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On Parallel Processing Systems: Amdahl’s Law 
Generalized and Some Results on Optimal Design 

Leonard Kleinrock, Fellow, IEEE, and Jau-Hsiung Huang 

Abstract-We model a job in a parallel processing system as 
a sequence of stages, each of which requires a certain integral 
number of processors for a certain interval of time. With this 
model we derive the speedup of the system for two cases: systems 
with no arrivals, and systems with arrivals. In the case with 
no arrivals, our speedup result is a generalization of Amdahl’s 
Law. We extend the notion of “power” (the simplest definition 
is power = throughput/response time) as previously applied to 
general queueing and computer-communication systems to our 
case of parallel processing systems. With this definition of power 
we are able to find the optimal system operating point (i.e., the 
optimal input rate of jobs) and the optimal number of processors 
to use in the parallel processing system such that power is 
maximized. Many of the results for the case of arrivals are the 
same as for the case of no arrivals. A familiar and intuitively 
pleasing result is obtained, which states that the average number 
of jobs in the system with arrivals equals unity when power is 
maximized. 

We also model a job in a way such that the number of proces- 
sors required is a continuous variable that changes continuously 
over time. The same performance indices and parameters studied 
in the discrete model are evaluated for this continuous model. 
These continuous results are more easily obtained, are easier to 
state, and are simpler to interpret than for the discrete model. 

Index Terms-Amdahl’s Law, multiprocessing, optimal design, 
parallel processing, power, processor efficiency, speedup, system 
utilization. 

I .  INTRODUCTION 

S parallel computing systems proliferate, the need for A effective performance evaluation techniques becomes 
ever more important. In this paper, we study certain funda- 
mental performance indices, namely, speedup, response time, 
eficiency, and power, and solve for the optimal operating point 
of these systems. Specifically, by maximizing “power,” we are 
able to find the optimal input rate of jobs and the optimal 
number of processors to use, given a characterization of the 
workload. 

We model a parallel processing system as a system with a 
single queue of waiting jobs. Our first model (in Section IV) 
assumes that only a single job needs to be processed. Our 
second model (in Section V) allows a stream of arrivals to 
enter the system; however, only one job may be admitted 
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of processors ( P  = 4 ) .  
Fig. 1. Job profile. (a) Unlimited number of processors. (b )  Limited number 

into service at a time, following a FCFS discipline, while 
the others wait in the queue. Both models deal with jobs as 
follows. While in service, the system provides a maximum of 
P parallel processors to work on the job. A job is modeled 
as a sequence of independent stages which must be processed, 
where the number of processors desired by the job in each 
stage may be different. If, for some stage, the job in service 
requires fewer processors than the system provides, then the 
job will use all that it needs and the other processors will be 
idle for that stage. If, for some other stage, the job in service 
requires more processors than the system provides, then it will 
use all the processors in the system (in a processor sharing 
fashion [lo]) for an extended period of time such that the 
total work served in that stage is conserved. An example is 
given in Fig. 1 in which the total processing work required by 
a job is LV = 24 s. In this example, if P 2 6 ,  then it takes 
8 s to complete the job as shown in Fig. l(a), whereas if only 
P = 4 processors are provided, then it takes 9 s as shown in 
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Fig. l(b), in which case 12 s of processor capacity are wasted. 
The model described above has been highly idealized. 

In particular, we are neglecting some of the following im- 
portant aspects of the workload. First, we do not allow 
general precedence relations among the tasks. Our precedence 
structure is equivalent to a series-parallel task graph with 
deterministic task service times (see [6] for the definition of 
the task graph model of computation). Second, we do not 
separately model the communication times between tasks (i.e., 
the interprocess communication overhead). We hasten to point 
out that incorporating this overhead is not simply a matter of 
adding additional time to each task’s processing time, since 
such overhead only occurs when a task on one processor must 
pass its results to a task on a different processor; thus to 
properly include interprocess communication costs, one must 
model the way in which tasks are assigned to processors (i.e., 
the task partitioning problem), an assignment that we choose to 
neglect. Third, we ignore I/O communication overhead related 
to the management and execution of parallel programs. Lastly, 
we assume that the program structure is infinitely divisible, 
in that the time to execute w units of work is equal to 
max ( w / P ,  w/P‘), where P . i s  the number of processors that 
the system provides for execution of this work, and P’ is the 
maximum number of processors that the program is able to 
use for this work (i.e., the parallelism for this work). These 
assumptions simplify our analysis and lead to idealized results. 

Our workload model was first reported by us in [8]. Later, 
Gelenbe [6] described a very similar model, as did Sevcik 
[15]. Gelenbe extended his model, which he referred to as the 
“Activity Set Model,” to include the effect of inefficient use of 
processors, imbalance of the workload among the processors, 
and interprocess communication times. Sevcik also described 
ways in which this idealized model could be extended to 
include the effect of I/O communications, overhead, and 
dependencies among parallel threads assigned to different 
processors. 

For such a parallel processing system there are two perfor- 
mance measures which compete with each other: processor 
eflciency and mean response time. One can increase the 
processor efficiency of the system (by reducing the number 
of processors), but then the mean response time will also 
be increased. Similarly, one can lower the mean response 
time (by increasing the number of processors), but then the 
processor efficiency of the system will also be lowered. In 
this paper these two performance measures are combined into 
a single measure, known as power, which increases by either 
lowering the mean response time or by raising the processor 
efficiency of the system. We seek to find that number of 
processors which maximizes power. 

Power, studied in [5], [ll], and [12], was defined for a 
general queueing system in [12] as 

c 

P e 
where p is defined as the system utilization, T is defined as the 
mean response time, and ?F is defined as the average service 
time. With this measure we see that an increase in system 
utilization ( p )  or a decrease in response time (T) increases 

the power. (Note that this normalized definition is such that 
since 0 5 p < 1, and since 1 5 T/ z, then 0 5 power < 1.) 
The symbol “*” will be used throughout to denote variables 
which are optimized with respect to power. In [12] it was found 
that for any M/G/l queueing system [9], power is maximized 
when r* = 1, where = the average number of jobs in the 
system. This result says that an M/G/l system has maximum 
power when on the average there is only one job in the system. 
This result is intuitively pleasing, since it corresponds to our 
deterministic reasoning that the proper operating point for a 
single-server system is exactly when only one job is being 
served in the system and no others are waiting for service at 
the same time. In this paper, our results also show that N* = 1 
when power is maximized with respect to the job arrival rate 

One might argue that power, as here defined, is an arbitrary 
performance measure. In response to this argument we point 
out that one can generalize the definition of power in a way 
which allows the reader to emphasize delay (or efficiency) in 
a variety of ways so as to match his or her needs. This issue 
is discussed below in Section I1 as well as in [5] and [12]. 
Moreover, other researchers have seen fit to optimize power 
for models similar to ours (see, for example [4]). An extensive 
study of power applied to computer networks is given in [5]. 

