z (P) appears to have a discontinuous jump at P = PO;
however, the term (I (P)) / P has an equal and opposite jump
there as well, which eliminates the problem. Nevertheless, we
will indeed run into a problem in uniquely defining u (P)
in Corollary 1, below, if P* = PO, where PO is any such
horizontal segment height; we settle this problem further below
in Corollary 7, case (ii).

From our expression for Z (P) we find that the general
condition given above leads us to the following expression
which must be satisfied by the optimal value of P:

I (P) 2P2
.(P)

p = - - - -
.(P) [d”d6” + + % I .

Now, since I (P) = Jab(p, P (t) dt, we have

But u (P) is such that P (u (P)) = P , and so (d l (P)) /
(da (P)) = -P. Using the chain rule, we then have
(d l (P)) / (dP) = -P(da(P)) / (dP); therefore:

da(P) 1 d I (P)
d P + - - = 0

P dP

Thus we see that the optimal value P* must be such that

It can easily be shown that (d2Q,(P)) < 0; therefore P* =

The expression for P* as given in theorem 1 is not espe-
cially illuminating. To help explain the meaning of theorem 1,
let us state and then interpret the following corollary:

(I (P *)) / (a (P *)) indeed maximizes power. 0

Corollary I

Power is maximized if and only if
- .(P*) = 2a(P’).

Proof: Since (I (P *) / P *) = a(P*) , and from the def-
inition of F(P) we have that z (P *) = u(P*) + u(P*) =

Corollary 1 is one of the principal results of this paper.
To interpret this corollary we note from Fig. 3 that u (P) is
that portion of the service time when the job has available
at least as many processors as it needs. Therefore S (P) =
2a(P) implies that the portion of the service time when there
are enough processors for a job equals the portion of the
service time when there are not enough processors for its
needs. Let us define u (P) to be the “unextended service
time,” and (I (P)) / P to be the “extended service time.”
This corollary states that the optimal number of processors
P* must be selected so that the “unextended service time”
exactly equals the “extended service time.” Also note that
during the unextended service time the processors are not fully
utilized (U < l), whereas during the extended service time the
processors are fully utilized (U = 1). Therefore the time period
for U < 1 equals the time period for U = 1.

At this point we may simplify the proof of the following
theorem which appeared in [4, theorem 51:

2a(P*). U

Theorem

Under the processor sharing discipline when the number
of available processors is equal to P*, the attained speedup
is at least 50% of the maximum possible, the efficiency is
at least 50%, the utilization of the last processor is at least
50%, and the utilization of a single additional processor is no
more than 50%. These bounds can be achieved in the limit as

Proof: For any P we know that u (P) 5 b 5 F(P) . For
P = P*, we know that F (P) = 2a(P), and so F (P) 5 2b =
25(a). Thus

S,,” - (a).

~n,,,, - W W
S,(P) = : 2 - - -, 2

.(P) 2 F (a)

That is, S, (P) is at least half of the maximum achievable
speedup. Moreover, all processors are continuously busy in
the interval u (P) 5 t 5 2a(P), and some others may be
busy in the interval 0 5 t 5 a (P) ; thus the processor
efficiency is at least 50%. Clearly, the last processor added
is busy half the time (u (P) 5 t 5 2a(P)). Any additional
processor beyond P* will be busy only during the interval

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

440 IEEE TRANSACTIONS ON SOFlWARE ENGINEERING, VOL. 18, NO. 5, MAY 1992

a (P + 1) 5 t 5 F(P+ 1) ; but u (P) < a (P + 1) and
x (P) = 2a(P) > Z(P + 1), and so this additional processor
efficiency is less than 50%. The attainment of the bounds in
the limit is obvious.

Let us now state the results for the case in which we select
P = P* to optimize the generalized power function Q r) (P) .

Theorem 2

-

1

-L
r+l

Generalized power

is maximized when P* is selected, such that

Proof: This theorem can easily be derived following the
0 procedure given in the proof for theorem 1.

Corollary 2

Q g ' (P) is maximized when P* is selected, such that oI
- .(P*) = (7 - + l)U(P*).

Proof: This corollary can easily be derived following the
U

From corollary 2 we easily generalize the theorem [4]
procedure given in the proof for corollary 1.

discussed above in the form of the following:

Theorem 3

When P* is selected to optimize Q$'(P) , then the attained
speedup S,(P) is at least a fraction l/(r + 1) of the maximum
possible, the processor efficiency is at least r / (r + l), the
efficiency of the last irocessor added is at least r / (r + l) ,
and the efficiency of a single additional processor is no more
than r / (r + 1).

