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On (n,n — 1) Convolutional Codes With
Low Trellis Complexity

Hung-Hua Tang and Mao-Chao Lin

Abstract—We show that the state complexity profile of a convo- Zyablov [16] and McEliece and Lin [17]. The state spaces of
lutional code C'is the same as that of the reciprocal of the dual code the minimal trellis of a linear block code can be described by
of C in case that minimal encoders for both codes are used. Then, its state complexity profile. It [8] has been shown that the state

we propose an optimum permutation for any given ¢, n — 1) bi- ) . . .
nary convolutional code that will yield an equivalent code with the complexity profile of a linear block code and its dual code are

lowest state complexity. With this permutation, we are able to find  identical. In Section Ill, we define the state complexity profile
many (r, n — 1) binary convolutional codes which are better than of the convolutional code in a manner similar to that of a linear

punctured convolutional codes of the same code rate and memory plock code. We show that the state complexity profiles of a con-
size by either lower decoding complexity or better weight spectra. ,|ytional code and the reciprocal of its dual code are identical if
Index Terms—Convolutional codes, decoding, trellis codes. minimal encoders for both codes are used. We also show the re-
lation between minimal trellises of a convolutional code and its
reciprocal dual regarding nodes which have branches emanating
from them and nodes which have branches entering them.
ONVOLUTIONAL codes are widely used in many dig- For a communication system using an error-correcting code,
ital communication systems for increasing the reliability permutation may be easily applied at the receiver to achieve
of transmission due to the fact that convolutional codes haygy trellis complexity regardless of the bit ordering at the trans-
regular trellis structures and hence can be decoded by Viteghier. By applying a permutation to the bits of each word
algorithm [1]. For applications which require high coding rategy g (. k) convolutional code”, we have an equivalent code
punctured convolutional codes [2] which are obtained from peg . Among then! equivalent codes, there is at least one for
odically puncturing some bits from mother codes of low codinghich the total number of vertices associated to its minimal
rates are usually considered. A punctured convolutional cogg|lis module [17] is the least and it is termed as an optimally
can be decoded by Viterbi algorithm using the_ decoding tre”?quivalent code. In Section IV, we propose a method to find
of its mother code. Good punctured convolutional codes hayg permutation that leads to an optimally equivalent code of
been found by several researchers [2]-[7]. In particular, SORg ¢, 1) convolutional code. Hence, we are also able to find an
of the best known punctured codes can be found in [7]. In thigtimally equivalent code of am(n — 1) convolutional code.
paper, we will show that the punctured convolu_tional code_maym this paper, a good convolutional code is characterized by
not be the best choice if a rate — 1)/ convolutional code is 5 |arge free distance and thin weight spectra and low state com-
needed. . lexity. In Section V, we show that an(n — 1) convolutional
Linear block codes can be represented by trellises [8]-[18hde with a trellis of low state complexity will also have small
In [8], Forney introduced the minimal trellis construction fof,ymper of branches. With the method derived in Section IV, we
the linear block code, which minimizes the number of verticege gple to find goodi(, » — 1) convolutional codes with the aid
(states) at each depth, as claimed by Muder [9]. Similar COff computer. We provide 6 tables which contain good(— 1)
cepts can be extended to the “minimal trellis” [17] of convogonvolutional codes fon — 3,4, 5,6, 7, and 8, respectively.
lutional codes. Minimal trellises for convolutional codes COMvlany codes in these tables are better than the best punctured
structed from the parity check matrices and from generator mgsnvolutional codes of the same code rate and memory size by
trices have been, respectively, investigated by Sidorenko agjgher lower decoding complexity or better weight spectra.
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the wordsof ©. A convolutional code with components in thelll. CHARACTERISTICS OF THECONVOLUTIONAL CODE WITH

field of F', can be viewed as a vector space aferLet ¢ and
h be elements ofF™* and Ietgi and h, be words ofg andh,
respectively. Leto(g, h) = Yo, w; D?, wherew; = Ejzo g9;
h andgj - h,;_; is the standard inner product ovey, i.e.,

Ly—g

of g andh over F.

Consider an+#, k£, ) convolutional code” that is defined
by ak x n polynomial generator matrixi(D) = [g;;(D)],
where g;;(D) is a polynomial overf. G(D) can be re-

garded as a convolutional encoder [18]. The memory size

of the encoder ig/z = E;“:l max;{deg g;;(D)}. G(D) is
said to be a minimal encoder far if it has the minimum

memory sizer over all encoders realizing the code. For

C, there exists a dual cod€- that is the collection of all
h € F™ such thatw(g,h) = O forallg € C. Let G(D)
and H(D) be minimal encoders fof and Ct, respectively.
The product ofG(D) and H(D) is a zero matrix. Let/y be
the memory size o€~+. It can be shown thatg; = vy = v
[19] Let gz(D) (gzO(D)vgzl(D)v fee 7gin71(D))a that
can be viewed as a polynomial ovér* with degreem; =
max;{deg g;;(D)}. We may writeg;(D) = 7" ¢/ D7,
wheregg is ann-tuple overF. A code C is said to be the
reciprocal code o€ if there is a minimal encode’AE(D) for C
that is realized by the generat@gD) = >~ g™~/ D7, i =
1,....k. Iltcan be checked thét+ = CL andve = vg. Write
G(D) asG(D) = 37", G; D7, whereG is ak x n matrix
over F andm = max;{m;}. The convolutional cod€’ with
G(D) can be viewed as a block code ov€érof semi-infinite
length that has a generator mat€..., [17] over F

Go Gy

Go

Gnl
G1
Go

Grn,
@

Gscalar = Gy G,

MINIMAL TRELLIS

In this section, we derive characteristics of convolutional
codes with minimal trellises which are similar to the coun-
terparts of block codes. Consider am k) linear block code

g.hi_;= Z;:ol gith(i—j) .- Thenw(g, k) is aninner product V C Fr. Letl ={0,1,...,n— 1} be anindex setDefine [13]

i~ ={0,...,i—1},it ={i,...,n—1}and 0" =n" =1
and 0 = nt = ¢ the empty set. The vertices at deptbf a
minimal trellis for V' form a state space that is isomorphic to
the quotient space [13]

v

A= T

)

whereV;- andV;+ are the subcodes &f consisting of all the
codewords oV for which the components with indices outside
i~ and:T are zeros, respectively. If an MSGM f&f is avail-
able, the dimension of;(V), dim(A;(V)) = k£ —dim(V;- ) —
dim(V;+), isin fact the number of rows of an MSGM which are
active at depth.

