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On (n; n 1) Convolutional Codes With
Low Trellis Complexity

Hung-Hua Tang and Mao-Chao Lin

Abstract—We show that the state complexity profile of a convo-
lutional code is the same as that of the reciprocal of the dual code
of in case that minimal encoders for both codes are used. Then,
we propose an optimum permutation for any given ( 1) bi-
nary convolutional code that will yield an equivalent code with the
lowest state complexity. With this permutation, we are able to find
many ( 1) binary convolutional codes which are better than
punctured convolutional codes of the same code rate and memory
size by either lower decoding complexity or better weight spectra.

Index Terms—Convolutional codes, decoding, trellis codes.

I. INTRODUCTION

CONVOLUTIONAL codes are widely used in many dig-
ital communication systems for increasing the reliability

of transmission due to the fact that convolutional codes have
regular trellis structures and hence can be decoded by Viterbi
algorithm [1]. For applications which require high coding rates,
punctured convolutional codes [2] which are obtained from peri-
odically puncturing some bits from mother codes of low coding
rates are usually considered. A punctured convolutional code
can be decoded by Viterbi algorithm using the decoding trellis
of its mother code. Good punctured convolutional codes have
been found by several researchers [2]–[7]. In particular, some
of the best known punctured codes can be found in [7]. In this
paper, we will show that the punctured convolutional code may
not be the best choice if a rate 1 convolutional code is
needed.

Linear block codes can be represented by trellises [8]–[15].
In [8], Forney introduced the minimal trellis construction for
the linear block code, which minimizes the number of vertices
(states) at each depth, as claimed by Muder [9]. Similar con-
cepts can be extended to the “minimal trellis” [17] of convo-
lutional codes. Minimal trellises for convolutional codes con-
structed from the parity check matrices and from generator ma-
trices have been, respectively, investigated by Sidorenko and

Paper approved by N. C. Beaulieu, the Editor for Wireless Communication
Theory of the IEEE Communications Society. Manuscript received August
21, 2000; revised July 3, 2001. This work was supported in part by the
National Science Council of the R.O.C. under Grant NSC89-2213-E-002-121.
This paper was presented in part at the 2000 International Symposium on
Information Theory and Its Applications, Honolulu, HI, November 5-8, 2000.

The authors are with the Department of Electrical Engineering, National
Taiwan University, Taipei 106, Taiwan, R.O.C. (e-mail: tang@eagle.ee.ntu.edu.
tw; mclin@cc.ee.ntu.edu.tw).

Publisher Item Identifier S 0090-6778(01)00510-4.

Zyablov [16] and McEliece and Lin [17]. The state spaces of
the minimal trellis of a linear block code can be described by
its state complexity profile. It [8] has been shown that the state
complexity profile of a linear block code and its dual code are
identical. In Section III, we define the state complexity profile
of the convolutional code in a manner similar to that of a linear
block code. We show that the state complexity profiles of a con-
volutional code and the reciprocal of its dual code are identical if
minimal encoders for both codes are used. We also show the re-
lation between minimal trellises of a convolutional code and its
reciprocal dual regarding nodes which have branches emanating
from them and nodes which have branches entering them.

For a communication system using an error-correcting code,
a permutation may be easily applied at the receiver to achieve
low trellis complexity regardless of the bit ordering at the trans-
mitter. By applying a permutation to the bits of each word
of an ( ) convolutional code , we have an equivalent code
of . Among the equivalent codes, there is at least one for
which the total number of vertices associated to its minimal
trellis module [17] is the least and it is termed as an optimally
equivalent code. In Section IV, we propose a method to find
the permutation that leads to an optimally equivalent code of
an ( 1) convolutional code. Hence, we are also able to find an
optimally equivalent code of an ( 1) convolutional code.

In this paper, a good convolutional code is characterized by
a large free distance and thin weight spectra and low state com-
plexity. In Section V, we show that an ( 1) convolutional
code with a trellis of low state complexity will also have small
number of branches. With the method derived in Section IV, we
are able to find good ( 1) convolutional codes with the aid
of computer. We provide 6 tables which contain good ( 1)
convolutional codes for 3, 4, 5, 6, 7, and 8, respectively.
Many codes in these tables are better than the best punctured
convolutional codes of the same code rate and memory size by
either lower decoding complexity or better weight spectra.