Proof: This theorem can easily be derived following the
procedure given by us in the simplified proof of the theorem

It is instructive to graph the result of theorem 3 as in Fig. 4.
In this figure we indicate that when P = P", then one is
guaranteed to lie in the shaded region. As r varies, the shaded
rectangle moves from a tall thin rectangle near the right-hand
border (r i 0) to a square occupying the upper right-hand
quarter of the figure (at T = 1) to a wide flat rectangle along

[4] above. 0

_L
r+l

OPTIMAL
PERFORMANCE
MUST LIE IN ' , THIS REGION

' ' '
\
\

0

Fig. 4. Region of optimal performance.

1

1 - P*
Maximum number of processors required - Jm

Proof: From P (t) we have
b
B

a (P) = - P
h

= - Bb - - P 2 b
2 2B

b P / B

Hence, since P* = (I (P *)) / (r u (P *)) , we have
B2 - p"2

p* 1
2rP* '

Solving for P*, we have
B P " = ~ m

Note that B is the maximum number of processors required

In this example, by setting r = 1, we have P * / B =
1/& E 58%. This is the case that was solved approximately
in [13] by numerically solving a 5th-order polynomial; here
we have found the exact value of P* analytically.

by the job. 0

the top border of the figure (T + (CO)). The theorem from [4]
basically states the case only for T = 1 .

Let us consider two examples to show the application of
Theorem 2. Qr)(P) , then

Example 2

If P (t) B / (b n) t n for 0 5 5 b, and p* maximizes

B
Example 1 P" =

[(n + l) r + 11-
If P (t) is a linear function-i.e., P (t) = (B/b)t for

0 5 t 5 b, and P* is chosen to maximize the power function
Q t) (P) , then we have

or
P*

Maximum number of processors required
- -

1
n .

[(n + l) r + 11-

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

KLEINROCK AND HUANG: AMDAHL‘S LAW GENERALIZED AND SOME RESULTS ON OPTIMAL DESIGN 44 1

Proof: This proof is similar to the proof in example 1.
0

We are now in a position to apply some of these results to
the simple case of a job with two discrete stages.

B. The Discrete Case: Jobs With Two Stages

In this section a job is modeled as consisting of W tasks,
of which a fraction f (0 < f < 1) must be done serially
(i.e., each such task can use only one processor), and of
which the remaining fraction (1 - f) of the tasks can be done
concurrently with at most P processors, where P is the number
of processors in the system. Note that this is the model used
by Amdahl to derive Amdahl’s Law [l], a classic result which
we now state.

I I l l I I
Amdahl’s Law 0.2 0.4 0.5 0.6 0.8 1 ,o

f The speedup of this model, given P processors, is upper
bounded as follows: Fig. 5 . The optimal number of processors for two stages (I = [f, 1 - f]

and P = [l, PI).
P

Sn (P) 5 f P +
- f . is selected to be3

Proof: Since W f of the tasks must be done serially, they
will take Wf s; also, since (1 - f) W of the tasks can be done
concurrently with at most P processors, they will take at least
((1 - f) W) / P s. Therefore the mean service time ?E(P) is at
least Wf+.((1 - f) W) / P . Moreover, since a single processor
working alone will take W s, the speedup is simply W divided

U
This law implies that the speedup of the system depends

very strongly on the simple workload measure f, and that the
speedup may be much smaller than the number of processors,
even for a relatively small f. For example, i f f = 0.1, then one
will, at best, obtain a speedup of less than 10 with 1000 times
the processing capacity (P = 1000)*.

For the remainder of this subsection we will make the
(optimistic) assumption that 1 - f of the tasks can use exactly
P processors concurrently. For this revised model, the upper
bound in Amdalil’s Law will be achieved. This corresponds
to our discrete model of jobs for which f = [f, 1 - f], and
P = [l, PI. For a given value of f, we solve for the optimum
value of P in the next theorem.

by ?E(P), which proves the result.