For a convolutional codé€’, suppose that the encodgt D)
is an MSGM. Associated witli?(D), we can obtain the min-
imal trellis for C [17]. In general, we are interested in the reg-
ular portion of the trellis, for which the state space at deph
isomorphic to the state space at depth pn for any integemp.
The regular portion from depiw. to depth(p + 1) is called a
trellis module [17]. Now we can check the state spaces of the
(n, &, v) convolutional code” which is generated by a min-
imal encoderG(D). The amount ofgg’s, for0 < j < my
and 1< ¢ < k,is Y (me+1) = k + v. Let Gecaar
be in form of MSGM. Consider a vertical slice 6f,..1.; that
covers the depthgn,pn + 1,...,pn + n for a givenp >
m. The nontrivial words in the slice are these + u)gﬂé"s.
For any givengﬂé in the slice, it uniquely corresponds to a row
[--- 00g2 g} - g 00--] of Gecalar, Wheregfé is the only
element located in the slice. Note t@t 0< j < melisac-
tive at all the depthgn + 4,0 < i < n. ButgzJ andgznf may
not be active at all the depths. At Ie@tis inactive at depthn

Letz = {zo,x;,z2,...} be a nonzero sequence. Accordingindg™« is inactive at deptipn. + n. SinceGy is composed of

to [14], its left index denotedL(z), is the smallest index
such thatz; # 0. Similarly, theright indexof z if exists, de-
noted R(x) is the largest index such thate; # 0. Whenever
R(z) exists, thespanof «, denotedSpan(z), is the discrete in-
terval [L(z), R(x)] = [L(x), L(z) + 1,..., R(z)]. Otherwise
Span(z) = [L(x),o0]. A nonzero sequenceis said to beac-
tive at depthi if both ¢ — 1 andi are inSpan(z). A generator
matrix of a linear block code is said to beénimal span gener-
ator matrix(MSGM) [14] if for any two distinct rows:, andz,
of it, we haveL(z,) # L(z,) which is termed thd -property
andR(z,) # R(z,) which is termed theR-property. For con-
volutional codes, MSGM can be similarly defined 0¥&.q:q-

all gV's, there arelim(V,, ) rows of Go which are inactive at
depthi(mod n), whereV{ is the space generated by rows of
Go. Similarly, there areiim(Veﬁ 15— ) rows of Geya Which are

inactive at deptli(mod n), whereV.<  is the space generated by
rows of Ge,a. The dimension of state space at deffttod n)
for a minimal trellis module of ann(, £(C), v) codeC is

5i(C) = k(C) + vg — dim(Vj;, ) — dim(V5, ;).

e 3)
Note thatso(C) = w1 is the dimension of state space for
a conventional trellis module. Now we can define the set
{50(C), 51(C),...,s,_1(C)} as thestate complexity profile

or G(D) [17]. For a convolutional code, there are two matrice&r the convolutional cod€.

closely related t&7(D) which are very interesting. One (5,

and the other €., which is defined a§(g™")" - -- (g™ T
An encodeiG(D) (or Gseqtar) is @an MSGM ifG(D) is a min-
imal encoder, for which the associatéd is with L-property

and the associated.,,; is with R-property.

For a linear block cod& and its dual cod& ~, it has been
shown [8] thatdim(A;(V)) k — dim(V;-) — dim(V+)
= dim(A; (V1Y) = n — k — dim(V:E) — dim(V;1). In the
following, we derive a similar result for the convolutional code
C. Let H(D) be a minimal encoder fag. Let VE™ andv.Ey

end
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be spaces generated by rOWSfﬁf and H.,,4, respectively. In-

teresting relations among, V.¢ , VOCL and Vei: are given
by the following lemma. N
Lemma 1: (a) VE = VOCL D) VS, = (Veij)

Proof: For any rowsy and’ of G(D) andH (D), respec-
tively, we havew(g,h) = 0. Suppose the degrees gaindh
over I’ are s andt, respectively. Then we ha\gg € VE,

9, € Vaaho € e V€ andh, € VS, . Sincew(g, h) = 0, then
oy

fo=g,h0=0 andfs—i—t =g h =0. HenceVy” C (Vg

andve, C (Veﬁj) .In [18], it has been shown that@(D) is

a minimal encoder, therunk(Go) = rank(Gena) = k. Simi-

larly, we haverank(Hy) = rank(Hena) = n — k. This lemma
1 €

then follows from the fact thatim(VE) = dim((VE ™) ) =k

L
anddim(V< ) = dun((Veid) )=k. O
Supposé’ is a subspace df*. LetJ C I ={0,...,n—1}

be any subset of for which the complementary subsefis .J.
TheprojectionP; (V') of V is the image ol under the projec-