An alternative, and much more familiar, performance mea- 
sure for parallel processing systems is speedup, which de- 
scribes how much faster a job can be processed using multiple 
processors, as compared to using a single processor. Specifi- 
cally, speedup is the ratio of the mean response time of a job 
processed by a single processor to that of a job executed in a 
parallel processing system with, say, P processors. Speedup 
and power are related and we discuss how they interact 
throughout this paper. Eager et al. [4] also discuss issues 
similar to those in this paper. Their focus is on estimating 
speedup and efficiency (for the no arrivals case only) simply 
from the value of the “average parallelism,” which is defined 
as W ,  the total processing work required by a job, divided 
by the time it would take to service the job if there were an 
unlimited number of processors available; in Fig. l(a) we have 
W = 24, and service time = 8, giving an average parallelism 
equal to 3. They also use the definition of power as we had 
defined in [ l l ]  and [12] and obtain the same result as we obtain 
in Corollary 7 below. They consider the case of deterministic 
workloads. Gelenbe [6] introduced an alternate model for the 
workload for which he also calculates speedup in the case 
of an infinite number of available processors. He models a 
job as having a random task graph in which the density of 
precedence relations between tasks is given by p (0 5 p 5 1); 
he then derives an approximation for an upper bound on the 
speedup; namely, (1 + p ) / 2 p .  

(A) .  

11. DEFINITIONS 

We have already defined the following: 
P = Number of (identical) processors in the server; 
W = Average number of seconds required to process a job 

N = Average number of jobs in the system. 
on a single processor; and - 
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Moreover. we now define the following additional quanti- 
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ties: 
E ( P )  = 

T(X, P )  = 

A =  
P =  

- - 

.(P) = 

Mean service time of a job in a P-processor 
system (note that the maximum mean service 
time is F( 1) = W and that the minimum mean 
service time is z(ca)); 
Mean response time (queueing time plus service 
time) of a job in a queueing system with an 
input rate X and P processors; 
arrival rate of jobs; 
system utilization; i.e., the fraction of time 
when there is at least one job in the system. 
XZ(P); and 
processor efficiency in a P-processor system. 

Note the difference between U (  P ) ,  which is the average 
processor efficiency given P processors, and p, which is 
the average system utilization. Whenever there is a job in 
the system, the system utilization is “1,” but the processor 
efficiency need not be “1” in that case, since there may be 
some idle processors (i.e., it may be that the job in service does 
not require all the processors). Hence the system utilization is 
always greater than or equal to the processor efficiency. (Note 
that U (  1) = p for a single processor queueing system.) 

Two cases regarding the number of jobs in the system 
are considered in this paper. Case one allows no arrivals of 
additional jobs (Section IV). That is, there is only one job in 
the system, and we are concerned with Z( P) ,  its mean service 
time in a P-processor system. Case two allows jobs to arrive 
from a Poisson process at a rate A, and so queueing effects 
are considered (Section V). 

For the first case, we define the (no arrivals case) speedup 
with P processors, denoted by Sn(P) ,  to be 

Note that 

Thus it is natural for us to define the maximum value for 
speedup S,,,,, as follows: 

W 

Furthermore, we see that S, ,max = average parallelism. 
For the second case, we define the (arrivals case) speedup 

with P processors at system utilization p, denoted by S,(X, P) ,  
to be 

We must distinguish the processor efficiency u ( P )  in these 

u,(P) = processor efficiency given P processors in the 
no arrivals case; and 

u,(X, P )  = processor efficiency given job arrival rate X 
and P processors in the case with job arrivals. 

two cases as follows: 

We now introduce the appropriate definitions of power, 
which we denote by the symbol Q (we would prefer to use 
the obvious notation P, but P has already been used to denote 
the number of processors). Let 

Qn(  P )  = power given P processors in the no arrivals 

Qa(X, P )  = power given a job arrival rate X and P pro- 

In this paper we are concerned mostly with power which is 
defined as processor efficiency divided by the mean response 
time. 

In the case of no arrivals, the mean response time of the 
(single) job is simply its mean service time T(P),  and so: 

case; and 

cessors in the case with job arrivals. 

Clearly, power will increase by either raising the processor 
efficiency or by lowering the mean service time. A more 
general definition of power (as originally introduced in [12]) 
is given as 

where r is a positive real number whose value may be selected 
by the system designer. With this generalization, a designer 
may express a stronger preference for an increase in the 
processor efficiency at the expense of an increase in the mean 
service time by simply increasing the value of the parameter 
r (and vice-versa). Note that Qn ( P )  = QA1)( P ) .  

In the case of job arrivals, the definition of power becomes: 

and the generalization in this case is 

where again r is a positive real number to be used as a degree 
of freedom by the system designer. Note that &,(A, P )  = 
QP’(X, P ) .  

With these definitions of power, our goal is to find the 
optimal number of processors to use in a parallel processing 
system such that power is maximized. Furthermore, in the case 
of job arrivals, we also seek the optimal system operating point 
(i.e., the optimal input rate of jobs). 

The rest of this paper is organized as follows. In Section I11 
we present two models of a job: a discrete model, and a 
continuous model. In Section IV we solve the case when 
no arrivals are allowed in the system. In this case we find 
the speedup of the system given P processors. We also find 
P’, the number of processors which maximizes power. In 
Section V we solve the case when job arrivals are allowed 
in the system. In this case we again solve for the speedup 
of the system given P processors. We also find A *  and P’, 
which maximize power. One interesting result we get is that 
the P* for systems with no arrivals and the P” for systems 
with arrivals are equal when power is maximized; this provides 
a simplification in system design. 
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the second vector is called the processor vector, P'. We denote 
the fraction and processor vectors as 

E 
w 
0 

K 
fn 6-  

f'= [ f : , f ; , f ; , - . j f ? ! l d  E -  
P' = [Pl,  Pi, PA, ' ' ' , PA,] $ 4 -  

2 .  
8 
a 

where n' is the number of stages in a job. The ith stage has 
the pair (f; , Pi') associated with it. The meaning is as follows: 
a fraction f,' of the total tasks in a job can use Pi' processors 

a .  
m w 

111. WORKLOAD MODELS 

We consider both a discrete as well as a continuous model 
of job requirements. 

w 

2 - 1  W = 24 

TIME 

A. A Discrete Job Model - 
Here, we model a job as containing a total of W tasks. 

Nonoverlapping subsets of these tasks are collected into stages, 
and these stages are processed sequentially (howeverdaral- 
lelism is exploited within each stage-see below). W is a 
random variable with mean W and coefficient of variation 
cwl .  We assume that the service time distribution for each 

TIME 
1 0  

The example from Fig. 1 is repeated in Fig. 2(a), where 
W = 24 and n' = 6. Stage 4 contains 12 tasks, and so 
& = l /2;  moreover, since Pi = 6 (and if P 2 6), then it 
will take 2 s to complete stage 4. This stage-type workload 
model comes directly from the usual task graph model of 
computation [3] with deterministic task service times. The ith 
stage corresponds to the ith level in the computation graph. 