II. PRELIMINARIES

Let , be a power series over a finite
field in the indeterminate . In this paper, we only consider
the case of 2 . The set of all possible is the field
of Laurent series over , denoted by . If is a power series
over in the indeterminate , then . The coefficients

of the monomials in are called
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the wordsof . A convolutional code with components in the
field of , can be viewed as a vector space over. Let and

be elements of and let and be words of and ,

respectively. Let , where
and is the standard inner product over, i.e.,

. Then, is an inner product
of and over .

Consider an ( ) convolutional code that is defined
by a polynomial generator matrix ,
where is a polynomial over . can be re-
garded as a convolutional encoder [18]. The memory size
of the encoder is is
said to be a minimal encoder for if it has the minimum
memory size over all encoders realizing the code. For

, there exists a dual code that is the collection of all
such that 0 for all . Let

and be minimal encoders for and , respectively.
The product of and is a zero matrix. Let be
the memory size of . It can be shown that
[19]. Let , that
can be viewed as a polynomial over with degree

. We may write ,

where is an -tuple over . A code is said to be the

reciprocal code of if there is a minimal encoder for
that is realized by the generators ,

1 . It can be checked that and . Write
as , where is a matrix

over and . The convolutional code with
can be viewed as a block code overof semi-infinite

length that has a generator matrix [17] over

...

(1)

Let be a nonzero sequence. According
to [14], its left index, denoted , is the smallest index
such that 0. Similarly, theright indexof if exists, de-
noted is the largest index such that 0. Whenever

exists, thespanof , denoted , is the discrete in-
terval 1 . Otherwise

. A nonzero sequenceis said to beac-
tive at depth if both 1 and are in . A generator
matrix of a linear block code is said to be aminimal span gener-
ator matrix(MSGM) [14] if for any two distinct rows and
of it, we have which is termed the -property
and which is termed the -property. For con-
volutional codes, MSGM can be similarly defined over
or [17]. For a convolutional code, there are two matrices
closely related to which are very interesting. One is

and the other is which is defined as .
An encoder (or ) is an MSGM if is a min-
imal encoder, for which the associated is with -property
and the associated is with -property.

III. CHARACTERISTICS OF THECONVOLUTIONAL CODE WITH

MINIMAL TRELLIS

In this section, we derive characteristics of convolutional
codes with minimal trellises which are similar to the coun-
terparts of block codes. Consider an ( ) linear block code

. Let 0 1 1 be anindex set. Define [13]
0 1 , 1 and 0

and 0 the empty set. The vertices at depthof a
minimal trellis for form a state space that is isomorphic to
the quotient space [13]

(2)

where and are the subcodes of consisting of all the
codewords of for which the components with indices outside

and are zeros, respectively. If an MSGM for is avail-
able, the dimension of ,

, is in fact the number of rows of an MSGM which are
active at depth.

For a convolutional code , suppose that the encoder
is an MSGM. Associated with , we can obtain the min-
imal trellis for [17]. In general, we are interested in the reg-
ular portion of the trellis, for which the state space at depthis
isomorphic to the state space at depth for any integer .
The regular portion from depth to depth 1 is called a
trellis module [17]. Now we can check the state spaces of the
( ) convolutional code which is generated by a min-
imal encoder . The amount of ’s, for 0

and 1 , is 1 . Let
be in form of MSGM. Consider a vertical slice of that
covers the depths 1 for a given

. The nontrivial words in the slice are these ’s.
For any given in the slice, it uniquely corresponds to a row

0 0 0 0 of , where is the only
element located in the slice. Note that, 0 is ac-
tive at all the depths , 0 . But and may
not be active at all the depths. At leastis inactive at depth
and is inactive at depth . Since is composed of
all ’s, there are rows of which are inactive at
depth , where is the space generated by rows of

. Similarly, there are rows of which are
inactive at depth , where is the space generated by
rows of . The dimension of state space at depth
for a minimal trellis module of an ( ) code is

(3)

Note that is the dimension of state space for
a conventional trellis module. Now we can define the set

as thestate complexity profile
of the convolutional code .