39

labeled by one symbol (binary bit). Nodes of the minimal trellis
module at depth are isomorphic to states of the state space at
that depth. A node at deptlfrom which two branches emanate
implies there is an associated information bit triggering an
impulse response beginning at deptin other words, there is
one row inGsea1,; Which has left index. A node at depthy

for which two branches merge implies that there is an impulse
response triggered by some information bit which is faded out
at depthy. In other words, there is one row {1, Which has
rightindexj. Hence, each node at deptias two branches ema-

nating from it ifdim(VOCJr) dim(V '(z+1)+) +1 and has only
one branch emanating from itdim(V,", ) = dlm(V0 z+1)+)

Each node at depth: has two branches merging  if
dim(VE, ) dim(Veﬁ(l Gi-n-) T 1 and has only one

entering branch iflim(V<,. ) = dim(V<, (i=1) ). It fol-

end,i—

lows from Theorem 1 thatlun( V& )= dim(V, o) 1
implies thatlim(V.Sy, ) = dun(Veid(H) ). Hence, we find

the following result.

tion operatorP; that is the mapping for which the components 1) If a convolutional code” has two branches emanating

with indices in —.J are set to zero and other components remain

unchanged. The subspakg of V is defined as the intersection
of V and P,;(V). The following lemma can be easily verified
from some basic concepts of linear algebra [13].
Lemma 2: If V is ak-dimensional subspace 6f* and.J C
1, then (i)dim(Vy) + dim(Pr_4(V)) = k and (i) dim(Vy) +
dim(Py (V1)) = |J|. .
Theorem 1: The state complexity profiles ¢f andC- with
minimal encoders are identical.

Proof: It follows from Lemmas 1 and 2 that
k— dim(vo?ﬁ) - dim(veid,r) =k
— (n—i— dim(P; <VOCL>>
— (i — dim(P;- (VSy))
——(n—k)
+ dim(P; (Vi)
+ dim(P;- (V)
=—(n—k)
+(n— k- dim(VE))
+(n— k= dim(Vy+))
=n — k — dim(V{;")
— dim(VSy 0 )-
From the fact thatg = vy = vy =v,we have
5i(C) =k(C) +vg — dim(Vy+ ) — dim(Vigy ;)
=R(CH) +vp = (V) — dim(Via )
—k(C) + vy — dim(Vy) — dim(VE, )
zsi(CJ-).
O

Consider the minimal trellis module for a convolutional cod
C, which is closely related to its minimal encod&(D) that

from each node at depththen there are no two branches
merging at depth -+ 1 for its reciprocal dual codé'*.
Similarly, we have the following results.

2) If C does not have two branches emanating from each
node at depthi, then there are two branches merging at
nodes at deptt+ 1 for C*.

3) If C has two branches merging at each node at dgpth
then there are no two branches emanating from each node
at depthi — 1 for CL.

4) If C does not have two branches merging at nodes at depth
i, then there are two branches emanating from each node
at depthi — 1 for C+.

V. OPTIMALLY EQUIVALENT (n,1) AND (n,n — 1)
CONVOLUTIONAL CODES

In this section, we derive the state complexity profile for the
(n, 1) convolutional code. We also show a method to find an
optimally equivalent#, 1) convolutional code. From the result
of the last section, we can also find an optimally equivalent
(n,n — 1) code.

Consider a linear subspagé of F". Let supgV) = {j :
Pjy(V) # {0}, € I = {0,1,...,n — 1}} be the support
set of V. For an ¢, 1) convolutional cod&€” with memory size
v and minimal encodej(D) = >°7_, g'D*, it is clear that the
state complexity profile is completely determinedddyandg”.
Let A = supp(V.S,) andB = supp(VE). Remember that <

andV < are the spaces spannedgsyandg®, respectively. Let

Sa4=1{0,1,...,R(g")} andSp = {L(g°),...,n — 1}, then
AC S4andB C Sg. Then, we have,;(C) = 14+v—«; — f;,
where

WL ifi> R(g")

710, otherwise

_ 1 ifi<L(g?)

fi= { 0, otherwise. @

e

Note thate; < «; andB; > 3, for < < j. For clarity, we may

is an MSGM. Every branch of the minimal trellis module iffset the invariant quantity which is the memory size of the
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TABLE |
GoobD (3,2) CONVOLUTIONAL CODES

v G(D) i deo | Xx | Spectra %—L%—

3 1 2 2,11, 34,109, 366, 1244, - - -
3 4 -1

6 4 3 5,41,193,808,3299,13191, - --
s 2 3 1 o | o | 1008607600,

0 2 7 26,0,432,0,5592,0, -+ -

4,17,54,192,681,2481, - - -

8,69, 313, 1458, 6204, 26581, - -

| w 3

g N | Ny
o
o

8,25, 66,248,917, 3153, - - -
25,126,471, 2046, 8872, 35842, - - -

DN =
ot

o~
L~~~

o
-3
%]

13,0,180,0,2519,0, - - -
43,0,1288,0,25946,0, - - -
18,0,219,0,3097,0, - - -

60,0, 1446, 0, 30442, 0, - - -

[
—_
o
—
-3

(=2}
N
-3

—
[=2)

17

L]

—
w

17

(4]

1,17,59,175, 668, 2638, - - -

1,81, 402, 1487, 6793, 31018, - -
2,19, 61,205, 802, 3019, - - -

5,77, 385, 1733, 7955, 34855, - - -
6,27, 70,285,1103, 4063, - - -
26,129,494, 2446, 10878, 46500, - - -
13,0,180,0,2519,0, - -
43,0,1288,0,25946,0, - - -

—
[V
'y
—
w

Fig. 1. The minimal trellis module for optimally equivalent code(f for
which the minimal encoder is given in (7).
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Fig. 2. The minimal trellis module for optimally equivalent code of thenavew +8>1 Similarly we havey, + 3; > 1fori > m
- ,I T [ . 1 T [ .
reciprocal dual cod€’-. Therefores; < 0 for all 4. O
Lemma 4: For an ¢, 1) code, the nonzergs occur consec-
codeC. We term the sefs; }, theoffset state complexity profile utively.