For convenience, we may rearrange the elements in f' and 
P' as follows in such a way that neither the mean response 
time nor the processor efficiency are changed. The elements 
of P' are rearranged and renumbered so that its elements are 
nondecreasing; that is, 5 Pi'. The elements of f' follow 
the identical permutation and renumbering. We may then 
merge several stages with the same P;'s into one stage simply 
by adding all the corresponding fi's. The new vectors will 
be denoted P = [ P I ,  P2,. . . ,  P,] and f = [ f ~ ,  f 2 , .  . .  , f , ] ,  
where n 5 n' and Pi-1 < Pi. Since the system admits 
only one job into service at a time, it can easily be shown 
that this rearrangement does not affect the performance at all. 
The example in Fig. 2(a) has been rearr9ged as shown in 
Fig. 2(b), where the number of stages is now n = 4. Note 
that Z(o0) = 8, as it was in Fig. 2(a). One can easily see that 
if we choose P = 4, then F(4) will equal 9 in this rearranged 
case, as was the case for Fig. l(b). 

'The coefficient of variation of a random variable is equal to its standard 
deviation divided by its mean. 

B. A Continuous Job Model 

We now describe a continuous version of the above model. 
In this model we assume that the number of processors 
required by jobs is a (not necessarily discrete) nondecreas- 
ing function of time (recall the rearranging does not affect 
performance). That is, we permit nonintegral numbers of 
processors (which could correspond to cases where processors 
are shared among more than one job). A special model with 
a deterministic workload per job will be described first, and 
then a more general model with a random workload per job 
will be described. 

For the special case with a deterministic workload, we 
define P ( t )  = g ( t ) ,  where g(t)  is a deterministic function, 
to be the number of processors that a job desires at time 
t (0 5 t <_ b)  such that P(b) = B (see Fig. 3). For such a 
model, the workload (seconds of work required) for each job 
is deterministic with value 

b 

W = 1 P ( t )  dt. 
0 

Note that b = :(NI). Moreover, if we limit the number of 
processors to P ( P  < B ) ,  then A, the (shaded) area of P ( t )  
which lies above the value of P ,  will be flattened out and 
extended as a rectangle of area A and of height P beginning 
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t 

TIME . 

a(P) b W )  

Fig. 3. A continuous job profile and the effect of a limited number of processors. 

at the point b on the time axis and extending to the new mean 
service time ;C(P), as shown in Fig. 3.  

For the general case with a random workload, we define 

to be a random function whicJh gives the number of processors 
desired by the job at time t . K is a random variable with mean 
I< and coefficient of variation C K ,  and g is a functign such 
that it has a fixEd maximum value B,  with 0 5 t 5 K b .  The 
distribution of K affects the results given in this paper in the 
following simple fashion: 

i) All time variables should be multiplied by k ;  
ii) All mean time variables should be multiplied by ?;;; and 

iii) The optimal value of P ,  namely P*,  is independent of 

Therefore we assume that ?;; = 1 in the remainder of this paper 
at no loss of generality. In addition, C K  does affect some of our 
later expressions, and in those cases it will appear explicitly. 

We remind the reader of some of the limitations of this 
workload model as listed in the introduction. These limita- 
tions include: the lack of full generality in the precedence 
structure among the tasks; the neglect of the interprocess 
communication overhead; the neglect of I/O processing and 
communication overhead; and the assumption of the infinite 
divisibility of the workload. 

the distribution of K .  

IV. SYSTEMS WITH No ARRIVALS 

In this section we examine a system of P processors serving 
a single job with no new arrivals. We wish to find the speedup 
and the value P* which maximizes power for the processing 
of this job. For systems with no arrivaE, we have that the 
processor efficiency is 

W 
.,(P) = - 

P Z ( P )  . 
This follows from our earlier definition, since the system 

is busy for Z ( P )  s, and in this time P processors could do 

PC(P) s of work; however, they only accomplish W s of 
work, since some processors may occasionally be idle. From 
the definitions of speedup S, ( P )  and power Qn( P ) ,  we see 
that only W ,  P ,  and F( P )  are involved in the definitions. Since 
W ,  P ,  and Z ( P )  are not affected by the distribution of the 
service requirement (but only by the mean W),  we conclude 
that both the speedup and power only depend upon the mean 
values. Therefore we will not see any higher moments of the 
job service requirements in this section. Jobs with different 
random service requirements will give the same results as long 
as they have the same means. We first study the continuous 
case, and then apply the results obtained to the discrete case. 

A. The Continuous Case 

We consider a job profile P ( t )  such as that shown in Fig. 3.  
We wish to determine P*, the optimum number of processors 
to use with this job, where power is the objective function we 
seek to maximize. We define: 

u ( P )  = length of the interval from when the job first 
begins service until it first requires more pro- 
cessors than the system supplies; i.e., u ( P )  = 
min(t : P ( t )  > P ) ;  

b = the service time of the job if the number of 
processors in the system is always greater than 
the number of processors required by the job; i.e., 
P 2 B (note that b = Z(c0)); and 

I ( P )  = Jub(p) P(t> dt .  
Note from Fig. 3 that I (  P )  = [ ;C( P )  - U (  P ) ]  P.  The aver- 

age service time is 

P ( t )  dt 

P .  
Z( P )  = U (  P )  + 

The speedup for this system is simply: 

W P W  
S, (P)= : = 

z ( p )  P u ( P ) +  .f P( t )d t  
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Theorem 1 

The power Q,(P) is maximized with respect to P when 
P = P*,  where P* is the unique (typically nonintegral) value 
satisfying 

Proof: Since 
W 

.,(P)= - 
Pz(  P )  

and 

we have: 

Maximizing Q n ( P )  with respect to P ,  we require: 

which leads to the general condition 
d S ( P )  S ( P )  -- -- 

dP - 2P . 
At this point one must consider any problems which might 

arise in calculating ( d  z ( P ) ) / ( d P ) ,  if P ( t )  has: (i) any non- 
differentiable points, or (ii) any vertical jumps, or (iii) any 
horizontal segments. However, it can easily be shown for these 
three cases that an infinitesimal change in P can only make 
an infinitesimal change in F(P) ,  since the change in the area 
A must be continuous (see Fig. 3). The only troublesome case 
is case (iii), since for any E > 0, .(Po + E )  - .(Po - E )  = c 
when P ( t )  has a horizontal segment of length c and height 
PO. This is troublesome, since F( P )  = U( P )  + ( I (  P ) ) /  P ,  and 
thus Z ( P )  appears to have a discontinuous jump at P = PO; 
however, the term ( I (  P ) ) / P  has an equal and opposite jump 
there as well, which eliminates the problem. Nevertheless, we 
will indeed run into a problem in uniquely defining u ( P )  
in Corollary 1, below, if P* = PO, where PO is any such 
horizontal segment height; we settle this problem further below 
in Corollary 7, case (ii). 