For a linear block code and its dual code , it has been
shown [8] that

. In the
following, we derive a similar result for the convolutional code

. Let be a minimal encoder for . Let and
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be spaces generated by rows of and , respectively. In-
teresting relations among , , and are given
by the following lemma.

Lemma 1: (a) ; (b) .

Proof: For any rows and of and , respec-
tively, we have 0. Suppose the degrees ofand
over are and , respectively. Then we have ,

, and . Since 0, then

0 and 0. Hence,

and . In [18], it has been shown that if is
a minimal encoder, then . Simi-
larly, we have . This lemma

then follows from the fact that

and .
Suppose is a subspace of . Let 0 1

be any subset of for which the complementary subset is .
Theprojection of is the image of under the projec-
tion operator that is the mapping for which the components
with indices in are set to zero and other components remain
unchanged. The subspaceof is defined as the intersection
of and . The following lemma can be easily verified
from some basic concepts of linear algebra [13].

Lemma 2: If is a -dimensional subspace of and
, then (i) and (ii)

.
Theorem 1: The state complexity profiles of and with

minimal encoders are identical.
Proof: It follows from Lemmas 1 and 2 that

From the fact that , we have

Consider the minimal trellis module for a convolutional code
, which is closely related to its minimal encoder that

is an MSGM. Every branch of the minimal trellis module is

labeled by one symbol (binary bit). Nodes of the minimal trellis
module at depth are isomorphic to states of the state space at
that depth. A node at depthfrom which two branches emanate
implies there is an associated information bit triggering an
impulse response beginning at depth. In other words, there is
one row in which has left index . A node at depth
for which two branches merge implies that there is an impulse
response triggered by some information bit which is faded out
at depth . In other words, there is one row in which has
right index . Hence, each node at depthhas two branches ema-
nating from it if 1 and has only
one branch emanating from it if .
Each node at depth has two branches merging if

1 and has only one
entering branch if . It fol-
lows from Theorem 1 that, 1

implies that . Hence, we find
the following result.

1) If a convolutional code has two branches emanating
from each node at depth, then there are no two branches
merging at depth 1 for its reciprocal dual code .

Similarly, we have the following results.
2) If does not have two branches emanating from each

node at depth, then there are two branches merging at
nodes at depth 1 for .

3) If has two branches merging at each node at depth,
then there are no two branches emanating from each node
at depth 1 for .

4) If does not have two branches merging at nodes at depth
, then there are two branches emanating from each node

at depth 1 for .

IV. OPTIMALLY EQUIVALENT ( 1) AND ( 1)
CONVOLUTIONAL CODES

In this section, we derive the state complexity profile for the
( 1) convolutional code. We also show a method to find an
optimally equivalent ( 1) convolutional code. From the result
of the last section, we can also find an optimally equivalent
( 1) code.

Consider a linear subspace of . Let supp
0 0 1 1 be the support

set of . For an ( 1) convolutional code with memory size
and minimal encoder , it is clear that the

state complexity profile is completely determined byand .
Let and . Remember that
and are the spaces spanned byand , respectively. Let

0 1 and 1 , then
and . Then, we have 1 ,

where

1 if
0 otherwise

1 if
0 otherwise.

(4)

Note that and for . For clarity, we may
offset the invariant quantity which is the memory size of the
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Fig. 1. The minimal trellis module for optimally equivalent code ofC, for
which the minimal encoder is given in (7).

Fig. 2. The minimal trellis module for optimally equivalent code of the
reciprocal dual codeC .

code . We term the set theoffset state complexity profile,
where . Thus 1 is one of 1, 0 and 1.
For an ( 1) code, 1 is in 1 0 1 . The next
two lemmas are derived for the (1) code.

Lemma 3: For an ( 1) code, the offset is either in 0 1
for all or 0 1 for all .

Proof: Suppose that 0 for an . In case that
1, then 0 which implies 0. By

(4), we have 0 0 and 1 0 for
. Hence, 1. Similarly, we also have 1

for . Therefore 0 for all . In case that 1,
then 2 which implies 1. Since
0 1 and 1 1 for , we

TABLE I
GOOD (3,2) CONVOLUTIONAL CODES

have 1. Similarly, we have 1 for .
Therefore 0 for all .

Lemma 4: For an ( 1) code, the nonzeros occur consec-
utively.