Theorem 4

Power Qn (P) is maximized when the number of processors

*As a result of Amdahl’s law, one is easily discouraged from using
parallel processing. Nevertheless, experience shows in a number of cases that
speedups very close to P are quite possible [2]. Gustafson explains this [7] by
suggesting that as the number of processors increases,%e application problem
size also increases in a way such that the parallel portion of the problem grows
while the serial portion remains fixed; that is, f = f (P) is a decreasing
function of P. In this paper we assume that f is constant, independent of P.
Gelenbe [6] provides analytical evidence of this linear growth of the speedup
with P by considering a model which includes the effect of a program’s
inability to effectively use all of the processors assigned to it, as well as the
effect of imbalance of the workload across the available processors; Gelenbe
shows that this linear dependence on P may be lost, however, when the effect
of interprocess communication is included in the model.

Proof: During the entire service time T (P) = Wf +
(W(1 - f))/P, the processing capability is PT(P); the work
actually completed is simply W (since the service time for
each task is 1). Hence the processor efficiency equals:

1 - W
u, (P)= - -

P,(P) PfS1-f

Thus

Optimizing Q,(P) with respect of P, it is easy to show that
P* = (1 - f) / f . However, P* cannot be smaller than 1 (an
obvious boundary condition); hence P* = 1, if (1 - f) / f 5 1

The result given in theorem 4 is intuitively pleasing. Fig. 5
shows the curve for P* versus f. Note the sharp drop in P*
when f is small, and also note that P* = 1 for f 2 l/2.

(or, f 2 1/21. 0

Corollary 3

For P* = (1 - f)/f > 1, the interval of time when the
system is working on the serial portion of the job exactly
equals the interval of time when the system is working on the
parallel portion.

Proof: The service time for the serial portion of fW.
The service time for the parallel portion is

31n this case we require P* 1 1

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

442 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 5, MAY 1992

Corollary 3 is similar to corollary 1, although they each
apply to different environments. If we regard the service time
for the serial portion as the unextended service time, and regard
the service time for the parallel portion as the extended service
time, then corollary 3 is exactly the same as corollary 1.

Corollary 4

At the optimal power point, the speedup is as follows:

Proof: From Amdahl’s Law and our optimistic assump-

C. The Discrete Case in General

For the general case we assume that a job has W tasks, and
that the fraction vector and processor vector (after rearrange-
ment) are

f = [fl, f ~ , f 3 , ‘ ‘ ‘ 1 f n l

P = [PI 1 PZ p3 . . > Pnl

where Pi < Pi+l for 1 < i < n - 1, and

n

fi = 1.
i = l

tion, we have
Before describing the next theorem we need some more

notation. We assume that there are P processors available in
the system. We define the index “m” such that; if PI 5 P <

P
f P + l - f ’

s n (P) =

From theorem 4 we have

Substituting P = P* in the expression for S n (P) completes
the proof. 0

P,, then m is the integer that satisfies Pm-l I P < Pm; or
if P 2 P,, then m = n + 1 of if P < P I , then m = 1. Once
m determined, we may define:

m-1 & = E -ri
pi i= l

and Theorem 5

Generalized power QF’(P) is maximized when P* is n

selected such that P = ~ A .
i=m

11 i f f > &
P * = { +, i f f < & . Note that aW is the unextended service time, whereas

(/?W)/P is the extended service time.
Proof: It can be shown that

Theorem 6
Q,(P)= T [un(P)Ir = - 1 . P

The speedup for any P is given by
.(P) W (P f + l - f)‘+lf

P
Sn(P)= -

a P + P ‘ Optimizing Q C) (P) with respect to P , one finds that P* =
(1 - f)/(rf). However, P* must not be smaller than 1; hence
P” = 1, if (1 - f) / (r f) I 1 (or f 2 I / (T + 1)). 0 Proof: The mean service time is

i= l

Corollary 5
For P* = (1 - f) / (r f) > 1, the parallel portion of the

job takes exactly T times as long to serve as does the serial
portion of the job. Since a single processor working alone will take W s to

serve a job, the speedup with P processors is simply W
0

We can easily modify this result to obtain a generalization

Proof: The service time for the serial portion is fW. The
service time for the parallel portion is divided by ?E(P) .

- -
(1 - f)w-

P*

Corollary 6

At the optimal power point,

1, S,(P*) = {&
Proof: This proof is similar

r . fW. 0 of Amadahl’s Law. Consider a job consisting of W tasks, for
which a fraction fi of these tasks can be done using at most
Pi processors in parallel (i = 1 , 2 , . . , 71). Then we have the
theorem below.