From our expression for Z ( P )  we find that the general 
condition given above leads us to the following expression 
which must be satisfied by the optimal value of P:  

I ( P )  2P2 
.(P) 

p = - - -  - 
.(P) [ d”d6” + + % I .  

Now, since I ( P )  = Jab(p, P ( t )  dt, we have 

But u ( P )  is such that P ( u ( P ) )  = P ,  and so ( d l ( P ) ) /  
(da (P) )  = -P. Using the chain rule, we then have 
( d l (  P ) ) / (  dP)  = -P( da(  P ) ) / (  dP); therefore: 

da(P) 1 d I ( P )  
d P  + - - = 0  

P dP 

Thus we see that the optimal value P* must be such that 

It can easily be shown that (d2Q,(P)) < 0; therefore P* = 

The expression for P* as given in theorem 1 is not espe- 
cially illuminating. To help explain the meaning of theorem 1, 
let us state and then interpret the following corollary: 

( I ( P * ) ) / ( a ( P * ) )  indeed maximizes power. 0 

Corollary I 

Power is maximized if and only if 
- .(P*) = 2a(P’). 

Proof: Since ( I ( P * ) / P * )  = a(P*) ,  and from the def- 
inition of F(P)  we have that z ( P * )  = u(P*)  + u(P*)  = 

Corollary 1 is one of the principal results of this paper. 
To interpret this corollary we note from Fig. 3 that u ( P )  is 
that portion of the service time when the job has available 
at least as many processors as it needs. Therefore S ( P )  = 
2a(P) implies that the portion of the service time when there 
are enough processors for a job equals the portion of the 
service time when there are not enough processors for its 
needs. Let us define u ( P )  to be the “unextended service 
time,” and ( I ( P ) ) / P  to be the “extended service time.” 
This corollary states that the optimal number of processors 
P* must be selected so that the “unextended service time” 
exactly equals the “extended service time.” Also note that 
during the unextended service time the processors are not fully 
utilized ( U  < l), whereas during the extended service time the 
processors are fully utilized ( U  = 1). Therefore the time period 
for U < 1 equals the time period for U = 1. 

At this point we may simplify the proof of the following 
theorem which appeared in [4, theorem 51: 

2a(P*). U 

Theorem 

Under the processor sharing discipline when the number 
of available processors is equal to P*,  the attained speedup 
is at least 50% of the maximum possible, the efficiency is 
at least 50%, the utilization of the last processor is at least 
50%, and the utilization of a single additional processor is no 
more than 50%. These bounds can be achieved in the limit as 

Proof: For any P we know that u ( P )  5 b 5 F(P) .  For 
P = P*,  we know that F ( P )  = 2a(P),  and so F (P)  5 2b = 
25(a). Thus 

S,,” - (a). 

~n,,,, - W W 
S,(P) = : 2 - - -, 2 

.(P) 2 F ( a )  

That is, S, ( P )  is at least half of the maximum achievable 
speedup. Moreover, all processors are continuously busy in 
the interval u ( P )  5 t 5 2a(P),  and some others may be 
busy in the interval 0 5 t 5 a ( P ) ;  thus the processor 
efficiency is at least 50%. Clearly, the last processor added 
is busy half the time ( u ( P )  5 t 5 2a(P)).  Any additional 
processor beyond P* will be busy only during the interval 
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a ( P +  1) 5 t 5 F(P+ 1 ) ;  but u ( P )  < a ( P +  1) and 
x ( P )  = 2a(P) > Z(P + 1), and so this additional processor 
efficiency is less than 50%. The attainment of the bounds in 
the limit is obvious. 

Let us now state the results for the case in which we select 
P = P* to optimize the generalized power function Q r ) (  P ) .  

Theorem 2 

- 

1 

-L 
r+l 

Generalized power 

is maximized when P* is selected, such that 

Proof: This theorem can easily be derived following the 
0 procedure given in the proof for theorem 1. 

Corollary 2 

Q g ' ( P )  is maximized when P* is selected, such that oI 
- .(P*) = ( 7 -  + l)U(P*).  

Proof: This corollary can easily be derived following the 
U 

From corollary 2 we easily generalize the theorem [4] 
procedure given in the proof for corollary 1. 

discussed above in the form of the following: 

Theorem 3 

When P* is selected to optimize Q$'(P) ,  then the attained 
speedup S,(P) is at least a fraction l/(r + 1) of the maximum 
possible, the processor efficiency is at least r / ( r  + l), the 
efficiency of the last irocessor added is at least r / ( r  + l ) ,  
and the efficiency of a single additional processor is no more 
than r / ( r  + 1). 

Proof: This theorem can easily be derived following the 
procedure given by us in the simplified proof of the theorem 

It is instructive to graph the result of theorem 3 as in Fig. 4. 
In this figure we indicate that when P = P",  then one is 
guaranteed to lie in the shaded region. As r varies, the shaded 
rectangle moves from a tall thin rectangle near the right-hand 
border ( r  i 0) to a square occupying the upper right-hand 
quarter of the figure (at T = 1 )  to a wide flat rectangle along 

[4] above. 0 

_L 
r+l 

OPTIMAL 
PERFORMANCE 
MUST LIE IN ' , THIS REGION 

' ' ' 
\ 
\ 

0 

Fig. 4. Region of optimal performance. 

1 

1 - P* 
Maximum number of processors required - Jm 

Proof: From P ( t )  we have 
b 
B 

a ( P ) =  - P  
h 

= - Bb - - P 2  b 
2 2B 

b P / B  

Hence, since P* = ( I ( P * ) ) / ( r u ( P * ) ) ,  we have 
B2 - p"2 

p*  1 
2rP* ' 

Solving for P*, we have 
B P " =  ~ m 

Note that B is the maximum number of processors required 

In this example, by setting r = 1, we have P * / B  = 
1/& E 58%. This is the case that was solved approximately 
in [13] by numerically solving a 5th-order polynomial; here 
we have found the exact value of P* analytically. 

by the job. 0 

the top border of the figure ( T + (CO)). The theorem from [4] 
basically states the case only for T = 1 .  