wheres; = s,(C) —v. Thus 1— o; — 3; isone of—1, 0 and 1. Proof: The offsets;’s are either in{0, 1} or {0, —1}. For
Foran @,1) codes; =1—«; — B;isin{—1,0,1}. The next i < m < j, suppos&; = §; # 0. Then,w; + 8, = a; + 3; €
two lemmas are derived for the (1) code. {0,2}. Thusw;, &, 3; and3; are all equal toy, wherery is

Lemma 3: For an @, 1) code, the offseg; is either in{0,1} either O or 1. Also we hava; < «,, < «;, 3 > B, > ;.
for all < or {0, —1} for all . Thusa,, = 8, = and hencé,, = 3, = 3. O

Proof: Suppose thaf,,, # 0 for anm € I.In case that By Theorem 1, we have the following result.
$m = 1, thena,,, + 3,, = 0 which implies«,,, = /3,, = 0. By Corollary 1: For an @,n — 1) convolutional code, the
(4), we have 0= o; < «a,, = 0and 1> g, > B, = 0for nonzero offseg;’s are equal and occur consecutively. O
t < m.Hencegq,; +g; < 1. Similarly, we also have,; +3; <1 By applying the same permutation to théits of each word
for ¢ > m. Therefores; > O for all i. In case thag,, = —1, ofan (n, k) convolutional cod€”’, we have an equivalent code of
then «,, + B, = 2 which impliesa,,, = 3, = 1. Since C.Among all the possible equivalent codes, there is at least one
0o <ap,=1and1= g3, > B, = 1fori < m, we forwhichthe number of vertices associated to its minimal trellis
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TABLE I
GoobD (4,3) CONVOLUTIONAL CODES

v G(D) | doo I X I Spectra %.ﬁfz;_
111 1 \
29,0,532,0,10146,0, - -+
3 2 0 3 1 4 |-1
119, 0,4404, 0, 124747,0, - - -
4 4 0 3
11 2 3 \
3,44,160, 638, 3558, 17222, - - -
4 2 1 1 1 4 | -1
6,296, 1354, 6891, 47098, 263917, - - -
\ 0 4 6 3
2 3 2 2
5, 39,151, 690, 3548, 16976, - - -
4 0 2 3 1 4 0
12,232, 1258, 7132, 45287, 257459, - - -
\ 6 6 0 1
2 1 1 1
5,36, 152, 708, 3439, 16510, - - -
4 0 2 3 1 4 1
9,136, 1012, 6380, 38193, 220131, - - -
2 0 6 5
2 3 1 1
10, 46,202, 949, 4464, 21072, - - -
4 2 0 2 3 4 2
31,237, 1565, 9389, 53863, 299704, - - -
4 2 1 3
2 310
29,0,532,0,10233,0, - -
4 2 2 2 1 4 | 3
119, 0,4404, 0, 125278, 0, - -
4 0 3 2
1 3 2 1
13,67,318,1587,8115, 41657, - - -
5 2 2 3 3 5 | -1
48,449, 3012, 18634, 114018, 682461, - - -
10 12 6 1
2 2 2 3 \
15, 81,354, 1766, 9233, 46606, - - -
5 6 7 0 2 5 0
59, 528, 3232, 20199, 126284, 745331, - - -
2 4 7 2
5 5 3 2
45,109,844, 3444, 20880, 100121, - - -
6 2 6 1 7 6 | -1
259, 865, 9268, 43727, 319237, 1738085, - - -
4 2 6 3
(6 5 2 2
65,0,1712,0,45173,0, - - -
6 6 2 7 0 6 | 0
333,0,17333,0,664262,0, - - -
2 2 4 7
module is the least and it is termed as an optimally equivalestate complexity profile. In casB(g”) > L(g 9, the nonzero
code. The sum of dimensions of state spaces in the mininsaloccur atdepths from(g 9+ 1toR(g ”) and hence there are
trellis module for an#, 1) code is R(g")—L(¢°) I'sandn— R(g")+ L(¢") 0’'s in the offset state
complexity profile. Thus, we have = L(g°) — R(g").
Z s =nv+ Z 5 = — (5) In the following, we W|I_I show a method to find an optimally
et equivalent £, 1) convolutional code. From Theorem 1, we can
) also find an optimally equivalent(» — 1) convolutional code.
wherey = — 37" 5;. By Lemma 3, we can easily check that Theorem 2: For an @, 1) convolutional code”, the permu-
the condition of a smaller total number of vertices associatedttgion
a minimal trellis is equivalent to a larggr For an ¢, 1) code, .
the distribution ofs; ?s completely de?grrmined bi/L’th)e indices 7 = (A=B)A(ANB)A(I—A), fANBF (6)
‘ ANI - (AUDB))A B, fANB=¢

