
 1

行政院國家科學委員會補助專題研究計畫 期中進
度報告

對等式內容網路之搜尋與傳遞演算法及安全議題研

究

計畫類別：▇ 整合型計畫

計畫編號：NSC 92－2213-E－002－087－
執行期間： 92年 8月1 日至 93年7 月31 日

計畫主持人：林宗男
共同主持人：

計畫參與人員：王欣平, 沈彥男, 張永煌, 林柏江

成果報告類型(依經費核定清單規定繳交)：▇精簡報告

執行單位：國立臺灣大學電信工程學研究所

中 華 民 國 93年 5 月 7 日

 2

九十二年度行政院國家科學委員會專題研究計畫

 對等式內容網路之搜尋與傳遞演算法及安全議題研究

92-2213-E-002-087

期中報告

2004.5.7

本計畫執行至今，在對等式網路之搜尋演算法及效能分析上，已有顯著的成果。

其研究成果已有二篇著名國際會議的發表。第一篇發表於今年四月於美國 Chicago

所舉行的「The 4th IEEE/ACM International Symposium on Cluster Computing and

the Grid (CCGrid 2004)」(accepting rate 33%)，論文題目為「Search Performance

Analysis and Robust Search Algorithm in Unstructured Peer-to-Peer Networks」。第二

篇發表於今年六月於法國 Saint-Malo所舉行的「The 18th Annual ACM International

Conference on Supercomputing (ICS04)」(accepting rate 20%)，論文題目為「Dynamic

Search and Performance Analysis in Unstructured Peer-to-Peer Networks」。茲附上於

ICS04所發表之論文全文作為期中研究成果之依據。

 3

Dynamic Search and Performance Analysis in Unstructured
Peer-to-Peer Networks

Hsinping Wang ,Tsungnan Lin, Chia Hung Chen, Yennan Shen
Graduate Institute of Communication Engineering

National Taiwan University, Taipei, Taiwan
tsungnan@ntu.edu.tw

ABSTRACT
Recently Peer-to-Peer networks (P2P) have gained great attention
and popularity. One key challenge aspect in a P2P resource sharing
environment is an efficient searching algorithm. This is especially
important for Gnutella-like decentralized and unstructured
networks since they have power-law degree distributions. In this
paper, we propose a dynamic search algorithm that decides the
number of running walkers dynamically with respect to peers’
topological information and search time state. The dynamic search
is able to control the extent of messages generating temporally by
the simulated annealing mechanism, thus being a scalable search.
Furthermore, we present a unified quantitative search performance
measurement, Search Efficiency, to objectively capture dynamic
behavior of various search algorithms in terms of scalability,
reliability and responsiveness. We quantitatively characterize,
through simulations in dynamic P2P environments, the
performance of various existing searching algorithms. The
proposed dynamic search outperforms other search algorithms in
terms of Search Efficiency in both the local and global search
spaces.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval – Search Process.

General Terms
Algorithms, Measurement, Performance, Design, Reliability

Keywords
P2P, Search algorithm, Gnutella, Modeling

1. INTRODUCTION
Recently, a newly innovated architecture of Peer-to-Peer (P2P) [5,
6, 7, 8] networks has caught people’s eyes and becomes popular
for that peer-to-peer networks treat all client nodes functionally
equivalent. Unlike the centralized client-server model, the nodes
(servents) in the P2P network behave as clients and servers at the
same time. P2P networks emphasize the ability to research out,
discover, and connect with others regardless of whether a prior
relationship exists. In addition to the ability to pool together large
amounts of resources, the advantages of P2P systems include

self-organization, load balancing, adaptation, and fault-tolerance.
The rapid growth of Gnutella [1] is an example for the appealing
architecture. Recent measurement data suggests that P2P
applications have a significant impact on the Internet traffic [3, 4].

In this paper, we focus on Gnutella-like decentralized unstructured
P2P environments since these systems are actively used by a large
community of Internet users today [13, 14, 27]. These networks,
while not centrally planned in structure, grow according to a
simple self-organizing process. Recent measurements [1, 13, 15]
show that they have power-law degree distributions. In order to
function well, the highly unstructured networks need efficient
search algorithms.

Current search algorithms in Gnutella-like networks tend to be
inefficient, either generating too much load on the system [2, 16],
or not meeting users’ requirements [11]. Hierarchical structure like
KaZaA [27] can reduce network traffic by using superpeers.
However, the query operations among superpeers are the same as
Gnutella networks. Current Gnutella flooding search algorithm
sends query messages to every possible peer. Doing so may waste
overwhelming bandwidth unnecessarily and break down the
systems eventually. Another approach is to keep the number of
query messages constant. This may result in the slow
responsiveness. A good search algorithm should be able to find a
good balance from different perspectives with contradictory goals.

In this paper, we propose a quantitative measure criterion of
searching performance: Search Efficiency (SE). Search efficiency
gives an objective performance measure from both users’ and
networks’ perspectives to address the performance issues of
scalability, reliability, and responsiveness. The factors taken into
account by SE include the number of results found, success
probability, search speed, and the total number of messages
generated.