Let us consider two examples to show the application of 
Theorem 2. Qr)( P ) ,  then 

Example 2 

If P ( t )  B / ( b n ) t n  for 0 5 5 b, and p* maximizes 

B 
Example 1 P" = 

[(n + l ) r  + 11- 
If P ( t )  is a linear function-i.e., P ( t )  = (B/b)t  for 

0 5 t 5 b, and P* is chosen to maximize the power function 
Q t ) (  P ) ,  then we have 

or 
P* 

Maximum number of processors required 
- - 

1 
n .  

[(n + l ) r  + 11- 
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Proof: This proof is similar to the proof in example 1. 
0 

We are now in a position to apply some of these results to 
the simple case of a job with two discrete stages. 

B. The Discrete Case: Jobs With Two Stages 

In this section a job is modeled as consisting of W tasks, 
of which a fraction f (0 < f < 1) must be done serially 
(i.e., each such task can use only one processor), and of 
which the remaining fraction ( 1  - f) of the tasks can be done 
concurrently with at most P processors, where P is the number 
of processors in the system. Note that this is the model used 
by Amdahl to derive Amdahl’s Law [l], a classic result which 
we now state. 

I I l l  I I 
Amdahl’s Law 0.2 0.4 0.5 0.6 0.8 1 ,o 

f The speedup of this model, given P processors, is upper 
bounded as follows: Fig. 5 .  The optimal number of processors for two stages ( I  = [f, 1 - f] 

and P = [l, PI). 
P 

Sn (P)  5 f P +  
- f .  is selected to be3 

Proof: Since W f of the tasks must be done serially, they 
will take Wf s; also, since (1  - f) W of the tasks can be done 
concurrently with at most P processors, they will take at least 
(( 1 - f) W ) /  P s. Therefore the mean service time ?E( P) is at 
least Wf+.(( 1 - f ) W ) / P .  Moreover, since a single processor 
working alone will take W s, the speedup is simply W divided 

U 
This law implies that the speedup of the system depends 

very strongly on the simple workload measure f, and that the 
speedup may be much smaller than the number of processors, 
even for a relatively small f. For example, i f f  = 0.1, then one 
will, at best, obtain a speedup of less than 10 with 1000 times 
the processing capacity ( P  = 1000)*. 

For the remainder of this subsection we will make the 
(optimistic) assumption that 1 - f of the tasks can use exactly 
P processors concurrently. For this revised model, the upper 
bound in Amdalil’s Law will be achieved. This corresponds 
to our discrete model of jobs for which f = [f, 1 - f], and 
P = [l,  PI. For a given value of f, we solve for the optimum 
value of P in the next theorem. 

by ?E( P), which proves the result. 

Theorem 4 

Power Qn ( P )  is maximized when the number of processors 

*As a result of Amdahl’s law, one is easily discouraged from using 
parallel processing. Nevertheless, experience shows in a number of cases that 
speedups very close to P are quite possible [2]. Gustafson explains this [7] by 
suggesting that as the number of processors increases,%e application problem 
size also increases in a way such that the parallel portion of the problem grows 
while the serial portion remains fixed; that is, f = f ( P )  is a decreasing 
function of P. In this paper we assume that f is constant, independent of P. 
Gelenbe [6] provides analytical evidence of this linear growth of the speedup 
with P by considering a model which includes the effect of a program’s 
inability to effectively use all of the processors assigned to it, as well as the 
effect of imbalance of the workload across the available processors; Gelenbe 
shows that this linear dependence on P may be lost, however, when the effect 
of interprocess communication is included in the model. 

Proof: During the entire service time T ( P )  = Wf + 
(W(  1 - f))/P, the processing capability is PT(P);  the work 
actually completed is simply W (since the service time for 
each task is 1). Hence the processor efficiency equals: 

1 - W 
u, (P)=  - - 

P,(P) PfS1-f  

Thus 

Optimizing Q,(P) with respect of P, it is easy to show that 
P* = ( 1  - f ) / f .  However, P* cannot be smaller than 1 (an 
obvious boundary condition); hence P* = 1, if (1 - f ) / f  5 1 

The result given in theorem 4 is intuitively pleasing. Fig. 5 
shows the curve for P* versus f. Note the sharp drop in P* 
when f is small, and also note that P* = 1 for f 2 l/2. 

(or, f 2 1/21. 0 

Corollary 3 

For P* = (1 - f)/f  > 1, the interval of time when the 
system is working on the serial portion of the job exactly 
equals the interval of time when the system is working on the 
parallel portion. 

Proof: The service time for the serial portion of fW. 
The service time for the parallel portion is 

31n this case we require P* 1 1 
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Corollary 3 is similar to corollary 1, although they each 
apply to different environments. If we regard the service time 
for the serial portion as the unextended service time, and regard 
the service time for the parallel portion as the extended service 
time, then corollary 3 is exactly the same as corollary 1. 

Corollary 4 

At the optimal power point, the speedup is as follows: 

Proof: From Amdahl’s Law and our optimistic assump- 

C. The Discrete Case in General 

For the general case we assume that a job has W tasks, and 
that the fraction vector and processor vector (after rearrange- 
ment) are 

f = [fl, f ~ ,  f 3 ,  ‘ ‘ ‘ 1  f n l  

P = [PI 1 PZ p3 . . > Pnl 

where Pi < Pi+l for 1 < i < n - 1, and 

n 

fi = 1. 
i = l  

tion, we have 
Before describing the next theorem we need some more 

notation. We assume that there are P processors available in 
the system. We define the index “m” such that; if PI 5 P < 

P 
f P + l - f ’  

s n  ( P )  = 

From theorem 4 we have 

Substituting P = P* in the expression for S n ( P )  completes 
the proof. 0 

P,, then m is the integer that satisfies Pm-l I P < Pm; or 
if P 2 P,, then m = n + 1 of if P < P I ,  then m = 1. Once 
m determined, we may define: 

m-1 & = E  -ri 
pi i= l  

and Theorem 5 

Generalized power QF’(P) is maximized when P* is n 

selected such that P = ~ A .  
i=m 

11 i f f > &  
P * = {  +, i f f < & .  Note that aW is the unextended service time, whereas 

(/?W)/P is the extended service time. 
Proof: It can be shown that 

Theorem 6 
Q,(P)=  T [un(P)Ir = - 1 . P 

The speedup for any P is given by 
.(P) W ( P f + l -  f)‘+lf 

P 
Sn(P)= - 

a P + P ‘  Optimizing Q C ) ( P )  with respect to P ,  one finds that P* = 
(1 - f)/(rf). However, P* must not be smaller than 1; hence 
P” = 1, if (1 - f ) / ( r f )  I 1 (or f 2 I / ( T +  1)). 0 Proof: The mean service time is 

i= l  

Corollary 5 
For P* = (1 - f ) / ( r f )  > 1, the parallel portion of the 

job takes exactly T times as long to serve as does the serial 
portion of the job. Since a single processor working alone will take W s to 

serve a job, the speedup with P processors is simply W 
0 

We can easily modify this result to obtain a generalization 

Proof: The service time for the serial portion is fW. The 
service time for the parallel portion is divided by ?E( P) .  