R(g”)andL(g®). In caseR(g") < L(go), the nonzera; occur
at depths fromR( ) + 1 to L(¢°) and hence there are + will result in an optimally equivalent code @f, whereX A'Y
R(g”) — L(g°) 0's andL(g°) — R(g") — 1'sin the offset means the concatenation of two ordered SétsndY .
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TABLE Il
GoobD (5,4) GCONVOLUTIONAL CODES
v G(D) | deo I X I Spectra %ﬁz"L
11 1 1 o0
s ( 2 2 1 1 1 5 4 5, 36, 200, 1065, 5893, 32633, - - -
0 2 2 1 1 12,192, 1576, 11350, 78542, 520904, - - -
0 0 2 0 3
1 1.1 0 0
s ( 6 0 1 o0 3 s o 10, 51, 256, 1362, 7188, 37783, - - -
2 0 0 1 1 28, 244, 1776, 12234, 78996, 491738, - - -
0 0 2 2 1
1 1 1 1 o
. ( 0 0 1 3 2 4 4 31,0, 1254, 0, 46870, 0, - - -
0 2 2 1 1 118, 0, 11826, 0, 698403, 0, - - -
4 4 2 0 1
0 3 1 2 1
. ( 0 2 3 1 0 . o 30, 126, 815, 4822, 28896, 173230, - - -
2 2 0 1 1 147, 870, 8024, 58169, 421058, 2939081, - - -
0 2 2 2 3 )
1 3 0 2 0
s ( 0 2 3 2 2 ) . N 3, 55, 305, 1828, 12099, 78349, - - -
2 2 0 1 1 4,329, 2785, 23071, 188049, 1454754, - - -
2 4 4 2 1
0 1 3 3 1
5 ( 2 2 1 1 1 ) . o 4, 52, 338, 2022, 12930, 84149, - - +
0 2 2 3 3 11, 288, 2987, 24232, 192882, 1498975, - - -
6 2 6 0 3
2 1 0 1 1
s 2 0 1 2 2 ) . . 7,56, 376, 2236, 14399, 92556, - - -
0 0 2 3 1 12, 300, 3364, 25668, 209396, 1604431, - - -
2 4 6 2 3
3 1 1 0 1 \
s 0 0 1 2 3 . ) 7,73, 432, 2657, 16795, 106203, - - -
2 2 0 1 1 15, 449, 4215, 34170, 265852, 1999914, - - -
0 2 4 2 1 /
2 1 1 1 o \
s 0 0 2 3 3 . s 12, 80, 487, 3066, 19308, 121939, - - -
2 2 2 0 1 48, 562, 5168, 42418, 330042, 2476369, - - -
0 4 3 3 0 /
0 3 1 0 1
s 2 0 1 1 1 ) . . 30, 126, 815, 4822, 29076, 174826, - - -
0 2 2 3 1 147, 870, 8024, 58169, 422690, 2956367, - - -
0 2 4 2 3
/ 2 3 3 0 0 \
o 2 0 2 3 1 s 1 20, 144, 896, 5841, 38536, 254252, - - -
7 1 2 0 1 89, 1144, 10040, 84059, 671340, 5204314, - - -
0 2 4 2 5 /
3 1 1 1 0
o 0 2 3 1 1 s 0 23, 172, 1030, 6661, 44049, 290819, - - -
0 0 2 7 7 108, 1430, 11873, 97399, 774682, 5984578, - -
2 0 4 6 3 )

Proof: In case thatd N B # ¢, thenR(og”) > L(og") R(og"). Thus for anyo, R(og”) — L(cg®) +1 > |AN B|,
for any n-column permutatiorr. We now need to find a per- where the equality holds i is the permutationr given in (6).
mutations which leads to the largegtor equivalently the least  Consider the case ofNB = ¢. Suppose that 4 NSg # ¢,
R(og”) — L(cg®). Fori € An B, we haveL(og®) < ¢ < that implies 0< p = L(¢°) < ¢ = R(g”) < n. Clearly,
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TABLE IV
GoobD (6,5) CONVOLUTIONAL CODES
tq,t
v G(D) | doo I X | Spectra —Lz—h,fzw-
1 1 0 1 0 O
o 1 1 0 1 0O
15, 96, 601, 3903, 25325, 164252, - . -
3 2 0 0 1 0o 1 3 -1
57,642, 5875, 49414, 393375, 3025294, - - -
2 2 2 0 1 1
0 0 o o 2 3
1 1 1 1 0 0
0 0o 3 1 3 1
111, 0, 5628, 0, 291251, 0, + -
4 2 2 0 1 0 1 4 -1
742, 0, 72998, 0, 5560874, 0, - - -
2 0 2 0 1 1
0 0 2 o0 2 3
3 1.0 0 1 1
0o 1 3 2 1 1
13, 149, 1064, 8175, 64293, 503549, - - -
5 6 0o 2 3 2 2 4 -1
51,1215,13272, 133688, 1291188, 12025722, - - -
2 2 2 0 1 0
2 0 0 2 2 1
3 1 2 3 1 1
2 0 1 1 1 0
14,162, 1156, 8770, 68534, 532965, - - -
5 2 2 2 1 0 1 4 0
47,1285, 13598, 134004, 1286677, 11876579, - - -
2 0 0 2 3 0
2 0 0 o 2 3
3 1 2 2 1 1
2 0 1 1 1 0
19, 160, 1186, 9132, 70707, 548046, - - -
5 0 o o0 1 3 2 4 1
48,1122, 13012, 130414, 1256010, 11642215, - - -
2 2 0 0 1 1
2 0 0 2 2 1
0 3 1 1 1 0
2 0 1 1 0 1
20,197, 1372, 10457, 81152, 624719, - - -
5 o 2 2 3 3 2 4 2
65, 1540, 16069, 158685, 1511817, 13836949, - - -
o 0 2 2 1 1
2 0o o0 2 2 1
1 1 1 0o 1 1
2 0 1 1 0 1
25, 225, 1576, 11964, 91773, 701498, - - -
5 2 2 0 0 1 1 4 3
135, 2026, 20913, 203992, 1902278, 17158181, - -«
0 2 2 2 0 1
6 4 4 3 2 0
2 1 0 1 1 0
0o 2 1 1 1 0
64,0,3724, 0, 211636, 0, - - -
5 o 0 o 1 3 2 4 4
304, 0, 47699, 0, 4364981, 0, - - -
0o 2 0 2 1 1
2 2 2 0 0 1
R(g¥) is in A but not in B and L(¢°) is in B but not Example: Consider an (8,7,4) convolutional codewith

in A. Let o’ be the permutation that switches tti€¢°)-th minimal encoder
and the R(g”)-th columns. Then,R(¢'¢g”) < R(g”) and

