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Abstract

In these recent years, electromagnetic analysis
techniques put more stress on time-domain method
than frequency-domain method.The Finite-Difference
Time-Domian Method(FDTD) has being used more
and more frequently to deal with variant kind of
electromagnetic 2-D and 3D problems. As a
numerical technique for solving Maxwell's equations,
FDTD method is quite straightforward and friendly in

mathematical point of view. However, it's not suitabie
for those that involve with arbitrary or small structure
because of the memory comsuming and the Cartesian
coordinate that FDTD method using. And it's
believed that the subgridding method would be one of
the right key to break the limit of FDTD method.
Base on the idea of multi-level division and recursion,
an new kind of algorithm is proposed here to make an
enhancement on finer subgridding and smoother
transition for ordinary subgridding method. For 1-D
transmission line transients simulation, we propose
the staircase approximation to solve multisection
dispersion transmission lines with nonlinear loads.
Using pulses as time-domain basis to separate time
and space variables, we transform the original partial
differential equations into ordinary matrix equations.
Then transient responses can be obtained by matching
boundary conditions. The feature of this new
approach is that by frequency-domain-like technique
we can solve difficult transmission line problems,
including nonlinear loads, dispersion lines and the
combination of the above two.

Keywords: FDTD, recursive, subgridding ,
staircase approximation, nonlinear,
dispersion

I Imtroduction

A subgridding scheme divides the problem into
regions with different grid sizes. For previous studies
on subgridding [1]-[3], there’s usually only one
subgrid region. A multilevel subgridding scheme can
divide grids by a small grid-size ratio between
adjacent level to simplify programming and reduce
the error owing to the mismatch of grid size.

On the other hand, computation of non-linearity
and dispersion in circuits is important in practical
applications. We propose the staircase approximation
to handle this issues and get the transients directly
and efficiently.

I Multilevel Subgridding Scheme



A multilevel subgridding scheme is shown in
Figs. 1 and 2. Here the ordinary FDTD and
subgridding method is as the core process. For
example, in a 2-D TM FDTD problem, a coarse grid
is divided by a factor of 3, and a second-order
homogeneous traveling wave equation is used for
spatial interpolation to find out the extra information
at the boundary of a subgrid region. During the
transition between grids of adjacent levels, linear
interpolation in time and bilinear interpolation in
space are used. And for updating the H fields at the
boundary of a upper grid, the data are sampled at the
common H field points located at the boundaries of
the lower-level subgrid region.

Further, a tree-like data structure is used in
which a flag is added to tell if the grid of a certain
level is divided into subgrids or not. As the algorithm
shown in Fig. 2, the calculation is designed to be
recursive.

Il Staircase Approximation

The dispersive telegraphist’s equations in time

domain are

9 . 0 i
._av(x,t) = R'I(x,t)+’é_t‘[L l(xst)]

3. O
_al(x’t)—G v(x,t)+at[c v(x,t)]

where the star “*” represents the convolution to

account for dispersion. Approximate the signals by

v(x, 1) = Zn: v, (x)h; (1)

=
i(x,t)~ ) i, (xX)h, (1)
J=1
where /,(¢) is the unit rectangular pulse with

duration Af. By inserting the approximation into
the dispersive transmission line equations and
integrating with respect to t, the original system of
continuous time-dependent equations transforms to a

system of discrete time-independent matrix equations

—%[v]=<[R]+§t—[L])[i]

do. oo 1
—E[l]—([GHN[C])[V]
where [v] and [/] are column matrices and

[R)., [L], [G], [C]

with

are square matrices

[R]= R[I]
[G]=Gl/]

[L]=[Lp, 1M1
[C1=[Cp, 1 M]”
Here [I] stands for identity matrix, [L,, ] and

[Cp,] account for the dispersion and

(05 0 v o 0]
1 05 ° :
M]=| +
05 0
1 - - 1 05]

Once these matrices are determined, equations can be
manipulated in a way similar to those in the
time-harmonic case. Problems with linear loads thus
can be solved directly, and nonlinear loads can be
dealt with by a common iterative scheme

IV Numerical Examples

For verification of subgridding, a PEC cylinder
with an electric current filament in free space shown
in Fig. 3 is solved by the TM solver. With an
alternate magnetic current filament source, the case is
also solved by the TE solver. The frequency of the
current source is 2.4GHz and the main grid size is
6.25mm. The test region is divided into 141 x 101
main cells with a A/20 mesh size. At the border of the
test zone, the second-order Mur’s absorbing boundary
condition is applied. Four different schemes were
tested and compared. One scheme is with uniform
coarse grid with cell size A=6.25mm, and one is with
uniform fine grid in 1/3 main cell size. The other two
schemes are with subgrids: one is with a level of
subgrid, in which the subgrid size is A/3; and the
other is with two levels of subgrids as shown in Fig. 4.
The size of cells in the second level of the two-level
scheme is A/9.