Current Gnutella searching algorithm, flooding, is known to have
the scalability problem [2, 13]. It suffers from the exponentially
growing number of search messages. On the other hand, it has
been suggested random walker search algorithm [10, 12] can
improve the scalability problem. We find that, in our simulations,
the search efficiency of random walker algorithm almost remains
the same regardless of the search time because the number of the
query messages (walkers) remains constant regardless of the
network topology. However, random walker search algorithm
suffers from poor search efficiency in the short term although it
does have higher search efficiency compared to that of flooding
search in the long term. It is also difficult to determine the optimal
number of walkers in a dynamic environment in advance.

We therefore propose a dynamic search algorithm trying to solve
the problem of scalability and how to determine the optimal
number of running walkers. The proposed mechanism can decide

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICS’04, June 26–July 1, 2004, Saint-Malo, France.

Copyright 2004 ACM 1-58113-839-3/04/0006…$5.00.

 4

the number of walkers dynamically with respect to the peer’s
linking status and the search time, making it possible to decide the
optimal number of query messages. Moreover, by the dynamic
decision mechanism, a search can fully explore the local search
space to get responsive results and control the impact on the
network in the global space by a “simulated annealing” mechanism,
resulting in a scalable search. Simulation results demonstrate the
proposed mechanism outperforms existing search algorithms in
terms of high search efficiency in both long term and short term.

Simulation experiments are performed in a dynamic P2P
networking environment in order to collect convincing results for
algorithms evaluation. The factors considered include the network
topology, link distribution, peer’s joining and leaving, and
querying behavior as well as the activity of file sharing [9, 10, 17,
37]. Our dynamic network model is constructed based on these
factors that strongly reflect the real measurement studies [1, 4, 10,
28, 36].

The rest of this paper is organized as follows. In Section 2, we
briefly discuss various existing search algorithms. In Section 3, we
describe in details the proposed dynamic search algorithm. The
dynamic P2P environment modeling for our simulations is
described in Section 4. Before presenting our simulation results,
we introduce the unified evaluation criterion, Search Efficiency, in
Section 5. Performance evaluations of various search algorithms is
presented and discussed in Section 6. Finally, Section 7 concludes
our work.

2. RELATED WORK
P2P search algorithms can be classified as blind search algorithms
or learning-based algorithms. Flooding [18], random walk [10, 12,
17], modified-BFS [32], and expanding ring [10, 12] are examples
of blind search algorithms, in which query messages are generated
statically and relayed blindly to the neighbor peers.

When a node has the mechanism to build the knowledge, it can
relay the query messages more intelligently. These algorithms
include routing indices [34], local indices [11], intelligent search
[32], and APS [33], etc. Routing indices [34] classifies each
document into some thematic categories and can forward the query
messages more intelligently based on its category. The operation of
local indices [11] is similar to the super-peer networks that each
node collects the file indices of the peers within its radius of r.
While the search request is out of the node’s knowledge, it
performs a flooding search. Intelligent search [32] uses a function
to compute the similarity between the search query and the
recently answered requests. Nodes relay the query messages based
on the similarity results. APS [33] builds the knowledge with
respect to each file based on the past experience.

3. DYNAMIC SEARCH
The design goal of our dynamic search algorithm is to optimize the
search performance: returning query hits responsively, as well as
reducing numbers of redundant messages without reducing the
success probability. We hypothesize that the intrinsic nature of
search optimization methods in an unstructured P2P network is
similar to many search problems of the combinatorial optimization
methods. Therefore, we take an approach similar to the mechanism
called simulated annealing [30], a popular optimization method
applied in circuit design, artificial intelligence, and many other
fields, to construct our dynamic search mechanism. The term
simulated annealing derives from the roughly analogous physical
process of heating and then slowly cooling a substance to obtain a

strong crystalline structure. The procedure of simulated annealing
allows the system to move consistently towards lower energy
states, yet still “jump” out of local minima due to the probabilistic
acceptance of some upward moves during the first few iterations.

The ideas used in simulated annealing are applicable for a robust
unstructured P2P search. A robust search [38] has to search the
local space globally (introducing upward moves during the first
few iterations) to obtain responsive search results, and search the
global space locally (cooling the substance) to control the
unnecessary messages, leading to an efficient search (strong
crystalline structure).

Before describing our dynamic search, we first introduce the idea
of forwarding probability model, which mathematically specifies
the forwarding behavior of each peer to deliver queries to its
neighboring peers. The probability model will make it clearer and
easier to formally illustrate our dynamic search mechanism.

3.1 Probability Model
The mechanism of forwarding a query message to the ith
neighboring peer can be described by a probability function pi(t,oi),
where t denotes the current searching time and oi represents the
statistic information of the ith peer. When pi(t,oi) = 1, the query
message is forwarded to the ith peer. If pi(t,oi) = 0, the ith peer will
not receive the query message. When 0<pi<1, the message is
forwarded to the ith peer with probability pi. Assuming the number
of links (neighbors) of certain peer is l, we obtain the number of
messages the peer will forward at some search time t
as ∑ = =l

i i ktp1)(, where k is the number of forwarding walkers of
the peer on average. For pure flooding search algorithm, the
probability model, which every node adopts, can be described as

.1),(, =∀ ii otpi (1)

If the termination parameter TTL is used, then the probability
function should be modified as

 (1 ()) (,)i iu t TTL p t o− − ⋅ (2)

where u(t) is the unit step function (u(t) = 1, when t 0, ≧ u(t) = 0,
otherwise). In the case of random walk search algorithm, the
function pi(t) does not depend on the knowledge of its peers since
the algorithm randomly selects its peers to relay the query.
Moreover, within each node, there is one additional constrain,

,1)(=∑i i tp to let each node only forwards the received message to
one neighbor.