L(o’g®) > L(g°). With this o/, the resultant offset state

complexity profile €;,3),...,,_,) satisfiess! < s, — 1,

§;+1 < $py1 — 1 andd), < s, for m other thang and

p+ 1. As long asL(c'g) < R(o’g"), similar processes G(D) =
can be continued. Since is finite, these processes can not

last forever. Therefore we may assuérg”) < L(og®). A

permutations which leads to the largest or equivalently the

largest number of.(c¢") — R(cg”) — 1'sis preferred. Since

R(og”) > |A] — 1 and L(0¢°) < n — |B|, then L(o¢g°) — The minimal encodeH ( D) for C* is (26,32,3,17,5,11,20,34).
R(og") <n+1—|A|—|B| =|I - (AUB)|+1, where the The components in botl&(D) and H(D) are represented
equality holds ifo is the permutationr given in (6). [0 in octal form. The state complexity profile of eith&r or

()

NOORFRrROOLR
OPrPLPOO0O0OO0OR
ANNORFROPR
A OOKFRRFROPR
OONORFREFLO
OO OkrEFrREFRO
O OkrRFrLrORFrOo
PP OOR
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TABLE V
Goob (7,6) GONVOLUTIONAL CODES

v G(D) dw | x | Spectra %J%’—
1100110
0010111

4 2201011 3 | 6,77,696, 5884, 51037, 443875, - - -
2020100 11,592, 8326, 96478,1059653, 11139839, - - -
0202010
2000 201
0101110
0010111

4 2 201100 3 0 8,93, 809,6790, 57905, 494013, - - -
0022110 18,700, 9452, 110428, 1198626, 12398355, - - -
0002210
2020001
0110110
0011101

4 0023101 5 1 12,124,1024, 8307, 68623, 567653, - - -
2 000111 33,869,11490, 127116, 1322381, 13192157, - - -
0220010
0002 2 01
0111000
0001111

4 2010110 3 9 12,124,1024, 8295, 68643, 569209, - - -
0002311 35,909, 12344, 138419, 1449338, 14533952, - - -
2200011
00002 21

ol is {4,5,5,5,5,5,4,4}. The associated/fdz and 1/051 of vertices, then a largg is desired. In the following, we con-

are span{(00111100} and span{(11000 01111}, respec- sider the case that the decoding complexity is measured by the
= V'CAL) = {2,3,4,5} and number of branches. For an,(n — 1) convolutional cod€’ with

tively. For C+, we haveA = . ) ) ~ o

. Y VEI oieq S:DP( end . . memory size, it hasg;l reciprocal dual*, which is an ¢, 1)
- Supp(_ 0 )=1{0,1,67} | ence an optimal permutation .y i, indicesL(h ) andR(Ey). For O, there is only a

for the reciprocal dual codé'+ is 7w = (2,3,4,5,0,1,6,7).

. . . . -0
According to Theorem 17 is also an optimal permutation forSlngle branch emanating from each state at defuiiy # L(A )

C. The state complexity profile for the equivalent code of eithéf“‘nOl there are two l?ranches emanating from each state at depth
C or CL is {4,4,4,4,3,4,4,4) that is better than that of the® for ¢ = L(h ), while there are two branches merging at each

original code. The minimal trellis modules for such optimall tate at depthj for j = R(h”) + 1 and there is only a single
equivalent codes of and C1 are shown in Figs. 1 and 2, ranch entering each state at deptor j # E(h") + 1. Ac-
respectively cording to the observation given at the end of Section Il For

there are two branches emananating from each state at depth
fori # R(h”) and there is only a single branch emanating from
V. GooD (n,n — 1) CONVOLUTIONAL CODES each state at depitfor i = R(h*). Let5;,i=0,1,...,n—1

In applying the Viterbi algorithm (VA) to decoding a convo-2€ the offset state complexity profile oft . Suppose tha =
R(h) > 0.Theng; = 0fori < R(h°)andi > L(h°)

lutional code, the decoding complexity is sometimes measurégfo)_ - “ /
by the number of vertices per minimal trellis module or som&hile 8; = —1for R(h") < i < L(h"). Hence, the decoding
times by the number of branches per minimal trellis modul€°MPlexity can be calculated to be

where each branch corresponds to one code bit. In Section 1V,

we have already shown that for an ¢ — 1) convolutional code (n—yx—1)-2"-24-2"4x-2"" 1.2 = (n—x)- 2" +(x—1)-2".
C in case the decoding complexity is measured by the number (8)
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TABLE VI
GooD (8,7) CONVOLUTIONAL CODES