The curves in Fig. 5 report the steady state total
field which is the response after about 27 periods
around a circle of radius 12.8125cm outside the
cylinder for the TM case. Comparisons of different
schemes are given in Table I. The one-level
subgridding scheme works well as in other reports.
The improvement of this scheme in TE mode is
similar to in TM mode version. In Table 1., he
uniform fine grid can obtain the best results, but the
two-level scheme can still improve the accuracy than
one-level subgrid and takes only 59.13% of the time
in the uniform fine grid scheme. Moreover, for a
single round of simulation, the two-level subgridding
already offers 9 times the resolution of the main cell,
and 3 times the resolution of the uniform fine grids
within a comparable short time.

Fig. 6 shows the verification of the staircase
approximation for nonlinear loads with the FDTD.
Both transmission lines are lossless and are with the

same parameters, £ =0.5(m), L =0.5(uH/m),
and C=02(nF/m) . In addition, a matched



generator excites unit rectangular pulse with duration
w =1(nsec). The nonlinear loads are described by

i=0.01xv? for v>0 and i=0 for v<0,
and shunt with capacitors C, =50(pF) . The

resultant voltage signal at x =1.0(m) calculated

by the staircase approximation (solid line) and the
FDTD (dotted line) agrees well.

Remove the nonlinear loads and introduce the
Debye dispersion to both transmission lines with

parameters £, =9, £, =4 and w, =57 x10°%.

Apply the same pulse excitation and replace the
internal resistor by R, =150(Q2) . The voltage

x=0.5(m)
x=1.0(m) by the staircase approximation (solid

response  calculated  at and

line) and the frequency-domain transform method
(dotted line) are illustrated in Fig. 7. The agreement
of both curves validates the capability of the staircase

approximation in dealing with  dispersive
transmission lines.
V Conclusion

A modified subgridding algorithm with

multilevel scheme has been developed. It has been
shown that it can improve the resolution of FDTD.
Though we only apply it for a 2D case here, it can be
easily extended for general 3D problems. For the
staircase approximation, the ability to handle
non-linearity and dispersion has been demonstrated.
Further applications include nonlinear microwave
circuit simulation and computation of transients and
crosstalk of multi-conductor transmission lines.
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Fig. 5 Total field around a circle outside of the PEC
cylinder in Fig. 3 for TM case

Rato of Cell Nommlized root
Scheme. | CPUtime | mumbers. mean sqar
enor.+
Urnaform aoarse
oid., 1.00¢ 14241+ 1.00¢
1-lavel
sbgxdding 5.26+ 37650« 0.484¢
2-level
ahaiding 1428+ | 104628+ 0.438¢
Unifem fine
aid. 24 40+ 128169« 0.445¢

Table I Performance of different schemes for the
problem shown in Fig. 3 with electric
current filament in TM mode. For every
scheme 1500 coarse-grid time steps are
requested.
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Abstract

A new theory for solving time-domain electromagnetic field problems is
proposed. By this new theory the field is first expanded by bases in time, and
the inner product of the equation residue is taken with respect to a set of testing
functions to achieve a system of differential equations in space coordinates.
The obtained matrix equations can then be either solved analytically, if possible,
or numerically. This provides more flexibility in solution. In the special case
that all matrices are Toeplitz, which is common if translation-invariant bases are
adopted, the z transform is applicable. With the help of z transform theory in
digital signal processing, concepts of discrete-time frequency and discrete-time
traveling wave are introduced. Dispersion analysis of the central difference
approximation as well as the FD-TD equation for one-dimensional wave is
found easy with this theory.

Introduction

Almost all current time-domain numerical methods for electromagnetic
field analysis start from dividing the problem domain into grids. This paper
tries to propose another approach that discretizes in time-domain first. This
approach facilitates the dispersion analysis, and is more flexible in dealing with
space domain.

Time-Domain Test and Discrete-Time Representation
Define the inner product of two signals f{f) and g(f) as

"Supported by National Science Council, Taiwan, ROC, under NSC90-2213-E-002-057



(Fang®)y= [ fgar - Select a set of testing functions w={w,,(t)}.