Theorem 7 (Generalized Amdahl’s Law)

sors, is upper bounded as follows:
i f f > 1 For the system just described, the speedup, given P proces-

, i f f < T . ?

to the proof for corollary 4. P
s n (P) I - 0 a P + P ’

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

KLEINROCK AND HUANG: AMDAHL'S LAW GENERALIZED AND SOME RESULTS ON OFTIMAL DESIGN 443

Proof: This result can easily be derived following the

The maximum possible speedup S,,,, for the model used
procedure to prove Amdahl's Law and theorem 6.

in theorem 6 will be achieved when P 2 Pn, which gives

Pi i=l

and p = 0. Hence

1 - W
j, w - n .ft '

Sn,max =
C L p, C d E .TIME

I
In the following two corollaries we derive P* for the discrete k-,UST-d

-aw-
case using the results from corollary l. Corollary 7 was first
obtained in [4, theorem 41.

Corollary 74

of the following two conditions:
Power Q,(P) is maximized when P* satisfies either one

(' p * = E , if Pm-l < P* < Pm
a 1)

or

Proof: In case (i) there is no ambiguity in defining the
unextended service time. Specifically, the unextended service
time = aW, and the extended service time = (P W) / P . From
corollary 1 we must have

PW a W = -
P*

Hence

P p* = -
a

In case (ii) we encounter an ambiguity in defining the
place where the unextended service time ends (and thus
the extended service time begins). In order to resolve this,
we break the mean service time for stage m - 1, namely,
tm-1 = fm-1 W/Pm-l, into two segments: x and tm-l - x.
We define x to be the interval in stage m- 1 which we include
in the extended service time, and the interval tm- -x to be the
interval in stage m - 1 which we conclude in the unextended
service time, as shown in Fig. 6. To find 2, we note from
corollary 1 (and assuming P* = Pm-l) that

a w - x = - Pw + x
Pm-1

which gives:

a w pw x=---
2 2Pm-,'

41t is easy to show that P' will never be greater than Pn. If P* > P, the
service time will not be improved, while the processor utilization will be less
than when P' = Pn; hence the power will be smaller. A similar argument
shows that P* will never be smaller than P I .

Fig. 6. Segmentation of the service time of stage m - 1 (UST = Unextended
Service Time).

Thus the unextended service time u(P) is simply:

a(P) = aw - x

- - .(p)
2

as demanded by corollary 1. Case (ii) will occur whenever, for
some m, we have the following two conditions simultaneously
true:

PW
Pm-1

aw> -.
These may be rewritten as

a W pw os--- L tm-1 2 2Pm-1
But since

we have as the condition for case (ii):

fm-1 L -.
a P os---
2 2Pm-1 Pm-l

0

Corollary 8

either one of the following two conditions:
Generalized power Q t) (P) is maximized when P* satisfies

P (i) P' = - , if Pm-l < P* < Pm
ra

or
ra P (ii) P* = PmP1, if 0 5 - -

r + 1
fm-1

prn- 1

(r + 1)Pm-1

< -. -

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

~

444 IEEE TRANSACTIONS ON SORWARE ENGINEERING, VOL. 18, NO. 5, MAY 1992

Proof: This proof is similar to that for corollary 7. U
From corollaries 7 and 8 we develop an interactive proce-

dure in [8] to find P* for any given f and P . In that procedure
the number of iterations is upper bounded by log, n, which is
reasonably small.

In our results of Sections IV-B and -C we have neglected
the physical requirement that P* be an integer. Clearly, if P*
must be an integer, then P* should then be rounded up or
down to the nearest integer, whichever of the two has a larger
value of power.

V. SYSTEMS WITH ARRIVALS

In this section we study the case when new jobs enter the
system according to a Poisson process at rate A. We now permit
random service times. This model corresponds to a parallel
processing system which executes one job at a time, but which
can accept and enqueue new arrivals which are later served in
a first-come-first-served fashion (one at a time). The following
theorem describes a property which is useful in finding many
results later in this section.

Theorem 8

For all cases (continuous and discrete models), the coef-
ficient of variation of the service time distribution (denoted
as c r p when there are P processors in the system) is not a
function of P . That is, for all P 2 1,

c,, = e,,.

Proof: We define ."(P) to be the random variable repre-
senting the service time when P processors are available. For
the continuous model, we can show that

This equation shows that ."(P) equals ,!?, multiplied by a
(deterministic) constant; since this constant multiplies both the
standard deviation and the mean of Z(P) , it will cancel out in
their ratio (i.e., the coefficient of variation), and so

C,, = CK.

