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ABSTRACT 
Recently Peer-to-Peer networks (P2P) have gained great attention 
and popularity. One key challenge aspect in a P2P resource sharing 
environment is an efficient searching algorithm. This is especially 
important for Gnutella-like decentralized and unstructured 
networks since they have power-law degree distributions. In this 
paper, we propose a dynamic search algorithm that decides the 
number of running walkers dynamically with respect to peers’ 
topological information and search time state. The dynamic search 
is able to control the extent of messages generating temporally by 
the simulated annealing mechanism, thus being a scalable search. 
Furthermore, we present a unified quantitative search performance 
measurement, Search Efficiency, to objectively capture dynamic 
behavior of various search algorithms in terms of scalability, 
reliability and responsiveness. We quantitatively characterize, 
through simulations in dynamic P2P environments, the 
performance of various existing searching algorithms. The 
proposed dynamic search outperforms other search algorithms in 
terms of Search Efficiency in both the local and global search 
spaces. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – Search Process. 

General Terms  
Algorithms, Measurement, Performance, Design, Reliability 

Keywords 
P2P, Search algorithm, Gnutella, Modeling 

1. INTRODUCTION 
Recently, a newly innovated architecture of Peer-to-Peer (P2P) [5, 
6, 7, 8] networks has caught people’s eyes and becomes popular 
for that peer-to-peer networks treat all client nodes functionally 
equivalent. Unlike the centralized client-server model, the nodes 
(servents) in the P2P network behave as clients and servers at the 
same time. P2P networks emphasize the ability to research out, 
discover, and connect with others regardless of whether a prior 
relationship exists. In addition to the ability to pool together large 
amounts of resources, the advantages of P2P systems include 

self-organization, load balancing, adaptation, and fault-tolerance. 
The rapid growth of Gnutella [1] is an example for the appealing 
architecture. Recent measurement data suggests that P2P 
applications have a significant impact on the Internet traffic [3, 4].  

In this paper, we focus on Gnutella-like decentralized unstructured 
P2P environments since these systems are actively used by a large 
community of Internet users today [13, 14, 27]. These networks, 
while not centrally planned in structure, grow according to a 
simple self-organizing process. Recent measurements [1, 13, 15] 
show that they have power-law degree distributions. In order to 
function well, the highly unstructured networks need efficient 
search algorithms. 

Current search algorithms in Gnutella-like networks tend to be 
inefficient, either generating too much load on the system [2, 16], 
or not meeting users’ requirements [11]. Hierarchical structure like 
KaZaA [27] can reduce network traffic by using superpeers. 
However, the query operations among superpeers are the same as 
Gnutella networks. Current Gnutella flooding search algorithm 
sends query messages to every possible peer. Doing so may waste 
overwhelming bandwidth unnecessarily and break down the 
systems eventually. Another approach is to keep the number of 
query messages constant. This may result in the slow 
responsiveness. A good search algorithm should be able to find a 
good balance from different perspectives with contradictory goals.  

In this paper, we propose a quantitative measure criterion of 
searching performance: Search Efficiency (SE). Search efficiency 
gives an objective performance measure from both users’ and 
networks’ perspectives to address the performance issues of 
scalability, reliability, and responsiveness. The factors taken into 
account by SE include the number of results found, success 
probability, search speed, and the total number of messages 
generated. 

Current Gnutella searching algorithm, flooding, is known to have 
the scalability problem [2, 13]. It suffers from the exponentially 
growing number of search messages. On the other hand, it has 
been suggested random walker search algorithm [10, 12] can 
improve the scalability problem. We find that, in our simulations, 
the search efficiency of random walker algorithm almost remains 
the same regardless of the search time because the number of the 
query messages (walkers) remains constant regardless of the 
network topology. However, random walker search algorithm 
suffers from poor search efficiency in the short term although it 
does have higher search efficiency compared to that of flooding 
search in the long term. It is also difficult to determine the optimal 
number of walkers in a dynamic environment in advance.  