Hereafter real variable ¢ and integer indices n , m, and/ are all from —o to oo.
The time-domain test of a signal f{r) with respect to w is then defined as a

column vector Test, {f (t)} = [wfml wf, = <wm o, f (t)) . Choose a set of bases

h:{h'l (t)}to expand the signal f{t) as f(¢)= ih”(t) f,. We then have a

discrete-time representation (DTR) of f{f) as DIR, {r (t)}=[hn(t)]T[fn]. By
taking the time-domain test of the DTR of f{r), we get the discrete-time

transformation (DTT) of A#) as DITT,, {ro}=[H,, Ir.]. The matrix

element H,, =(w,®),h,®) . It can be also proved that
ot (L[, T wits o =(, 0. 202),

Discrete-Time Maxwell Equations
For electromagnetic field problems, select electric and magnetic bases

h™ = {h;" (t)} , h* ={h: (t)} . Define the electric and magnetic testing

functions w° = {w: (t)} , w'= {w,’f' (t)}. Then express the electric field,

magnetic  flux  density, and magnetic current density as

p1r {EF.0)=lkolE®] . prR {BF.0}=lrrolB,®] .
p1R M. 0}=|r0[d,7] . The  Faraday  equation
V xE(7,t) = ——ag(ati’t—) ~M(F,t) is next transformed to a discrete-time

electromotive equation [V xE (F )] = —[ - IE,. F )]— {X piss Iﬁ NG )] ,

pollazllag] . kzl=lazllEz] 0 Bo=(wono) |



He =<w;(t),;7:(t)>, H =(w (), 7 (1)), after enforcing the time-domain

test of the residue (the difference of the original equation and its discrete-time
representation) to be zero. Similar processes lead to other discrete-time

Maxwell equations: [V xH, (F)] = [D,’,’,’: Il_)" (r_‘)]+ [X i Ij .\ (?)] ,
[V . En (F)] = [p 5 (7)] , and [V . l_?n (F)] = [p i (F)] : Note that the

discrete-time continuity equations can be also derived from the discrete-time

Maxwell equations.

For homogeneous isotropic media, the constitutive relationship of the
t

electric flux density is D(7,) = e E(7,1)+ f Xt —1)E(F,t)dt , which is
transformed to a discrete-time form as [D:l (F)]: ... IE‘” (F)] ,
[e.n )= [€.8 ma ]+ [H ol H:<W: ®, [ Y (t—-1)hi(x)dr >j| . Other discrete-time

constitution relationships are [E. (F )] =p 1}7 . (F)] , [.7 A (F)] = [cr en IE_ : (F)] ,

and [M°@®)=k,..[F,®)].

Discrete-Time One-Dimensional Wave
Consider only linearly-polarized one-dimensional problem, the source-free
discrete-time Maxwell equations can be reduced

2
to g—Z—[En ®]-[p2]E,(0]=0 , for the electric field, where
X

[p=]= (o .+ X2 Jo e DD Je )+ X 20 o 00 D

Assume that the bases are generated by a mother function £, ()of unit
delay At, i.e., h, (f) = h,(¢t —nAt). This set of translation-invariant bases can be

regarded as a super set of wavelets, since wavelets must be both translation and
scaling invariant. Assume further that all related matrices are Toeplitz



matrices, which means the mn’th element depends only on m-n. The matrix

m-n n m—n

2
equation now is written as d—f—"—';(x—)—ZP“ E (x)=0, P*=P* . The z
X n

2
transform  of  this  equation s d—%(f’—g) -7,(¢)*E(x,6) =0,
%

7.()= preg_‘ , where we have changed the z variable intog, to avoid
¢

being confused with the space z coordinate. The solution of this equation 1s
the linear combination of fields like E*(x,¢)=F"(¢)e”¥*. The inverse z

X

Q- )
A dQ), where ¢

z iy 4 (Q— j(nQ-A(Q)
transform of it leads to £ (x) =31—[ F* (e ey’
T -

is the light speed, Q2 is the discrete-time frequency, a(QQ) and B(€2) are the
discrete-time attenuation constant and the discrete-time wave number,
respectively. If a(€Q) is zero, and the discrete-time phase velocity

v,(Q) = is a constant, we can show thatE, (x, +4v,cA)=E  ,(x,),

Q
B
which represents a discrete-time traveling wave along a grid of cell size v cAr.

Dispersion Analysis
For the one-dimensional wave in free space, the pulse bases

. . LnAt <t <(n+1)At
B (0= w,(0) = { 0, otherwise and

1 1
K@ =wr ()= 1.z _E)At A +E)At are adopted. The discrete-time
0, otherwise

phase velocity is obtained as v, ()= & = gcsc(g) ' If the
By 2 2
corresponding ordinary differential equation is further approximated by central

finite difference in x, a difference equation identical with that used in FD-TD [1]

can be derived. Its discrete-time phase velocity is deduced as
Q cAt
v, = = -, Where §=—.
scos” (1-(1—cosQ)/s*) Ax

‘Reference
[1] A. Taflove and S. C. Hagness, Computational Electrodynamics: The
Finite-Difference Time-Domain Method, Artech House, 2000.
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Abstract

The staircase-approximation time-domain (SATD) method is applied to transient
analysis of nonuniform transmission lines (NTL’s) by employing cascaded uniform
transmission line (UTL) sections and ABCD matrices. Numerical results to
exponential nununiform transmission lines (ENTL’s) are verified with analytical
formulae, both in time-harmonic and SATD forms, and the CAD tool PSPICE. This
method also works well even for a lossy ENTL under the excitation of trapezoidal
pulse chains.