- - 
(1 - f)w- 

P* 

Corollary 6 

At the optimal power point, 

1, S,(P*) = {& 
Proof: This proof is similar 

r . fW. 0 of Amadahl’s Law. Consider a job consisting of W tasks, for 
which a fraction fi of these tasks can be done using at most 
Pi processors in parallel ( i  = 1 , 2 ,  . . , 71). Then we have the 
theorem below. 

Theorem 7 (Generalized Amdahl’s Law) 

sors, is upper bounded as follows: 
i f f >  1 For the system just described, the speedup, given P proces- 

, i f f <  T .  ? 

to the proof for corollary 4. P 
s n ( P )  I - 0 a P + P ’  

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore.  Restrictions apply.



KLEINROCK AND HUANG: AMDAHL'S LAW GENERALIZED AND SOME RESULTS ON OFTIMAL DESIGN 443 

Proof: This result can easily be derived following the 

The maximum possible speedup S,,,, for the model used 
procedure to prove Amdahl's Law and theorem 6. 

in theorem 6 will be achieved when P 2 Pn, which gives 

Pi i=l 

and p = 0. Hence 

1 - W 
j, w - n .ft ' 

Sn,max = 
C L  p, C d  E .TIME 

I 
In the following two corollaries we derive P* for the discrete k-,UST-d 

-aw- 
case using the results from corollary l. Corollary 7 was first 
obtained in [4, theorem 41. 

Corollary 74 

of the following two conditions: 
Power Q,(P) is maximized when P* satisfies either one 

(' p * =  E , if Pm-l < P* < Pm 
a 1) 

or 

Proof: In case (i) there is no ambiguity in defining the 
unextended service time. Specifically, the unextended service 
time = aW, and the extended service time = ( P W ) / P .  From 
corollary 1 we must have 

PW a W =  - 
P* 

Hence 

P p* = - 
a 

In case (ii) we encounter an ambiguity in defining the 
place where the unextended service time ends (and thus 
the extended service time begins). In order to resolve this, 
we break the mean service time for stage m - 1, namely, 
tm-1 = fm-1 W/Pm-l, into two segments: x and tm-l - x. 
We define x to be the interval in stage m- 1 which we include 
in the extended service time, and the interval tm- -x to be the 
interval in stage m - 1 which we conclude in the unextended 
service time, as shown in Fig. 6. To find 2, we note from 
corollary 1 (and assuming P* = Pm-l) that 

a w - x =  - Pw + x  
Pm-1 

which gives: 

a w  pw x=--- 
2 2Pm-,' 

41t is easy to show that P' will never be greater than Pn. If P* > P, the 
service time will not be improved, while the processor utilization will be less 
than when P' = Pn; hence the power will be smaller. A similar argument 
shows that P* will never be smaller than P I .  

Fig. 6. Segmentation of the service time of stage m - 1 (UST = Unextended 
Service Time). 

Thus the unextended service time u(P)  is simply: 

a(P)  = aw - x 

- - .(p) 
2 

as demanded by corollary 1. Case (ii) will occur whenever, for 
some m, we have the following two conditions simultaneously 
true: 

PW 
Pm-1 

aw> -. 
These may be rewritten as 

a W  pw os--- L tm-1 2 2Pm-1 
But since 

we have as the condition for case (ii): 

fm-1  L -. 
a P os--- 
2 2Pm-1 Pm-l 

0 

Corollary 8 

either one of the following two conditions: 
Generalized power Q t ) (  P )  is maximized when P* satisfies 

P (i) P' = - ,  if Pm-l < P* < Pm 
ra 

or 
ra P (ii) P* = PmP1, if 0 5 - - 

r + 1 
fm-1  

prn- 1 

( r  + 1)Pm-1 

< -. - 
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Proof: This proof is similar to that for corollary 7. U 
From corollaries 7 and 8 we develop an interactive proce- 

dure in [8] to find P* for any given f and P .  In that procedure 
the number of iterations is upper bounded by log, n, which is 
reasonably small. 

In our results of Sections IV-B and -C we have neglected 
the physical requirement that P* be an integer. Clearly, if P* 
must be an integer, then P* should then be rounded up or 
down to the nearest integer, whichever of the two has a larger 
value of power. 

V. SYSTEMS WITH ARRIVALS 

In this section we study the case when new jobs enter the 
system according to a Poisson process at rate A. We now permit 
random service times. This model corresponds to a parallel 
processing system which executes one job at a time, but which 
can accept and enqueue new arrivals which are later served in 
a first-come-first-served fashion (one at a time). The following 
theorem describes a property which is useful in finding many 
results later in this section. 

Theorem 8 

For all cases (continuous and discrete models), the coef- 
ficient of variation of the service time distribution (denoted 
as c r p  when there are P processors in the system) is not a 
function of P .  That is, for all P 2 1, 

c,, = e,,. 

Proof: We define ."( P )  to be the random variable repre- 
senting the service time when P processors are available. For 
the continuous model, we can show that 

This equation shows that ."(P) equals ,!?, multiplied by a 
(deterministic) constant; since this constant multiplies both the 
standard deviation and the mean of Z( P ) ,  it will cancel out in 
their ratio (i.e., the coefficient of variation), and so 

C,, = CK. 

Hence e,, is not a function of P ,  which implies that c,, = 
ex,. 

For the two-stage discrete case we have 

where is a random variable representing the work brought 
in by a job. Hence, using a similar argument as above, we 
have 

c,, = c,, = cw. 

Similarly, for the general discrete case we have 

Hence, using the same argument as above, we have 

c,, = c,, = cw. U 

We can show that - 
@ = / g ( i ) d t = K / g ( t ) d t .  K b  b 

0 0 

Since 
b 

is a constant, this equation shows that the work brought in by 
a job is a random variable which has the same coefficient of 
variation as I<. 

A. Finding the Speedup 

In this section we find the speedup for all cases. We discover 
that the speedup when queueing is allowed is the same as the 
speedup when queueing is not allowed! 