We therefore propose a dynamic search algorithm trying to solve 
the problem of scalability and how to determine the optimal 
number of running walkers. The proposed mechanism can decide 
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the number of walkers dynamically with respect to the peer’s 
linking status and the search time, making it possible to decide the 
optimal number of query messages. Moreover, by the dynamic 
decision mechanism, a search can fully explore the local search 
space to get responsive results and control the impact on the 
network in the global space by a “simulated annealing” mechanism, 
resulting in a scalable search. Simulation results demonstrate the 
proposed mechanism outperforms existing search algorithms in 
terms of high search efficiency in both long term and short term. 

Simulation experiments are performed in a dynamic P2P 
networking environment in order to collect convincing results for 
algorithms evaluation. The factors considered include the network 
topology, link distribution, peer’s joining and leaving, and 
querying behavior as well as the activity of file sharing [9, 10, 17, 
37]. Our dynamic network model is constructed based on these 
factors that strongly reflect the real measurement studies [1, 4, 10, 
28, 36].     

The rest of this paper is organized as follows. In Section 2, we 
briefly discuss various existing search algorithms. In Section 3, we 
describe in details the proposed dynamic search algorithm. The 
dynamic P2P environment modeling for our simulations is 
described in Section 4. Before presenting our simulation results, 
we introduce the unified evaluation criterion, Search Efficiency, in 
Section 5. Performance evaluations of various search algorithms is 
presented and discussed in Section 6. Finally, Section 7 concludes 
our work. 

2. RELATED WORK 
P2P search algorithms can be classified as blind search algorithms 
or learning-based algorithms. Flooding [18], random walk [10, 12, 
17], modified-BFS [32], and expanding ring [10, 12] are examples 
of blind search algorithms, in which query messages are generated 
statically and relayed blindly to the neighbor peers.   

When a node has the mechanism to build the knowledge, it can 
relay the query messages more intelligently.   These algorithms 
include routing indices [34], local indices [11], intelligent search 
[32], and APS [33], etc. Routing indices [34] classifies each 
document into some thematic categories and can forward the query 
messages more intelligently based on its category. The operation of 
local indices [11] is similar to the super-peer networks that each 
node collects the file indices of the peers within its radius of r. 
While the search request is out of the node’s knowledge, it 
performs a flooding search. Intelligent search [32] uses a function 
to compute the similarity between the search query and the 
recently answered requests. Nodes relay the query messages based 
on the similarity results. APS [33] builds the knowledge with 
respect to each file based on the past experience.  

3. DYNAMIC SEARCH 
The design goal of our dynamic search algorithm is to optimize the 
search performance: returning query hits responsively, as well as 
reducing numbers of redundant messages without reducing the 
success probability. We hypothesize that the intrinsic nature of 
search optimization methods in an unstructured P2P network is 
similar to many search problems of the combinatorial optimization 
methods. Therefore, we take an approach similar to the mechanism 
called simulated annealing [30], a popular optimization method 
applied in circuit design, artificial intelligence, and many other 
fields, to construct our dynamic search mechanism. The term 
simulated annealing derives from the roughly analogous physical 
process of heating and then slowly cooling a substance to obtain a 

strong crystalline structure. The procedure of simulated annealing 
allows the system to move consistently towards lower energy 
states, yet still “jump” out of local minima due to the probabilistic 
acceptance of some upward moves during the first few iterations.  

The ideas used in simulated annealing are applicable for a robust 
unstructured P2P search. A robust search [38] has to search the 
local space globally (introducing upward moves during the first 
few iterations) to obtain responsive search results, and search the 
global space locally (cooling the substance) to control the 
unnecessary messages, leading to an efficient search (strong 
crystalline structure).    

Before describing our dynamic search, we first introduce the idea 
of forwarding probability model, which mathematically specifies 
the forwarding behavior of each peer to deliver queries to its 
neighboring peers. The probability model will make it clearer and 
easier to formally illustrate our dynamic search mechanism. 