Hence e,, is not a function of P , which implies that c,, =
ex,.

For the two-stage discrete case we have

where is a random variable representing the work brought
in by a job. Hence, using a similar argument as above, we
have

c,, = c,, = cw.

Similarly, for the general discrete case we have

Hence, using the same argument as above, we have

c,, = c,, = cw. U

We can show that -
@ = / g (i) d t = K / g (t) d t . K b b

0 0

Since
b

is a constant, this equation shows that the work brought in by
a job is a random variable which has the same coefficient of
variation as I<.

A. Finding the Speedup

In this section we find the speedup for all cases. We discover
that the speedup when queueing is allowed is the same as the
speedup when queueing is not allowed!

Theorem 9

For all cases (continuous and discrete models), we have

S(X, P) = S n (P) .

Proof: We have defined p to be the system utilization;
hence

p = AZ(P).

Since only one job can be admitted into service at a
time, this system can be analyzed as a single-server queueing
system. Hence we can apply results from M/G/l theory [SI to
find the average response time for this system. That is,

In theorem 8 we have shown that e,, = c,, for all cases;
thus we find the speedup as

Therefore the speedup Sa (A , P) and the speedup S, (P) are
solely determined by the job specification P (t) and P (and not
affected by the system's operating point A) in our models.
(Another interesting model studied in [8] has S,(A, P) #
Sn(P)) .

Corollary 9

For the continuous model, we have

Proof: This can easily be proved from the expression for
0 Z(P) and theorem 9.

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

-

KLEINROCK AND HUANG: AMDAHL’S LAW GENERALIZED AND SOME RESULTS ON OPTIMAL DESIGN

Corollary 10

For the two-stage discrete model, we have
P

f P + l - f
& (A , P) =

Proof: This can easily be proved from the optimistic
0 model of Amdahl’s Law and theorem 9.

Corollary 11

For the general discrete model, we have
P

& (A , P) = ~

d + P ‘
Proof: This can easily be proved from theorem 6 and 9.

U

B. The Optimal Arrival Rate

In this section we find the optimal operating point (A *) for
both the discrete case and continuous case. Even though the
definitions of power in this paper and in [12] are different
(since p # ua(X, P)) , the results obtained in both papers are
the same. Therefore all the deterministic reasoning given in
[I21 also applies in this paper.

Theorem 10

P), such that
Power Qa(X, P) is maximized when X = A * (for a given

1 . - 2 A * =
2 + Jm Z (P) ‘

Proof: When we allow arrivals we must calculate the
processor efficiency over all time. The rate at which seconds
of work enter the system is XW, and the maximum rate at
which the processors can discharge work is P . Thus

XW
P

ua(X, P) = - .

From MIGl1 theory we have

1 + e:, --I 2(1 - P)
T(A , P) = z(P) [1 + p

I 2 + (CZ, - 1) XZ(P)
2(1 - AT(P)) [= Z (P)

where p = XZ(P). Defining power as earlier, we have

1 . - XW 2 (l - XZ(P))
p 2 + (e;, - l)XF(P) Z(P)

- . - -

445

Maximizing power with respect to A, we have

0 1 . - 2 A *
2 + J m q P) ’

Corollary 12

When power is maximized with respect to A,

2
p* =

2 + J 2 T

and
-
N * = 1.

Proof: From theorem 10 we trivially show that

2
p* = X*Z(P) =

2 + d ”

Using Little’s result [14], it is easy to show that
-
N * = X*T(X*, P) = 1. U

The result given above for N* is intriguing. Indeed, p* =
1 corresponds to the same deterministic reasoning given in
[12] and which is described in our introduction.

Theorem 11

(for a given P) such that
Generalized power &:’(A, P) is maximized when X = X*

1

Z (P)
. - 41- A* =

(-2, + 3) r + (e:, + 1) + b(r)

where

b(r) =

Proof: This proof is similar to the proof for Theorem 10.
0

Corollary 13

When power is maximized with respect to A, then

c

4r
(-c2, + 3) r + (cl,, + 1) + b(r)

p* =

-* 2 ~ [(1 + c : ,) ~ + b(r) + (1 + e:,)] N =
- l) r2 + 2(2 - e:,) (1 + e:,). + [(I - c:,)r + (1 + c; ,)]b(r) + (e:, + 1)2

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

446 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 18, NO. 5, MAY 1992

If r >> 1, we have
1

limp* = 1- -
T > > l r

function of P; therefore for cases where c,, is not a function
of P, then P* for Qo(X*, P) is the same as P* for Q,(P).
That is, for e,, not a function of P , we have systems with

and P* (for systems with no arrivals) =
-
N * 1+cq, P*(for systems with arrivals).

lim - = ~

T-CQ y 2 .
Note that the results in Theorem 11 and corollary 13 are the
same as in [12].