Proof: The offset ’s are either in 0 1 or 0 1 . For
, suppose 0. Then,

0 2 . Thus , , and are all equal to , where is
either 0 or 1. Also we have .
Thus and hence .

By Theorem 1, we have the following result.
Corollary 1: For an ( 1) convolutional code, the

nonzero offset ’s are equal and occur consecutively.
By applying the same permutation to thebits of each word

of an ( ) convolutional code , we have an equivalent code of
. Among all the possible equivalent codes, there is at least one

for which the number of vertices associated to its minimal trellis
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TABLE II
GOOD (4,3) CONVOLUTIONAL CODES

module is the least and it is termed as an optimally equivalent
code. The sum of dimensions of state spaces in the minimal
trellis module for an ( 1) code is

(5)

where . By Lemma 3, we can easily check that
the condition of a smaller total number of vertices associated to
a minimal trellis is equivalent to a larger. For an ( 1) code,
the distribution of is completely determined by the indices

and . In case , the nonzero occur
at depths from 1 to and hence there are

0’s and 1’s in the offset

state complexity profile. In case , the nonzero
occur at depths from 1 to and hence there are

1’s and 0’s in the offset state
complexity profile. Thus, we have .

In the following, we will show a method to find an optimally
equivalent ( 1) convolutional code. From Theorem 1, we can
also find an optimally equivalent ( 1) convolutional code.

Theorem 2: For an ( 1) convolutional code , the permu-
tation

if
if

(6)

will result in an optimally equivalent code of, where
means the concatenation of two ordered setsand .
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TABLE III
GOOD (5,4) CONVOLUTIONAL CODES

Proof: In case that , then
for any -column permutation . We now need to find a per-
mutation which leads to the largestor equivalently the least

. For , we have

. Thus for any , 1 ,
where the equality holds if is the permutation given in (6).

Consider the case of . Suppose that ,
that implies 0 . Clearly,
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TABLE IV
GOOD (6,5) CONVOLUTIONAL CODES

is in but not in and is in but not
in . Let be the permutation that switches the -th
and the -th columns. Then, and

. With this , the resultant offset state
complexity profile ( ) satisfies 1,

1 and for other than and
1. As long as , similar processes

can be continued. Since is finite, these processes can not
last forever. Therefore we may assume . A
permutation which leads to the largest or equivalently the
largest number of 1’s is preferred. Since

1 and , then
1 1, where the

equality holds if is the permutation given in (6).

Example: Consider an (8,7,4) convolutional codewith
minimal encoder

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 1 1 1 1 0 0
1 0 0 1 0 1 1 0
0 0 2 0 2 0 1 1
0 1 2 0 0 0 0 1
2 0 4 4 0 0 0 1

(7)

The minimal encoder for is (26,32,3,17,5,11,20,34).
The components in both and are represented
in octal form. The state complexity profile of either or
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TABLE V
GOOD (7,6) CONVOLUTIONAL CODES

is 4 5 5 5 5 5 4 4 . The associated and
are 00 111 100 and 11 000 011 , respec-

tively. For , we have = 2 3 4 5 and

= 0 1 6 7 . Hence an optimal permutation
for the reciprocal dual code is 2 3 4 5 0 1 6 7 .
According to Theorem 1, is also an optimal permutation for

. The state complexity profile for the equivalent code of either
or is 4 4 4 4 3 4 4 4 that is better than that of the

original code. The minimal trellis modules for such optimally
equivalent codes of and are shown in Figs. 1 and 2,
respectively.

V. GOOD ( 1) CONVOLUTIONAL CODES

In applying the Viterbi algorithm (VA) to decoding a convo-
lutional code, the decoding complexity is sometimes measured
by the number of vertices per minimal trellis module or some-
times by the number of branches per minimal trellis module,
where each branch corresponds to one code bit. In Section IV,
we have already shown that for an ( 1) convolutional code

in case the decoding complexity is measured by the number

of vertices, then a large is desired. In the following, we con-
sider the case that the decoding complexity is measured by the
number of branches. For an ( 1) convolutional code with
memory size , it has a reciprocal dual , which is an ( 1)

code with indices and . For , there is only a

single branch emanating from each state at depthfor
and there are two branches emanating from each state at depth

for , while there are two branches merging at each
state at depth for 1 and there is only a single
branch entering each state at depthfor 1. Ac-
cording to the observation given at the end of Section III, for,
there are two branches emananating from each state at depth
for and there is only a single branch emanating from
each state at depthfor . Let , 0 1 1
be the offset state complexity profile of . Suppose that