3.2 Dynamic Search Algorithm
Dynamic Search is a multi-stage search with a probability model
annealed with respect with search time. The mechanism for
dynamic search attempts to explore the local search space more
aggressively and limits the exploration gradually when search time
elapses. Therefore, each node will determine the optimal number
of query messages according to the information, for example, of
search time and the number of neighbors. While the search is out
of the local space (beyond n hops), dynamic search will change to
a limited search (one example is to ask only one of its neighbor).
The multi-stage probability model can satisfy the goals to search
aggressively in the local, control the network impact in the global,
and choose the number of optimal query messages in a dynamic
fashion. We specify our dynamic forwarding mechanism by the
following probability model and an illustrative example will be
given latter.

 5

Assume each node doesn’t collect the statistics information of its
peers with respect to the target (pi(t,oi) = pi(t)). For each node
applying the dynamic search algorithm, the probability function to
forward to its ith neighbor at search time t is

0 1() () (1) ()

()

n
i

Annealed_Flooding
u

p t p u t p u t p u t n

p u t n

= ⋅ − ⋅ − − − ⋅ −

+ ⋅ −

LL
1444444442444444443

 (3)

where n is the limit to aggressively explore the search space. The
probability p0 controls the extent the node to query its neighbors
and the remaining probabilities p0, p1,…,pn (except pu) “anneal” the
querying extent (the upper indices are indices about time, not
power orders). Since 0)(≥tpi and the probability for “annealed

flooding” must be non-negative, npppp +++≥ L210 and 0up ≥ ,
according to (3). To guarantee that the number of query messages
will not grow exponentially, pu can be set to be 1/l, where l is the
link degree of the relayed node. In this case, only one walker will
be generated per peer.

One can easily discover that flooding and random walk algorithms
are two static instances of the proposed model. If we set p0 = 1 and
other probability parameters to zeros, it is the flooding search
model, as stated in (1). If we set p0 = 1/l and the remaining to zeros
to make ∑ ==

l
i i tp1 1)(, this model is the random walk search.

Furthermore, if choosing the probability for t = 0 as 0 < p0 < 1, the
probability model becomes modified-BFS [32] where p0 is the
fraction parameter of modified-BFS. Apparently, these existing
search algorithms only adopt the forwarding mechanism specified
by p0, and thus their mechanisms are time-invariant and don’t
adapt dynamically over search time. Our proposed algorithm is
designed to be more flexible and adaptive in the dynamic network
environments for producing more efficiency compared to the
existing algorithms.

Besides, in the pure random walk search, it is difficult to determine
the optimal number of walkers in advance. With this dynamic
forwarding mechanism, peers can generate probabilistically the
dynamic number of query messages according to their linking
status and the time state of the search. Therefore, users have the
flexibility of how aggressively they want to search the network and
how far they want to extend the search coverage. If a user wants to
search results aggressively or covers the search in a wider range,
he or she can set a lager number of n. The number of query
messages is determined topologically and probabilistically based
on local connections of the searching node within the radius of n.

4. DYNAMIC P2P MODELING
In order for strong evaluation environment, we have built a
simulator, with search algorithms in question embedded, to model
possible aspects in file-sharing P2P systems: network topology [1],
peer cycle [37], peer querying [9], and object replication [10]. The
significance of this simulator comes from those modeled aspects
that strongly reflect the real measurement studies [1, 10, 28, 36, 9],
and the dynamic modeling of peer cycle, thus producing virtually
realistic results. We discuss the construction of the dynamic P2P
environment, in which the simulator is built, in two
tracks—network charactering and peer behaving—in the following
two sub-sections, respectively.

4.1 Network Modeling
For the network topology modeling, we choose to model our P2P
network as one of the popular P2P systems, Gnutella, to provide a
network context in which peers can perform their intended
activities. The measurements in [1, 10] have suggested that the
topology of Gnutella network has the property of two-segment
power-law link distribution. Thus, we construct a P2P network of
100,000 peers in our simulator, in which the link distribution
follows the reported the two-segment power law. The resulted
statistics of the topology embedded in our simulator are that the
maximum link degree is 632, mean is 11.73, and standard
deviation is 17.09. Once the node (peer) degrees are chosen, we
connect these peers randomly and reassure every peer is connected
(each peer has at least one link).

For the object distribution of the network, we assume there are 100
distinct objects with replication ratio of R = 1%; totally there are
100,000 objects in the network. The distribution of the 100,000
objects over the network follows the measurement characteristics
reported in [28]. In addition, due to the dynamic
environment—peers join and leave dynamically—described in the
following sub-section, the total number of objects available in the
network will fluctuate according to the network size (number of
on-line peers) but the replication ratio will roughly remain
constant.

4.2 Dynamic Peer Behavior Modeling
Our dynamic peer behavior modeling largely follows the proposed
idea of peer cycle [37], which includes joining, querying, idling,
leaving, and joining again to form a cycle. The joining and leaving
operations of peers (include idling) are inferred and then modeled
by the uptime and session duration distributions measured in [28,
36]. These measurement studies show similar results in the peer
uptime distribution, where half of the peers have uptime
percentage less than 10% and the best 20% of peers have 45%
uptime or more. We use the log-quadratic distribution suggested in
[36] to re-build the uptime distribution, which is plotted in Figure 1.
But for the session duration distribution, those two studies lead to
different results. The median of session time in [36] is about 15
minutes while it is 60 minutes in [28]. In our modeling, we choose
the median session duration time to be 20 minutes. The re-built
session duration distribution is drawn in Figure 2.