v G(D) | doo | x [ Spectra gtz

$1 1 1 1 1 1 0 0
000 1 0 1 1 1 0
000 0 1 1 0 1 1
12, 154, 1546, 14954, 148172, 1466039, - - -
4 2 0 2 0 1 0 1 1 3 |
36, 1505, 22441, 204546, 3677773, 43811679, - - -
2 2 0 0 0 1 0 1
2 0 2 2 2 0 1 1
2 0 0 2 0 0 0 1
( 1 1 1 0 0 0 0 0
0 01 1 0 0 0 1
0 0o 0 1 1 1 1 0
18, 191, 1839, 17686, 171339, 1658803, - - -
4 0 0 2 2 1 0 0 1 3 0
62, 1505, 22201, 289290, 3525673, 41093580, - - -
2 0 0 0 0 1 0 1
6 0 0 0 2 2 1 o0
0 0 0 2 2 0 0 1 )
( 0 1 1 1 1 0 0 o
000 1 1 0 0 1 1
000 0 1 1 1 1 0
28,274, 2456, 22664, 209734, 1939381, - - -
4 0 2 2 0 1 1 0 o0 3 1
138, 2224, 29024, 346352, 3928042, 43028988, - - -
2 0 0 0 0 1 1 1
000 0 0 2 2 1 1
000 2 2 0 0 0 1
( 0 1 1.0 1 0 0 0
006 1 0 1 0 1 1
0006 0 1 1 1 1 0
28, 274, 2456, 22524, 208336, 1925595, - - -
4 002 0 0 1 1 0 0 3 2
135, 2384, 31320, 374521, 4259847, 46749804, - - -
2 00 0 0 1 1 1
0 0o 2 2 0 0 1 1
\ 0 0 2 0 0 2 0 1
0 1 0 1 0 1 0 0
0 0 1 1 1 1 1 o0
000 0 1 1 0 1 1
28,274, 2456, 22524, 208588, 1930273, - - -
4 0 2 0 0 1 1 0 0 3 3
134, 2408, 31736, 380074, 4329590, 47586300, - - -
2 0 0 0 0 1 1 1
0 0 0 2 2 0 1 0
\ 0 2 2 0 0 0 0 1 )
/ 1 1 0 1 1 0 0 0
000 0 1 0 1 1 0
000 0 0 1 0 1 1
28,274, 2456, 22440, 207066, 1910623, - - -
4 2 0 1 0 06 1 0 0 3 4
146, 2648, 35040, 410448, 4767794, 52283292, - - -
2 2 0 0 0 1 1 0
2 0 2 0 0 0 1 0
2 2 2 2 0 0 0 1
{ 0 1 1 0 0 1 1 ©
000 1 1 1 0 0 0
000 0 1 0 0 1 1
28, 274, 2456, 22356, 205012, 1880307, - - -
4 2 2 2 0 1 1 1 0 3 5
147, 2616, 34552, 412127, 4660995, 50837934, - - -
2 0 0 0 0 1 1 1
2 2 0 0 0 0 1 0
2 0 0 2 0 0 0 1

Suppose thaty = L(TLO) — R(ﬁ”) < 0. Then,s; = 0 for We see that a largg is desired for both measures of decoding
T > R(ﬁ”) and 7 < L(ﬁo) while 5, = 1 for L(TLO) < complexity. Hencey is a good measure of decoding complexity
1 < R(TL”). Hence, the decoding complexity can be calculatddr an ¢z, n — 1) code.
to be If we decode an+(,n — 1) binary convolutional code with
memory sizer by applying VA to the conventional trellis, the
(n4x)-2"24+(—x—1)-2F1.242v T = (n—y—1)-2"T1. (9) decoding complexity measured by the number of branches
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TABLE VIl
SOME OF THEBESTKNOWN (1, » — 1) PUNCTURED CODES SHOWN IN [7]

n| v generators™ deo | Spectra (t1,t2,---)/(f1,f2, )

313 15,(11,17) 4 (2,11, 34,109,366, 1244, - - -)/(5, 41, 193, 808, 3299, 13191, - - )

3| 4 25,(23,35) 5 (5,18, 54,193,714, 2578, - - -)/(15, 88, 370, 1640, 7116, 29942, - - -)

3| st 65,(57,75) 6 (16,0, 182,0,2700,0, - - -)/(56,0, 1301, 0,27620,0, - - -)

3] 6° 147,(135,147) 6 (1,17,59,175,668,2638, - - -)/(1, 81,402, 1487, 6793,31018, - - )

3|7 337,(251,337) 8 (686,0,706,0,10727,0,---)/(395,0,6695,0, 135288, 0, - - -)

3|8 625,(577,711) 8 (9,58, 161,566, 2251, 8668, - - -}/(38, 416, 1404, 5994, 27194, 118184, - - -)

4 3 15,17,(17,15) 4 (29,0, 532,0,10059, 0, --)/(124, 0, 4504, 0, 125991, 0, - - -)

4| 4 31,31,(35,23) 4 (5,42, 134, 662, 3643, 16585, - - -)/(10, 290, 1188, 7174, 48976, 262074, - - -

4|5 65,65,(47,61) 5 (13,71, 326, 1626, 8320, 42351, - - -)/(51, 474, 2978, 18918, 116366, 690938, - - -)

4| 6 117,173,(165,127) 6 (45, 109, 844, 3444, 20880, 100121, - - -) /(276, 843, 9588, 44046, 326876, 1756787, - - )
5 | 3t 15,11,11,(11,17) 3 (6, 32,185,1030, 5745, 32204, - - -)/(11, 184, 1627, 12094, 85568, 578261, - - )

5 | 4b 27,33,27,(37,05) 4 (30,126, 815, 4822, 29046, 174460, - - )/ (159, 990, 9076, 66149, 482470, 3378525, - - -)
5 | & 75,75,71,(67,41) 4 (4, 46,295,1832, 11910, 76572, - - -)/(11, 297, 2876, 23759, 192413, 1475175, - - )
56 145,113,153,(113,145) 5 (22, 146, 920, 5983, 39409, 260246, - - ) /(99, 1184, 10987, 89453, 708470, 5487822, - - -)
6 | 3° 17,13,13,15,(13,17) 3 (15, 96,601, 3963, 26039, 170868, - - -}/ (61, 686, 6257, 53004, 426069, 3309892, - - -)

6 | 4 25,27,31,37,(31,35) 4 (111,0,5628, 0,291695, 0, - - +)/(754, 0, 74393, 0, 5682302, 0, - - -)

6 | & 73,47,75,67,(73,51) 4 (15,138,993,7841,61322, - - -} /(58, 1090, 11475, 119518, 1158329, - - )

714 31,35,35,21,21,(33,25) 3 (6,77,696, 5884, 51187, -+ +)/(11, 592, 8326, 96478, 1060924, - - -)

8 | 4% | 21,27,37,23,27,21,(35,23) | 3 (12,154, 1546, 14978, 149512, . - -)/(37, 1480, 22199, 290717, 3640770, - - -)

¢ Code found by Cain [2].