Introduction

Nonuniform transmission lines (NTL’s) have a large variety of applications, including
wide-band impedance matching, reduction of discontinuity effects and pulse shaping.
Unfortunately, exact analysis of NTL’s is usually unavailable. Although there do exist
analytical solutions to some specific NTL’s like [1], their implementations are quite
difficult, if not impossible, which degrades their practicability. The treatment of
NTL’s, therefore, is mostly resorted to numerical approaches. One popular treatment,
also used in this paper, is to make use of cascaded uniform transmission line (UTL)
sections as well as ABCD matrices.

A new technique, the staircase-approximation time-domain (SATD) method, has
been proposed and its capability of handling transients of transmission lines has been
demonstrated [2][3]. Conventionally, the inverse Fourier transform (IFT) is used to



obtain the transients from the frequency-domain results. This approach is inefficient
when long transients or broad spectra have to be considered. The SATD is more
efficient, even when loss is introduced and arbitrary waveforms are excited. In
addition, our previous works show the duality between the time- harmonic and the
SATD formulae. Thus, analytic forms of specific exponential nonuniform
transmission lines (ENTL’s) in [1] can be directly translated into the SATD forms
without reformulation. For more general cases, we can still analyze the transients of
an ENTL by cascaded UTL sections using the SATD technique.

Formulation

By staircase-approximation time-domain (SATD), signals are expressed as

v 0) = 3w, (), ) (1)
ie ) =Y i (h, (0) @

j=0

where £ ,(?) is the unit rectangular pulse defined as

1, jAr<t<(j+DAt
h(t)= 3
20 {0 , others 3)
and the original transmission line equations can be converted into matrix forms [2][3].
The equivalent ABCD matrix of a section of UTL with length ¢ in the SATD form

can be derived as

[[A] [B]] _ [Cosh([P]f) [Zolsinh([P]f)]

" (12, sinb([P}¢) cosh([P]¢)

4
(€1 (D] v

where [P] is the propagation matrix and [Z,] is the characteristic impedance
matrix. To deal with an NTL, we divide it into sections of UTL’s using the procedures
shown in Fig. 1. The equivalent ABCD matrix of an NTL thus can be obtained by

(4] (8] [(4] (B
B 5
[[C] [D]] Q[[ck] [Dk]] (5)
and the original NTL circuit can be analyzed easily.

Numerical Examples

As the first example, the transients of a lossless ENTL, as shown in Fig. 2, excited by
a unit trapezoidal pulse defined in Fig. 3, is analyzed. The ENTL has parameters



L(x)=0.5-3"*(uH /m) and C(x)=0.2-3"“(nF/m), which is equivalent to the
characteristic impedance Z,(x) =50-3*(Q). The exact solution to this ENTL can

be expressed by the ABCD-matrix [1] as

(6)

4B e-&”(rcoshru%sinhre) Z,ye*'*sinhT¥
<o)

82
ye” “sinhI/ e *'*(TcoshT4 —%sinhl“ﬁ)

01

where 6=(01/0OImZ,/Z, (Z, =50(Q) and Z, =150(Q) in this example),

I'= 1/ y*+8%/4, and y = jB, the position-independent propagation constant. The

corresponding ABCD matrix in SATD form can be obtained by suitable substitution
[3]. Figure 4 shows the transients of the voltage at the load, including the exact
solution (6) of the ENTL in both time-harmonic (phasor) and SATD forms, the
numerical solutions using 20 sections of UTL’s in both time-harmonic (phasor) and
SATD forms and the CAD tool PSPICE. These five different approaches show nice
agreement. This validates the applicability of UTL approximation for an NTL and the
duality between the time-harmonic and the SATD formulation.

As the second example, we analyze the circuit in Fig. 2, but adopt another set of
parameters for the ENTL that L =0.5(uH/m) and C(x)=02-97**(nF/m). The
analytic form (6) can’t be applied due to the position-dependent propagation constant.
In addition, the voltage generator excites a pulse chain of unit trapezoidal pulses,
shown in Fig. 3, of a 10(ps) period. By the approximation of 20 cascaded UTL
sections, the voltage transients at the load in both lossless and lossy (R =5(Q/m)
and G =10(S/m)) cases are exhibited in Fig. 5 for comparison. The loss contributes

to lower voltage levels, which stands to reason. All results also agree quite well.

Conclusions

The capability of handling transients of NTL’s using the SATD has been demonstrated.
Although only the ENTL is verified here, other NTL’s could be treated likewise. This
approach provides a simple but efficient way to get the transients, even for dispersive
NTL’s with nonlinear loads, which will be reported in our next paper.
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