Figure 1. CDF of uptime

CDF of Uptime

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90

Uptime (%)

P
er
ce
nt
ag
e
of
 P
ee
rs

 6

Figure 2. CDF of session duration

By these two rebuilt distributions, we can generate a probability
model to decide when a peer should join or leave the network and
how long it should continually be online. The basic rule to assign
peers’ attributes is that peers with higher link degrees are assigned
to higher uptime percentages and longer session durations, and
vice versa. With these conditions, we map a two-hour long
dynamic join/leave pattern for peers. On average, there are 10
peers joining or leaving simultaneously. Since the mean value of
uptime distribution is about 18%, the resulting average number of
online peers is 18,152. Moreover, the maximum number of online
nodes is 24,218 while the minimum number is 4,886.

We model the dynamic querying model as Poisson distribution
with idle time λ= 50 minutes; that is, each peer will initiate a
search every 50 minutes on average. Since there is no direct
measurement about the idle time, we just use an experiential value.
The choice of this parameter is insensitive to our search
performance evaluation. With the idle time 50 minutes, there are
thus about 6 queries or searches processing concurrently in the
network on average. Totally, in this 2-hour simulation, we generate
43,632 search queries. Furthermore, for the query distribution of
search objects, we model it as zipf distribution with parameter a =
0.82, similar to the ones used in [10, 33]. Finally, our simulator’s
central clock is triggered per second, which measures a hop for
messaging passing and serves as a basic time unit for all peer
operations.

5. A UNIFIED ANALYSIS CRITERION:
SEARCH EFFICIENCY
A good search algorithm must be scalable, reliable, and responsive.
A unified performance indicator, which takes all factors into
consideration, is important and helpful. In this section, we will
propose a unified search analysis criterion and demonstrate its
power by analytically formulizing performance of flooding and
random walk in a structured graph—full binary tree.

5.1 Search Efficiency
We argue that an efficient search tends to be a scalable one
because it doesn’t generate a huge number of redundant messages
in an uncontrolled fashion or overwhelmingly waste the network
bandwidth unnecessarily. In addition, an efficient algorithm
means that the query messages generated during the search process
should have a high hit rate (finding the target objects). To design
an objective search performance, we first consider “query
efficiency”.

In the most efficient case, one query message will result in one
query hit. If a search generates 100 messages and gets 20 query
hits (20/100 = 0.2), it should be considered better or more efficient
than a search that incurs 50 messages to obtain 1 query hit (1/50 =
0.02) although the latter generates fewer messages. On the other
hand, if a search gets 100 hits at the cost of 10,000 messages, it
should be worse or less efficient than a search that obtains 50 hits
at the cost of 100 messages although the former acquires more
query hits. In a word, the key point is the ratio of query hits
gained to messages incurred, or the efficiency a search transforms
the search messages into search hits. With this reason, we may
simply define the query efficiency as the percentage of the number
of query hits to the number of messages generated. Furthermore,
we consider a normalization factor: replication ratio R. Replication
ratio is defined as the ratio of the average number of available files
in the network to the number of nodes, i.e., the network size. If the
replication ratio is high, a search tends to find targets easily;
otherwise, it is hard to get a hit. However, the efficiency of search
algorithms should not be affected by network conditions. Hence,
we must cancel out this factor in the query efficiency evaluation.
Therefore, “Query Efficiency (QE)” to measure the transformation
efficiency from query messages to query hits can be defined as:

() 100%
()

QueryHitsQueryEfficiency
QueryMsg ReplicaitonRatio

⋅= ×
⋅

 (4)

If the replication ratio is 1%, it means a search covering 100 nodes
(un-repeatedly) will get a query hit on the average. In this case,
when a search generates 100 messages to obtain a hit, Query
Efficiency is calculated as 100%. From a statistic point of view, it
indicates these 100 messages efficiently visit 100 distinct nodes,
and no redundant messages occur.

However, it is possible to have a Query Efficiency over 100%. It
doesn’t mean the query messages traverse distinct nodes more than
the number of messages or the number of redundant messages is
negative. In fact, it implies that the search is apt to find target
object over the average basis. This is true especially when a node
has the training mechanism to build the knowledge of the target
[11, 32, 33, 34].

Another important factor in the search performance is “search
responsiveness”. Responsiveness is the ability to respond quickly
to meet the needs of a user. In other words, a responsive algorithm
is the one with a fast lookup mechanism. A direct measurement of
responsiveness is the search response time; the responsiveness is
inverse proportional to response time. To incorporate search
responsiveness into Query Efficiency, we define Hits
Responsiveness assessing the search speed and quality as:

 TTL
h 1

QueryHits(h)HitsResponsiveness
h==∑ (5)

where h is the response time, measured in hops, QueryHits(h) is
the number of query hits between search time h－1 and h, and TTL
is the termination condition of search algorithms.

It is intuitive that a search getting 10 hits during t = 2 performs
better than one getting the same hits during t = 3 if the number of
messages incurred is out of considerations. Therefore, in this
evaluation metric, we put more weight on the query hits found in
short response time while less weight on hits in longer time.