! Code found by Lee [3].

% Code found by Bocharova [7].

* The numbers in parentheses correspond to the generator polynomials providing outputs
transmitted on the same branch of the trellis.

(each branch corresponds to 1 code bit) per trellis moduledsding system can be estimatedBy < > 7 t; P (doo+i—1)

n - 2"™~1 For an @,n — 1) binary punctured code with and the symbol error probability can be estimatedy <
memory sizer obtained from a certain convolutional codel/k> ", fiP.(ds + ¢ — 1), where P.(d) is the probability

the decoding complexity measured by the number of branchefserroneously decoding a code sequence into a give code se-
per trellis module (each branch corresponds to 1 code bit)geence which is separated by a distance.0iVe see that for

n - 2'77. The advantage of decoding fot,(» — 1) punctured achieving low error rate, smalj andf; or “thin” weight spectra
convolutional code overn(n — 1) convolutional code using are desired. In [20], an algorithm called FAST algorithm is pro-
conventional trellis is clear. However, we note that compargubsed to efficiently compute the weight spectra of convolutional
to an @, n» — 1) punctured convolutional code for = —1, codes.

an (»,n — 1) convolutional code with minimal trellis module With the aid of Theorem 1, 2, FAST algorithm and computer,
has the same decoding complexity for= —1 and has lower we are able to search for good, @ — 1) convolutional codes.
decoding complexity fory > —1 in case the decoding com-For the givenn, » andx > -1, we search fori(,n — 1)
plexity measured by the number of branches per trellis modwedes which have the currently best weight spectra. For the
and each branch corresponds to one code bit. givenn, v andy, we exhaustively check all the possibte 1)

For a coding system, low decoding complexity as well as losodes. For each( 1) code to be checked, we randomly choose
error rate is desired. The error performance of ank] con- a generator matrix witll R-property for the associated recip-
volutional code with free distanag,, can be estimated by its rocal dual ,n — 1) code and compute the associated weight
code weight spectrum and information weight spectrum whiapectra. The codes with the currently best weight spectra found
are, respectively, representedfyand f;, wheret; is the total in this search are listed in Tables I-VI far= 3,4,5,6,7, and
number of code sequences with weight + ¢ — 1 andf; is 8, respectively. For comparison, we also list some of the best
the total number of information bits associated to the code derown punctured codes in Table VII. We can see many codes
guences with weightl, + ¢ — 1. In case the code is appliedin these tables are better than punctured convolutional codes of
over a symmetric and memoryless channel and maximume-likke same code rate and memory size [2], [3], [7] by either lower
lihood decoding is used, the first event error probability of thdecoding complexity or better weight spectra. Note that we only
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randomly choose one of the many possible generator matricgsl] J. L. Massey, “Foundation and methods of channel encodingtde.

with LR-property for a given#,n — 1) code. It is likely that '1”5-750‘;‘;- '{‘jgm;gt;o” Theory and Systersl. 65, Berlin, Germany,
there exist bettem@ n - 1) codes if we eXhaUSt'Vely CheCk'ng [12] A. D.’ Kot and C. Leung, “On the construction and dimensionality of

all the possible generator matrices. linear block code trellises,” IfEEE Int. Symp. Inform. Thear$an An-
tonio, TX, 1993.

[13] G. D. Forney Jr, “Dimension/length profiles and trellis complexity
of linear block codes,”IEEE Trans. Inform. Theoryvol. 40, pp.

. . . 1741-1752, Nov. 1994.
In this paper, we show that the state complexity profiles of §,,; 3 "vicEliece, “On the BCIR treliis for linear block codetZEE

convolutional code and the reciprocal of its dual code are iden- ~ Trans. Inform. Theoryvol. 42, pp. 1072-1092, July 1996.
tical if minimal encoders for both codes are used. We also prods] A. \éardy r?nd F.R. KSChiséchar}gh“PFQO_f OffCC;IDJEeEtErTe of MfEfliece re-

. . . _ . garding the expansion index of the minimal trelli rans. Intorm.
pose an_optlmum permutf_;ltlo_n for any given f—1) blngry Theory vol. 42, pp. 20272034, Nov. 1996.
convolutional code that will yield an equivalent code with the[16] V. Sidorenko and V. Zyablov, “Decoding of convolutional codes using a
lowest state complexity. Moreover, we find many goﬁ,d;(_ ]_) syndrome trellis,1EEE Trans. Inform. Theoryol. 40, pp. 1663-1666,

: . . Sept. 1994.
convolutional ?Odes which arg superior to the 'popular punc[—ﬂ R. J. McEliece and W. Lin, “The trellis complexity of convolutional
tured convolutional codes by either lower decoding complexity = codes,TEEE Trans. Inform. Theoryol. 42, pp. 1855-1864, Nov. 1996.
or better weight spectra. The code search used here is not coiﬁg} 2 Psfe::,COrlvol;Jtloncal CO?e_S Cflimbéldg?, 'IXIIA: lt\)/IIT_ Press, 152%5
e . . D. Forney Jr, “Convolutional codes |: Algebraic structurl

plete. I_-|enge, it is likely that there exist codes petter than thosé Trans. Inform. Theorwol. IT-16, pp. 720-738, Nov. 1970,
found in this code search. In fact, how to design a method t@o] M. Cedervall and R. Johannesson, “A fast algorithm for computing dis-
efficiently check the possible encoders under the restriction of tarllcg Spectrumeof cogvolutloneélsgode!EEE Trans. Inform. Theory
LR-property for the reciprocal of the dual code of an1) code vol. 35, pp. 1146-1159, Nov. 1989.

is an interesting problem.

VI. CONCLUDING REMARKS
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