Theorem 9 

For all cases (continuous and discrete models), we have 

S(X, P )  = S n ( P ) .  

Proof: We have defined p to be the system utilization; 
hence 

p = AZ(P).  

Since only one job can be admitted into service at a 
time, this system can be analyzed as a single-server queueing 
system. Hence we can apply results from M/G/l theory [SI to 
find the average response time for this system. That is, 

In theorem 8 we have shown that e,, = c,, for all cases; 
thus we find the speedup as 

Therefore the speedup Sa ( A ,  P )  and the speedup S, ( P )  are 
solely determined by the job specification P ( t )  and P (and not 
affected by the system's operating point A) in our models. 
(Another interesting model studied in [8] has S,(A, P )  # 
Sn(P)) .  

Corollary 9 

For the continuous model, we have 

Proof: This can easily be proved from the expression for 
0 Z( P )  and theorem 9. 
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Corollary 10 

For the two-stage discrete model, we have 
P 

f P + l - f  
& ( A ,  P )  = 

Proof: This can easily be proved from the optimistic 
0 model of Amdahl’s Law and theorem 9. 

Corollary 11 

For the general discrete model, we have 
P 

& ( A ,  P )  = ~ 

d + P ‘  
Proof: This can easily be proved from theorem 6 and 9. 

U 

B. The Optimal Arrival Rate 

In this section we find the optimal operating point ( A * )  for 
both the discrete case and continuous case. Even though the 
definitions of power in this paper and in [12] are different 
(since p # ua(X, P)) ,  the results obtained in both papers are 
the same. Therefore all the deterministic reasoning given in 
[I21 also applies in this paper. 

Theorem 10 

P),  such that 
Power Qa(X, P )  is maximized when X = A *  (for a given 

1 . -  2 A *  = 
2 +  Jm Z ( P ) ‘  

Proof: When we allow arrivals we must calculate the 
processor efficiency over all time. The rate at which seconds 
of work enter the system is XW, and the maximum rate at 
which the processors can discharge work is P .  Thus 

XW 
P 

ua(X, P )  = - .  

From MIGl1 theory we have 

1 + e:, --I 2(1 - P )  
T(  A ,  P )  = z( P )  [ 1 + p 

I 2 + (CZ, - 1) XZ( P )  
2( 1 - AT( P ) )  [ = Z ( P )  

where p = XZ(P). Defining power as earlier, we have 

1 . -  XW 2 ( l -  XZ(P)) 
p 2 +  (e;, - l )XF(P)  Z(P)  

- .  - - 

445 

Maximizing power with respect to A, we have 

0 1 . -  2 A *  
2 + J m  q P ) ’  

Corollary 12 

When power is maximized with respect to A, 

2 
p* = 

2 +  J 2 T  

and 
- 
N *  = 1. 

Proof: From theorem 10 we trivially show that 

2 
p* = X*Z(P) = 

2 + d ”  

Using Little’s result [14], it is easy to show that 
- 
N *  = X*T(X*, P )  = 1. U 

The result given above for N* is intriguing. Indeed, p* = 
1 corresponds to the same deterministic reasoning given in 
[12] and which is described in our introduction. 

Theorem 11 

(for a given P )  such that 
Generalized power &:’(A, P )  is maximized when X = X* 

1 

Z ( P )  
. -  41- A* = 

(-2, + 3 ) r +  (e:, + 1) + b(r)  

where 

b(r)  = 

Proof: This proof is similar to the proof for Theorem 10. 
0 

Corollary 13 

When power is maximized with respect to A, then 

c 

4r 
(-c2, + 3 ) r +  (cl,, + 1) + b(r) 

p* = 

-* 2 ~ [ ( 1 +  c : , ) ~  + b(r) + (1 + e:,)] N =  
- l ) r2  + 2(2 - e:,) (1 + e:,). + [(I - c:,)r + (1 + c; , )]b(r)  + (e:, + 1)2 
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If r >> 1, we have 
1 

limp* = 1-  - 
T > > l  r 

function of P; therefore for cases where c,, is not a function 
of P, then P* for Qo(X*, P )  is the same as P* for Q,(P). 
That is, for e,, not a function of P ,  we have systems with 

and P* (for systems with no arrivals) = 
- 
N *  1+cq,  P*(for systems with arrivals). 

lim - = ~ 

T-CQ y 2 .  
Note that the results in Theorem 11 and corollary 13 are the 
same as in [12]. 

C. The Optimal Number of Processors ( P ' )  

In this section we first study the relationship between Qn ( P )  
and Qa(X, P ) .  From the result below we show that there are 
many cases in which P* for a system with no arrivals and P* 

We may express the utilization uu(X, P )  for systems with 
arrivals in terms of the utilization u,(p) for system with no 
arrivals as follows: 

For the generalized definition Of power, we have 

[.a(& P)l' - P'[Un(P) lP 
T(X, P )  T(X, P )  

[Un(P)lf 
T(X, P)/,(P) Z(P)  

2 - P + PCZ, 

- &?)(A, P )  = 

.- - Pf 
c 

- - . Q r ) ( P ) .  
2pp(1 - 

for a system with arrivals are the same! 

Using the same argument as above (i.e., for cz, not a function 
of P) ,  we have systems with the property 

P* (for systems with no arrivals) = ua(Xl P )  = (processor utilization) 
= (processor utilizationlsystem busy) P*(for systems with arrivals). 

Therefore all the results for evaluating P" obtained in Sec- 
tion IV can be used here. However, not every model has this 
characteristic. In [SI, another model is discussed in which c,, 
is indeed a function of P.  In that case, a numerical procedure 
is required to find P*. 

Corollary 14 

chosen such that 

. P[system busy] 
+ (processor utilizationlsystem idle) 
. P[system idle] 

. P[system busy]. 
= (processor utilizationlsystem busy) 

Thus we come to the simple conclusion that 

% ( X l  P )  = .n(P) ' P. For the continuous model, power is maximized when P* is 

Substituting ua(X, P )  = pu,(P) into the definition of 

I ( P * )  power, we find that 
p * =  - 

%(Alp)  - P.n(P) 4 P * )  
Qa(X,P) = ~ ~ 

T(X, P )  T(X, P )  

T ( X , P ) / f ( P )  E(P)  ' A *  = 

- 

and 
un(P)  

1 . -  - P - 

Since (u(P))/(Z(P)) = Q,(P) and p / ( T ( X ,  P)/Z(P)) = .(P*) (2 + Jq-) . 
( 2 p ( l  - p ) ) / ( 2  - p + pc:,) for M/G/1, we finally have 

Proof: This is easily derived from theorems 1 and 10. 
U 

Note that p / [ T ( X l  P) /Z(P) ]  is simply the normalized power 
discussed in [12] and in the introduction. 