Finally, we introduce the factor of Success Rate, the ability to find
the target successfully, to evaluate the reliability of a search

CDF of Session Duration

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100 100 120

Session Duration (min)

P
er
ce
nt
 o
f
P
ee
rs

 7

algorithm. Hence the unified performance criteria “Search
Efficiency(SE)” can be defined as:

1 ()TTL
t QueryHits t t SuccessRateSearchEfficiency

QueryMsg R
== ×∑ (6)

We don’t explicitly evaluate the performance in terms of coverage
and success rate as [33] and [35], respectively. First of all, large
search coverage doesn’t directly imply a successive search or many
query hits, or even a responsive search. Only query hits directly
indicate the success and search result quality. Second, large
coverage also means a large number of messages, which is
probably negative for the search performance. Due to the unclear
and indirect indication, we don’t consider those factors solely to
evaluate the search performance.

Usually a series of M search experiments will be performed. SE at
the hop count H can be calculated as:

SEh=H ()
%100

)(
/)(

1 1

1 1 ××
∑ ∑
∑ ∑=

= =

= =

R
eSuccessRat

hgesQueryMessa
hhQueryHits

M
i

H
h i

M
i

H
h i (7)

where i is the index for the M different searches, R is the
replication ratio, and QueryMessagesi(h) means the number of
messages generated for the ith search at hop = h (between hop h－
1 to h). With this hop-based SEh, we can observe clearly the
characteristics of various search algorithms at different hops. Most
importantly, SE gives an overall view on the scalability, reliability
and responsiveness of a search algorithm.

5.2 Analytic Evaluation of Search Efficiency
To see how SE evaluates the overall performance, we
derives the following analytic analysis in the simple
network topology of strictly binary tree for BFS and
Random walk search algorithm.
Assume an N-vertex strictly binary tree with depth of log2N
and that the requester is at the root node. Moreover, we
assume that the objects are uniformly distributed in the tree.
Before proceeding to analyze the efficiency of the specific
algorithms, we first prepare two critical factors that are on a
common basis of the search coverage C whose actual value
depends on the specific algorithm and depth a search arrives
at. First, since the objects are assumed to be uniformly
distributed, the number of objects searched out (QueryHits)
is proportional to the search coverage C. Thus, we have

CRtQueryHits ×=)(. (8)

Second, the success rate of a search, although not so
straightforward to derive, is also relevant to the search
coverage. To begin with, we know that each node owns the
targeted object with a probability of R; that is, each node
doesn’t have it with a probability of 1−R. Suppose a search
covers C vertices and thus the probability that those C nodes
share no targeted object is (1−R)C. Inversely, the probability
for those C nodes to share one and more than one objects, or
equivalently SuccessRate, is determined by

CReSuccessRat)1(1 −−= (9)

Breadth first search performs as broadcasting the received
queries to all neighbors except where the received query
came from. Therefore, by the regular structure of binary tree,
the search coverage terminated at depth TTL is given by

 1() 2tTTL
tCoverage C ==∑ (10)

Furthermore, it is interesting to see that the number of
messages required to traverse the tree is just the same as the
quantity of its search coverage thanks to the very nature of
BFS. Thus, QueryMsg = C = ∑t 2t. According to Equation
(4), (8), and (10), we can get

 1

1

2 100% 100%
2

tTTL
t

BFS tTTL
t

R
QueryEfficieny

R
=

=

⋅
= × =∑

∑
 (11)

Surprisingly, the formula of QEBFS yields a constant, 1 or
100%, which is invariant regardless of the replication ratio
R or the termination depth TTL. By the definition of QE, it
means that BFS is a perfectly query-efficient search in the
context of a binary tree; that is, BFS generates no redundant
messages while traversing a binary tree.

Then, SE defined in Equation (6) for BFS in a binary tree
becomes

()

()

1

1

2
1

1

21

1

1 12

2

2
1 1

2

tTTL
t

tTTL
t

tTTL
t

BFS tTTL
t

tTTL
t

tTTL
t

RR t
SE

R

t
R

=

=

∑
=

=

∑=

=

− −⋅
= ×

 = × − −  

∑
∑

∑
∑

 (12)

The derived SEBFS is a little complex for one to gain a
clear picture of its properties. To deliver a clearer one, we
assume the replication ratio R << 1, which is true in real
networks. Thus

()[] ∑
∑
∑

==
=

= ⋅=∑⋅−−×≅ TTL
t

tTTL
t

t
TTL
t

t

TTL
t

t

BFS tRR
t

SE 11
1

1 2211
2

2
.

(13)
For instance, R = 0.001 and SETTL=1 = 0.2%, SETTL=2 = 0.4%,
and SETTL=3 = 0.67% according to Equation (13). Note SE is
strictly increasing with respect to search time t. SETTL=2 is
exactly twice of SETTL=1 and SETTL=3 is more than three
times of SETTL=1. The reasons are two-fold. First, as formula
(11) shows, BFS in a binary tree is perfectly query-efficient,
which means every query effectively contributes to the
search coverage and in turn produces promising increase in

…………………..
Fig. 3 A strictly binary tree with the requester at the root

node.

Depth 2

Depth 3

Depth 1

Requester

 8

SE. Second, the speed query hits are returned is faster than
the decaying factor of response time t. Figure 4 plots the
SEBFS for different Rs and search depth.