C. The Optimal Number of Processors (P ')

In this section we first study the relationship between Qn (P)
and Qa(X, P) . From the result below we show that there are
many cases in which P* for a system with no arrivals and P*

We may express the utilization uu(X, P) for systems with
arrivals in terms of the utilization u,(p) for system with no
arrivals as follows:

For the generalized definition Of power, we have

[.a(& P)l' - P'[Un(P) lP
T(X, P) T(X, P)

[Un(P)lf
T(X, P)/,(P) Z(P)

2 - P + PCZ,

- &?)(A, P) =

.- - Pf
c

- - . Q r) (P) .
2pp(1 -

for a system with arrivals are the same!

Using the same argument as above (i.e., for cz, not a function
of P) , we have systems with the property

P* (for systems with no arrivals) = ua(Xl P) = (processor utilization)
= (processor utilizationlsystem busy) P*(for systems with arrivals).

Therefore all the results for evaluating P" obtained in Sec-
tion IV can be used here. However, not every model has this
characteristic. In [SI, another model is discussed in which c,,
is indeed a function of P. In that case, a numerical procedure
is required to find P*.

Corollary 14

chosen such that

. P[system busy]
+ (processor utilizationlsystem idle)
. P[system idle]

. P[system busy].
= (processor utilizationlsystem busy)

Thus we come to the simple conclusion that

% (X l P) = .n(P) ' P. For the continuous model, power is maximized when P* is

Substituting ua(X, P) = pu,(P) into the definition of

I (P *) power, we find that
p * = -

%(Alp) - P.n(P) 4 P *)
Qa(X,P) = ~ ~

T(X, P) T(X, P)

T (X , P) / f (P) E(P) ' A * =

-

and
un(P)

1 . - - P -

Since (u(P))/(Z(P)) = Q,(P) and p / (T (X , P)/Z(P)) = .(P*) (2 + Jq-) .
(2 p (l - p)) / (2 - p + pc:,) for M/G/1, we finally have

Proof: This is easily derived from theorems 1 and 10.
U

Note that p / [T (X l P) /Z(P)] is simply the normalized power
discussed in [12] and in the introduction.

Let us now discuss the optimal number of processors P*.
When the system is operating at the optimal operating point

l5
For the two-stage discrete model, power Qa(Xl P) is max-

imized when
1

Note that

is only a function of c,, (since p* is also a function of c,, Proof: This is easily derived from theorems 4 and 10.
0 only as shown in corollary 12) and, in particular, is not a

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

KLEINROCK AND HUANG: AMDAHL’S LAW GENERALIZED AND SOME RESULTS ON OPTIMAL DESIGN 447

VI. CONCLUSION 1131 K. C. Kung, “Concurrency in parallel processing systems,” Ph.D. diss.,
Computer Sci. Dept., UCLA, 1984.

1141 J. D. C. Little, “A proof of the queueing formula L, = .\M7,” Operations
Res., vol. 9, pp. 383-387, 1961.

[15] K. C. Sevcik, “Characterizations of parallelism in applications and their

May 1989.

For the model which allows no arrivals we found the
speedup (S n (P)) for any P and for the optimal number of

shown to be a generalization of Amdahl’s Law. For the model
processors (‘*I which maximizes power’ This “ 7 l (‘) was use in scheduling,” Perform. Eva). Rev., vol. 17, no. 1, pp. 171-180,

which allows arrivals we found the speedup (Sa(A, P)) for any
P , the optimal arrival rate (A *) , and the optimal number of
processors (P *) which maximizes power. It was interesting
to find that S n (P) is the same as S a (A , P) for the models
studied in this paper. It was also interesting to find that
P* for a system with no arrivals is the same as P* for a
system with arrivals when power is maximized. In all cases we
found that power is optimized when P* is chosen so that the
unextended service time equals the extended service time. This
characteristic makes optimal design (in terms of maximizing
power) easier, because the same solution applies to both cases!