Let us now discuss the optimal number of processors P*. 
When the system is operating at the optimal operating point 

l5 
For the two-stage discrete model, power Qa(Xl P )  is max- 

imized when 
1 

Note that 

is only a function of c,, (since p* is also a function of c,, Proof: This is easily derived from theorems 4 and 10. 
0 only as shown in corollary 12) and, in particular, is not a 
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VI. CONCLUSION 1131 K. C. Kung, “Concurrency in parallel processing systems,” Ph.D. diss., 
Computer Sci. Dept., UCLA, 1984. 

1141 J. D. C. Little, “A proof of the queueing formula L, = .\M7,” Operations 
Res., vol. 9, pp. 383-387, 1961. 

[15] K. C. Sevcik, “Characterizations of parallelism in applications and their 

May 1989. 

For the model which allows no arrivals we found the 
speedup ( S n ( P ) )  for any P and for the optimal number of 

shown to be a generalization of Amdahl’s Law. For the model 
processors (‘*I which maximizes power’ This “ 7 l ( ‘ )  was use in scheduling,” Perform. Eva). Rev., vol. 17, no. 1, pp. 171-180, 

which allows arrivals we found the speedup (Sa( A, P ) )  for any 
P ,  the optimal arrival rate ( A * ) ,  and the optimal number of 
processors ( P *  ) which maximizes power. It was interesting 
to find that S n ( P )  is the same as S a ( A ,  P )  for the models 
studied in this paper. It was also interesting to find that 
P* for a system with no arrivals is the same as P* for a 
system with arrivals when power is maximized. In all cases we 
found that power is optimized when P* is chosen so that the 
unextended service time equals the extended service time. This 
characteristic makes optimal design (in terms of maximizing 
power) easier, because the same solution applies to both cases! 

Our results apply to an idealized workload model which 
neglects the degradation to system performance due to certain 
sources of overhead; consequently, these results must be 
viewed simply as approximate indicators of choices in any 
practical system design process. 

REFERENCES 

[l] G. M. Amdahl, “Validity of the single processor approach to achieving 
large scale computing capabilities,” Proc. AFIPS, vol. 30, 1967. 

[2] R. E. Benn, J. L. Gustafson, and R. E. Montry, “Development and analy- 
sis of scientific application programs on a 1024-processor hypercube,” 
Sandia Nat. Labs., Albuquerque, NM, Tech. Rep. SAND 88-0317, Feb. 
1988. 

(31 E.G. Coffman and P. J. Denning, Operating System Theory. Engle- 
wood Cliffs, NJ: Prentice-Hall, 1973. 

[4] D.L. Eager, J. Zdhorjan, and E.D. Lazowska, “Speedup versus 
efficiency in parallel systems,” IEEE Trans. Computers, vol. 38, 
pp. 408-423, Mar. 1989. 

[5] H. R. Gail, “On the optimization of computer network power,” Ph.D. 
diss.. Computer Sci. Dept., UCLA, Sept. 1983. 

161 E. Gelenbe. Multinrocessor Performance. New York: Wilev. 1989. 
J. L. Gustafson, “Re-evaluating kmdahl’s Law,” Commun.A&f, vol. 31, 
no. 5, pp. 532-533. May 1988. 
J. Huang, “On the behavior of algorithms in a multiprocessing environ- 
ment,” Ph.D. diss., Computer Sci. Dept., UCLA, 1988. 
L. Kleinrock, Queueing Systems, vol. 1, Theory. New York: Wiley- 
Interscience, 1975. 
L. Kleinrock, Queueing Systems, vol. 2, Computer Applications. New 
York: Wiley-Interscience, 1976. 
L. Kleinrock, “On flow control in computer networks,” in Conf Rec., 
Int. Conf: on Communications, June 1978, vol. 2, pp. 27.2.1 -27.2.5. 
L. Kleinrock, “Power and deterministic rules of thumb for probabilistic 
problems in computer communications,” in Conf: Rec., Int. Conf on 
Communications, June 1979, pp. 43.1.1 -43.1.10. 

Leonard Kleinrock (S’55-M’64-SM’71-F’73) 
received the B.S. degree in electrical engineering 
from the City College of New York in 1957 (evening 
session), and the M.S.E.E. and Ph.D.E.E. degrees 
from the Massachusetts Institute of Technology in 
1959 and 1963, respectively. 

Since 1963 he has been on the faculty of the 
Computer Science Department at the University 
of California, Los Angeles, and he is currently 
Chair and Professor of that department. His research 
interests focus on performance evaluation of high- 

speed networks and parallel and distributed systems. He has had over 
160 papers published and is the author of five books. He is the Principal 
Investigator for the DARPA Parallel Systems Laboratory contract at UCLA. 
He is also founder of the CEO of Technology Transfer Institute, a computer- 
communications seminar and consulting organization located in Santa Monica, 
CA. 

Dr. Kleinrock is a member of the National Academy of Engineering, is a 
Guggenheim Fellow, and a member of the Computer Science and Technology 
Board of the National Research Council. He has received numerous best paper 
and teaching awards, including the ICC 1978 Prize-Winning Paper Award, the 
1976 Lanchester Prize for outstanding work in Operations Research, and the 
Communications Society 1975 Leonard G. Abraham Prize Paper Award. In 
1982, as well as having been selected to receive the C.C.N.Y. Townsend 
Harris Medal, he was co-winner of the L. M. Ericsson Prize presented by His 
Majesty King Carl Gustaf of Sweden for his outstanding contribution in packet 
switching technology. In July 1986 he received the 12th Marconi International 
Fellowship Award presented by His Royal Highness Prince Albert, brother of 
King Baudoin of Belgium, for his pioneering work in the field of computer 
networks. In the same year he received the UCLA Outstanding Teacher Award. 
In 1990 he received the ACM SIGCOMM award recognizing his seminal role 
in developing methods for analyzing packet network technology. 

and distributed systems. 

Jan-Hsiung Huang received the B.S. degree in 
electrical engineering from the National Taiwan 
University in 1981, and the M.S. and Ph.D. degrees 
in computer science from the University of Califor- 
nia, Los Angeles in 1985 and 1988, respectively. 

He joined the faculty at the National Taiwan 
University in 1988, where he is an Associate Pro- 
fessor in the Department of Computer Science and 
Information Engineering. His research interests in- 
clude design and performance evaluation of high- 
speed networks, multimedia systems, and parallel 

Authorized licensed use limited to: National Taiwan University. Downloaded on March 24, 2009 at 01:29 from IEEE Xplore.  Restrictions apply.