When it comes to RW search, we use multiple “walkers”
to traverse the network. Each walker independently searches
the network and randomly chooses one of the next-hop
neighbors to continue its journey until the limit of TTL hops.

The chance that each vertex at depth t is visited by a
random walker is with equal probability of 1/2t. Thus, the
probability that all of the k walkers don’t visit certain node
is (1−1/2t)k. As a result, at depth t, the average number of
nodes visited (Coverage per Depth) by k random walkers is
given by the expectation value

1() 2 1 (1)
2

t k
t tE X  = − −  

. (14)

By (8), QueryHits(t) = R·E(X)t. Moreover, the query
messages of random walk are generated per hop for each
walker till terminated by TTL limit, hence QueryMsg =
k·TTL. As a result, QE of k-random walks is

1 1() ()TTL TTL
t tt t

RW k
R E X E X

QE
k TTL R k TTL
= =

=
⋅

= =
⋅ ⋅ ⋅

∑ ∑ . (15)

Furthermore, by (9), we can get

∑ =−−=−−=
TTL
t tXEC RReSuccessRat 1)()1(1)1(1 .

Therefore, Search Efficiency for k-random walks is

() 1 ()1 () /
1 1

TTL
t t

TTL
E Xtt

RW k
E X t

SE R
k TTL

=∑=
=

 = × − − ×  
∑ (16)

where E(X)t is determined by (14).
Assume a network with R = 1%, we can have a series of
performance results of SE in terms of various numbers of walkers
in Figure 5. We observe that all SEs consistently increase with
respect to the depth or search time. Nevertheless, they all are
smaller than that of BFS due to the too slow covering. As for the
number of walkers k, too large (e.g. 50) or too small (e.g. 2) ks

give degraded performance, thus resulting in a strong sensitivity in
the design of k.

6. SIMULATION EVALUATION
We compare four search algorithms (flooding, modified-BFS,
random walk, and dynamic search) to evaluate Search Efficiency
performance. For modified-BFS, we perform an experiment of
fraction parameter of 0.2. The number of walkers for random walk
is chosen as 10 [33]. For dynamic search, parameters are set as n =
2, p0 = 1.0, p1 = 0.7, p2 = 0.3, and pu =1/l, where l is the link degree
of the peer applying this model. With these specifications, the
dynamic search will operate as flooding at hop count h = 1, as
modified-BFS with probability of 0.3 at hop count h = 2, and as
random walk during h 3.≧

Dynamic network environments are as stated in Section 4. We
perform a 2-hour simulation, totally initiating 43,632 searches for
each algorithm (M = 43,632). The environment data and the query
distribution are all saved in files, and all the simulations for each
search algorithm use the same files specifying the same network
environment and peer dynamic behavior; so that, we can make sure
the fair performance evaluation for each search algorithm. The
simulation performance data are collected in Table 1 and the
simulations results for SE defined in (7) with hop depths h = 1 to 7
are plotted in Figure 4.

Figure 6. Search Efficiency comparison

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7Hop

Se
ar

ch

Search Algorithm without Flooding

Modified BFS
Random Walk

Dynamic

Figure 4. Search Efficiency of BFS in a full binary tree
by various Rs and TTLs

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10
Depth

Se
ar

ch
 E

ff
ic

ie
nc

y
fo

r B
FS

 (%
)

R=10%
R=5%
R=1%
R=0.5%
R=0.1%

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
Depth

Se
ar

ch
 E

ff
ic

ie
nc

y
fo

r R
W

 (%
)

k=1
k=2
k=5
k=20
k=50

Figure 5. Search Efficiency of RW in a full binary tree by
various number of walkers and TTLs with R = 1%

 9

We can observe in Figure 6 that the efficiency of flooding is high
compared with random walk in the local space (h = 2) but decrease
dramatically in the global region. Modified-BFS sustains the high
efficiency from h = 3 to h = 4 but performs poorly in the long-term
space. The performance degradation of these two algorithms is due
to the huge number of redundant messages, as discussed in [10, 35].
Random walk, on the other hand, needs some “warm up” time to
explore the search space and the performance increase is delayed
to the long-term search space due to the limited number of random
walkers. In the long-term search space, its search efficiency is
rather consistently high compared with flooding and modified-BFS.
As for the dynamic search, it inherits the high performance of
flooding in the local and the consistent performance of random
walk in the global, thus performing outstanding search efficiency
within all hop depths. Although the performance of dynamic
search decays when hop depths increase (there are still some
redundant messages), it still outperforms other search algorithms
over all search time. Moreover, in Section 3, we claim that our
dynamic algorithm decide the number of walkers each node
forwards to the next-hop peers in a “simulated annealing” style.
We therefore show the analysis of the number of messages
(walkers) on a hop-depth basis in Figure 7 based on the data in
Table 2.

Figure 7. The average number of walkers each peer generates

at various search time for search algorithms

The walker number analysis in Figure 7 further explains the
performance characteristics shown in Figure 6 by the principles of
simulated annealing. For flooding, the apparent large number of
forwarding walkers “overheats” the search system (overwhelms it
by messages) since it lacks the “cooling” process essential for the
optimization. For random walk, the initial number of walkers is 10,
but it imposes a hard limit on the walker number as 1 when h 2≧ .
This hard constraint corresponds to the lack of chance to jump out
the local minima in the annealing process, thus resulting in a too
“cool” state of annealing and this is why it “warms up” slowly. But
for our dynamic search, the number of forwarding walkers is 16.2
initially, annealed to 7.5, and finally kept a constant of 1. In this
way, dynamic search aggressively explores the local search space,
giving chance to jump out the local minima, to return responsive
query hits and increase the success probability. In the global search
space, it moderately controls the forwarding messages, applying
the cooling process, thus leading to consistent search performance.