Our results apply to an idealized workload model which
neglects the degradation to system performance due to certain
sources of overhead; consequently, these results must be
viewed simply as approximate indicators of choices in any
practical system design process.

REFERENCES

[l] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” Proc. AFIPS, vol. 30, 1967.

[2] R. E. Benn, J. L. Gustafson, and R. E. Montry, “Development and analy-
sis of scientific application programs on a 1024-processor hypercube,”
Sandia Nat. Labs., Albuquerque, NM, Tech. Rep. SAND 88-0317, Feb.
1988.

(31 E.G. Coffman and P. J. Denning, Operating System Theory. Engle-
wood Cliffs, NJ: Prentice-Hall, 1973.

[4] D.L. Eager, J. Zdhorjan, and E.D. Lazowska, “Speedup versus
efficiency in parallel systems,” IEEE Trans. Computers, vol. 38,
pp. 408-423, Mar. 1989.

[5] H. R. Gail, “On the optimization of computer network power,” Ph.D.
diss.. Computer Sci. Dept., UCLA, Sept. 1983.

161 E. Gelenbe. Multinrocessor Performance. New York: Wilev. 1989.
J. L. Gustafson, “Re-evaluating kmdahl’s Law,” Commun.A&f, vol. 31,
no. 5, pp. 532-533. May 1988.
J. Huang, “On the behavior of algorithms in a multiprocessing environ-
ment,” Ph.D. diss., Computer Sci. Dept., UCLA, 1988.
L. Kleinrock, Queueing Systems, vol. 1, Theory. New York: Wiley-
Interscience, 1975.
L. Kleinrock, Queueing Systems, vol. 2, Computer Applications. New
York: Wiley-Interscience, 1976.
L. Kleinrock, “On flow control in computer networks,” in Conf Rec.,
Int. Conf: on Communications, June 1978, vol. 2, pp. 27.2.1 -27.2.5.
L. Kleinrock, “Power and deterministic rules of thumb for probabilistic
problems in computer communications,” in Conf: Rec., Int. Conf on
Communications, June 1979, pp. 43.1.1 -43.1.10.

Leonard Kleinrock (S’55-M’64-SM’71-F’73)
received the B.S. degree in electrical engineering
from the City College of New York in 1957 (evening
session), and the M.S.E.E. and Ph.D.E.E. degrees
from the Massachusetts Institute of Technology in
1959 and 1963, respectively.

Since 1963 he has been on the faculty of the
Computer Science Department at the University
of California, Los Angeles, and he is currently
Chair and Professor of that department. His research
interests focus on performance evaluation of high-

speed networks and parallel and distributed systems. He has had over
160 papers published and is the author of five books. He is the Principal
Investigator for the DARPA Parallel Systems Laboratory contract at UCLA.
He is also founder of the CEO of Technology Transfer Institute, a computer-
communications seminar and consulting organization located in Santa Monica,
CA.

Dr. Kleinrock is a member of the National Academy of Engineering, is a
Guggenheim Fellow, and a member of the Computer Science and Technology
Board of the National Research Council. He has received numerous best paper
and teaching awards, including the ICC 1978 Prize-Winning Paper Award, the
1976 Lanchester Prize for outstanding work in Operations Research, and the
Communications Society 1975 Leonard G. Abraham Prize Paper Award. In
1982, as well as having been selected to receive the C.C.N.Y. Townsend
Harris Medal, he was co-winner of the L. M. Ericsson Prize presented by His
Majesty King Carl Gustaf of Sweden for his outstanding contribution in packet
switching technology. In July 1986 he received the 12th Marconi International
Fellowship Award presented by His Royal Highness Prince Albert, brother of
King Baudoin of Belgium, for his pioneering work in the field of computer
networks. In the same year he received the UCLA Outstanding Teacher Award.
In 1990 he received the ACM SIGCOMM award recognizing his seminal role
in developing methods for analyzing packet network technology.

and distributed systems.

Jan-Hsiung Huang received the B.S. degree in
electrical engineering from the National Taiwan
University in 1981, and the M.S. and Ph.D. degrees
in computer science from the University of Califor-
nia, Los Angeles in 1985 and 1988, respectively.

He joined the faculty at the National Taiwan
University in 1988, where he is an Associate Pro-
fessor in the Department of Computer Science and
Information Engineering. His research interests in-
clude design and performance evaluation of high-
speed networks, multimedia systems, and parallel

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore. Restrictions apply.