0. Then, 0 for and
while 1 for . Hence, the decoding
complexity can be calculated to be

1 2 2 2 2 2 2 1 2
(8)



TANG AND LIN: LOW TRELLIS COMPLEXITY 45

TABLE VI
GOOD (8,7) CONVOLUTIONAL CODES

Suppose that 0. Then, 0 for
and while 1 for

. Hence, the decoding complexity can be calculated
to be

(9)

We see that a large is desired for both measures of decoding
complexity. Hence, is a good measure of decoding complexity
for an ( 1) code.

If we decode an ( 1) binary convolutional code with
memory size by applying VA to the conventional trellis, the
decoding complexity measured by the number of branches
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TABLE VII
SOME OF THEBEST KNOWN (n; n � 1) PUNCTURED CODESSHOWN IN [7]

(each branch corresponds to 1 code bit) per trellis module is
2 . For an ( 1) binary punctured code with

memory size obtained from a certain convolutional code,
the decoding complexity measured by the number of branches
per trellis module (each branch corresponds to 1 code bit) is

2 . The advantage of decoding for ( 1) punctured
convolutional code over ( 1) convolutional code using
conventional trellis is clear. However, we note that compared
to an ( 1) punctured convolutional code for 1,
an ( 1) convolutional code with minimal trellis module
has the same decoding complexity for 1 and has lower
decoding complexity for 1 in case the decoding com-
plexity measured by the number of branches per trellis module
and each branch corresponds to one code bit.

For a coding system, low decoding complexity as well as low
error rate is desired. The error performance of an () con-
volutional code with free distance can be estimated by its
code weight spectrum and information weight spectrum which
are, respectively, represented byand , where is the total
number of code sequences with weight 1 and is
the total number of information bits associated to the code se-
quences with weight 1. In case the code is applied
over a symmetric and memoryless channel and maximum-like-
lihood decoding is used, the first event error probability of the

coding system can be estimated by 1
and the symbol error probability can be estimated by
1 1 , where is the probability
of erroneously decoding a code sequence into a give code se-
quence which is separated by a distance of. We see that for
achieving low error rate, small and or “thin” weight spectra
are desired. In [20], an algorithm called FAST algorithm is pro-
posed to efficiently compute the weight spectra of convolutional
codes.

With the aid of Theorem 1, 2, FAST algorithm and computer,
we are able to search for good ( 1) convolutional codes.
For the given , and 1, we search for ( 1)
codes which have the currently best weight spectra. For the
given , and , we exhaustively check all the possible (1)
codes. For each ( 1) code to be checked, we randomly choose
a generator matrix with -property for the associated recip-
rocal dual ( 1) code and compute the associated weight
spectra. The codes with the currently best weight spectra found
in this search are listed in Tables I–VI for 3 4 5 6 7, and
8, respectively. For comparison, we also list some of the best
known punctured codes in Table VII. We can see many codes
in these tables are better than punctured convolutional codes of
the same code rate and memory size [2], [3], [7] by either lower
decoding complexity or better weight spectra. Note that we only
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randomly choose one of the many possible generator matrices
with -property for a given ( 1) code. It is likely that
there exist better ( 1) codes if we exhaustively checking
all the possible generator matrices.

VI. CONCLUDING REMARKS

In this paper, we show that the state complexity profiles of a
convolutional code and the reciprocal of its dual code are iden-
tical if minimal encoders for both codes are used. We also pro-
pose an optimum permutation for any given ( 1) binary
convolutional code that will yield an equivalent code with the
lowest state complexity. Moreover, we find many good ( 1)
convolutional codes which are superior to the popular punc-
tured convolutional codes by either lower decoding complexity
or better weight spectra. The code search used here is not com-
plete. Hence, it is likely that there exist codes better than those
found in this code search. In fact, how to design a method to
efficiently check the possible encoders under the restriction of

-property for the reciprocal of the dual code of an (1) code
is an interesting problem.
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