7. CONCLUSION
In this paper, we propose a scalable and dynamic search algorithm.
With its dynamic probabilistically annealing forwarding
mechanism, the proposed algorithm can decide the number of
walkers dynamically with respect to the peer’s topological
information and the search time and then solves the problem of
how to determine the optimal number of random walkers. In
addition, through the “simulated annealing” forwarding
mechanism, the messages generated can be controlled in a constant,
thus avoiding the overwhelming messages incurred by the flooding
search. Therefore, the dynamic search is inherently a scalable
search.

Another focus of this paper is the dynamic P2P simulation
environment. Based on the dynamic P2P environment designed
according to the real measurement [28, 36], more convincing
results are collected. We also propose a performance evaluation
criterion, Search Efficiency to measure scalability, reliability, and
responsiveness of a search algorithm on a unified basis and make it
possible to get an objective and overall evaluation for various
search algorithms.

From simulation results, our dynamic search outperforms other
search algorithm in all hop-based analyses. It inherits the high
performance of flooding in the local and keeps the consistent
performance of random walk search in the long term.

ACKNOWLEDGEMENT
This work is supported in part by National Science Council (Taiwan)
grant NSC92-2213-E-002-087.

8. REFERENCES
[1] Matei Ripeanu, Adriana Iamnitchi and Ian Foster. Mapping

the Gnutella Network. IEEE Internet Computing, vol. 6, issue
1, Jan/Feb 2002, pp. 50-56.

[2] K.Sripanidkulchai, The popularity of Gnutella Queries and its
Implications on Scalability, white paper, Carnegie Mellon
Univ. Pittsburgh, Feb. 2001.

[3] D. Gallagher and R.Wilkerson. Network performance
statistics for university of South Carolina.
http://eddie.csd.sc.edu, Oct. 2001.

[4] D. Plonka. Uw-madion napster traffic measurement.
http://net.doit.wisc.edu/data/Napster, Mar. 2000.

[5] FreeNet website. http://freenet.sourceforge.net.
[6] Gnutella website. http://gnutella.wego.com.
[7] Napster website. http://napster.com.
[8] Morpheus website. http://www.morpheus-os.com.
[9] L Kunwadee Sripanidkulchai. The popularity of gnutella

queries and its implications on scalability. In O’Reilly’s
www.openp2p.com, February 2001.

[10] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker. Search and
replication in unstructured peer-to-peer networks. ICS, June
2002.

[11] Beverly Yang and Hector Garcia-Molina. Improving Search
in Peer-to-Peer Networks. ICDCS, 2002.

[12] L. Adamic, R. Lukose, and B. Huberman. Local Search in
Unstructured Networks. Handbook of Graphs and Networks:

Number of Walkers

0

5

10

15

20

25

30

1 2 3 4 5 6 7
Hop

N
um

be
r o

f W
al

ke
rs

Random Walk
Dynamic
Flooding
Modified BFS

 10

From the Genome to the Internet, S. Bornholdt and H.G.
Schuster (eds.), Wiley-VCH, Berlin, 2002.

[13] Clip2. Gnutella: To the bandwidth barrier and beyond.
http://www.clip2.com/gnutella.html, 2000.

[14] Kelly Truelove. Gnutella: Alive, well, and changing fast.
http://www.openp2p.com/pub/a/p2p/2001/01/25/truelove0101
.html.

[15] Theodore Hong. Performance. In Andy Oram, editor,
Peer-to-Peer: Harnessing the Benefits of a Disruptive
Technology, chap 14, p 203-241, O’Reilley, 2001.

[16] M. Jovanovic, F.Annexstein, and K. Berman. Scalability
Issues in Large Peer-to-Peer Networks: A Case Study of
Gnutella. Tech. Report. Univ. of Cincinnati, Lab. For
Networks and Applied Graph Theory, 2001.

[17] L. Adamic, R. Lukose, A. Puniyani, and B. Huberman. Search
in Power-Law Networks. Phys. Rev. E, Vol. 64, pages
46135-46143, 2001.

[18] Gnutella protocol specification v0.6.
http://rfc-gnutella.sourceforge.net/draft.txt

[19] K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt.
Improving data access in P2P systems. IEEE Internet
Computing, vol. 6, no. 1, Jan/Feb 2002, pp. 58-67.

[20] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Shenker. Chord: A scalable content-addressable
network. Proceedings of SIGCOMM’2001, August 2001.

[21] A. Rowstron and P. Druschel. Storage management and
caching in past, a large-scale, persistent peer-to-peer storage
utility. Proceedings of SOSP’01, 2001.

[22] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. Proceedings of
SIGCOMM’2001, August 2001.

[23] Ben Y. Zhao, John Kubiatowicz, and Anthony Joseph.
Tapestry: An infrastructure for fault-tolerant wide-area
location and routing. Technical Report UCB/CSD-01-1141,
University of California at Berkeley, Computer Science
Department, 2001.

[24] Megan Thomas and Ellen W. Zegura. Gt-itm: Georgia Tech.
Internetwork Topology Models. In
http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html, 1997.

[25] Edith Cohen and Scott Shenker. Replication strategies in
unstructured peer-to-peer network. SIGCOMM2002.

[26] eDonkey website. http://www.edonkey2000.com.
[27] KaZaA website. http://www.kazaa.com.
[28] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement

study of peer-to-peer file sharing systems. MMCN, San Jose,
CA, USA, January 2002.

[29] Leslie Lamport, Robert Shostak and Marshall Pease, The
Byzantine General Problem. ACM Transactions on
Programming Languages and Systems, Vol. 4, No. 3, Pages
382-401, July 1982.

[30] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by
simulated annealing. Science, V. 220, No. 4598, page
671~680, 1983.

[31] A. Rowstron and P. Druschel, Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems, International Conference on Distributed Systems
Platforms (Middle), Nov. 2001.

[32] V. Kalogeraki, D. Gunopulos and D. Zeinalipour-Yazti, A
Local Search Mechanism for Peer-to-Peer Networks, CIKM,
Nov. 2002.

[33] D. Tsoumakos and N. Roussopoulos. Adaptive Probabilistic
Search (APS) for Peer-to-Peer Networks. Technical Report
CS-TR-4451, Un. of Maryland, 2003.

[34] Arturo Crespo and Hector Garcia-Molina. Routing Indices for
Peer-to-Peer Systems. Proceedings of the International
Conference on Distributed Computing Systems (ICDCS). July
2002.

[35] S. Jiang, L. Guo and X. Zhang. LightFlood: an Efficient
Flooding Scheme for File Search in Unstructured Peer-to-Peer
Systems. ICPP, Oct. 2003.

[36] J. Chu, K. Labonte, and B. Levine. Availability and Locality
Measurements of Peer-to-Peer File Systems. SPIE, 2002.

[37] Z. Ge, D. R. Figueiredo, S. Jaiswal, J. Kurose, and D.
Towsley. Modeling Peer-Peer File Sharing Systems.
INFOCOM, April 2003.

[38] T. Lin and H. Wang. Search Performance Analysis and
Robust Search Algorithm in Unstructured Peer-to-Peer
Networks. GP2PC, April 2004.

 11

Table 1. Simulation data of 43,632 searches from different nodes for various search algorithms in the dynamic
Gnutella network. “Coverage” means the number of nodes visited un-repeatedly. “Message” shows the total number
of messages generated. “Rsp Time” indicates the average time a search spends when it succeeds. “Query Hits” means
the number of the targets returned. “Success (%)” represents the percentage a search returns the target successfully.

“Hit Rsp” is calculated according to Equation 5. “SE (%)” is calculated as Equation 7.

Hop 1 2 3 4 5 6 7
Coverage 11.53 265.55 3455.76 14179.83 18773.39 19103.41 19103.45
Message 16.00 423.00 7774.00 79206.00 91404.50 158220.30 158268.90
Rsp Time 1.95 2.82 2.33 2.20 2.13 2.18 2.23
Query Hits 0.11 2.72 35.61 145.66 192.20 195.47 195.47
Success (%) 9.71 76.63 99.57 99.99 99.99 99.99 99.99

Hits Rsp 0.11 1.64 12.38 39.89 49.20 54.71 55.98

Fl
oo

di
ng

SE(%) 6.67 29.63 15.85 5.036 5.38 3.44 3.54
Coverage 6.81 16.56 26.14 35.78 45.21 54.60 63.82
Message 10.00 20.00 29.90 39.80 49.70 59.50 69.20
Rsp Time 1.00 1.59 2.08 2.54 2.99 3.39 3.79
Query Hits 0.07 0.18 0.29 0.40 0.51 0.62 0.73
Success(%) 6.81 16.66 26.44 33.39 40.96 47.26 53.09

Hits Rsp 0.07 0.13 0.16 0.19 0.21 0.23 0.25R
an

do
m

 W
al

k

SE(%) 4.82 10.45 13.81 15.91 17.50 18.28 18.81
Coverage 11.69 116.39 229.43 341.44 448.51 553.48 654.11
Message 16.20 137.40 258.50 379.60 499.50 619.40 738.00
Rsp Time 1.00 1.82 2.08 2.25 2.40 2.51 2.61
Query Hits 0.12 1.29 2.58 3.84 5.06 6.25 7.40
Success(%) 10.65 59.89 76.77 84.33 89.05 92.01 93.92

Hits Rsp 0.12 0.70 1.14 1.45 1.69 1.89 2.06D
yn

am
ic

SE(%) 7.84 30.64 33.73 32.18 30.18 28.09 26.17
Coverage 4.18 27.50 148.75 860.51 3669.17 9396.35 13450.03
Message 3.40 28.90 162.70 1002.50 5430.30 21957.10 46972.70
Rsp Time 1.00 1.86 2.60 3.08 3.12 3.13 3.13
Query Hits 0.03 0.27 1.52 8.86 37.81 96.69 138.32
Success(%) 3.23 22.66 64.05 97.53 99.95 99.99 99.99

Hits Rsp 0.03 0.15 0.57 2.40 8.19 18.01 23.95

M
od

ifi
ed

 B
FS

SE(%) 3.16 11.91 22.37 23.37 15.08 8.20 5.10