3.1 Probability Model 
The mechanism of forwarding a query message to the ith 
neighboring peer can be described by a probability function pi(t,oi), 
where t denotes the current searching time and oi represents the 
statistic information of the ith peer. When pi(t,oi) = 1, the query 
message is forwarded to the ith peer. If pi(t,oi) = 0, the ith peer will 
not receive the query message. When 0<pi<1, the message is 
forwarded to the ith peer with probability pi. Assuming the number 
of links (neighbors) of certain peer is l, we obtain the number of 
messages the peer will forward at some search time t 
as ∑ = =l

i i ktp1 )( , where k is the number of forwarding walkers of 
the peer on average. For pure flooding search algorithm, the 
probability model, which every node adopts, can be described as 

.1),(, =∀ ii otpi                 (1) 

If the termination parameter TTL is used, then the probability 
function should be modified as 

           (1 ( )) ( , )i iu t TTL p t o− − ⋅              (2) 

where u(t) is the unit step function (u(t) = 1, when t 0, ≧ u(t) = 0, 
otherwise). In the case of random walk search algorithm, the 
function pi(t) does not depend on the knowledge of its peers since 
the algorithm randomly selects its peers to relay the query. 
Moreover, within each node, there is one additional constrain, 

,1)( =∑i i tp to let each node only forwards the received message to 
one neighbor.             

3.2 Dynamic Search Algorithm 
Dynamic Search is a multi-stage search with a probability model 
annealed with respect with search time. The mechanism for 
dynamic search attempts to explore the local search space more 
aggressively and limits the exploration gradually when search time 
elapses. Therefore, each node will determine the optimal number 
of query messages according to the information, for example, of 
search time and the number of neighbors. While the search is out 
of the local space (beyond n hops), dynamic search will change to 
a limited search (one example is to ask only one of its neighbor). 
The multi-stage probability model can satisfy the goals to search 
aggressively in the local, control the network impact in the global, 
and choose the number of optimal query messages in a dynamic 
fashion. We specify our dynamic forwarding mechanism by the 
following probability model and an illustrative example will be 
given latter. 
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Assume each node doesn’t collect the statistics information of its 
peers with respect to the target (pi(t,oi) = pi(t)). For each node 
applying the dynamic search algorithm, the probability function to 
forward to its ith neighbor at search time t is 

0 1( ) ( ) ( 1) ( )

( )

n
i

Annealed_Flooding
u

p t p u t p u t p u t n

p u t n

= ⋅ − ⋅ − − − ⋅ −

+ ⋅ −

LL
1444444442444444443

   (3) 

where n is the limit to aggressively explore the search space. The 
probability p0 controls the extent the node to query its neighbors 
and the remaining probabilities p0, p1,…,pn (except pu) “anneal” the 
querying extent (the upper indices are indices about time, not 
power orders). Since 0)( ≥tpi and the probability for “annealed 

flooding” must be non-negative, npppp +++≥ L210 and 0up ≥ , 
according to (3). To guarantee that the number of query messages 
will not grow exponentially, pu can be set to be 1/l, where l is the 
link degree of the relayed node. In this case, only one walker will 
be generated per peer.   

One can easily discover that flooding and random walk algorithms 
are two static instances of the proposed model. If we set p0 = 1 and 
other probability parameters to zeros, it is the flooding search 
model, as stated in (1). If we set p0 = 1/l and the remaining to zeros 
to make ∑ ==

l
i i tp1 1)( , this model is the random walk search. 

Furthermore, if choosing the probability for t = 0 as 0 < p0 < 1, the 
probability model becomes modified-BFS [32] where p0 is the 
fraction parameter of modified-BFS. Apparently, these existing 
search algorithms only adopt the forwarding mechanism specified 
by p0, and thus their mechanisms are time-invariant and don’t 
adapt dynamically over search time. Our proposed algorithm is 
designed to be more flexible and adaptive in the dynamic network 
environments for producing more efficiency compared to the 
existing algorithms.  

Besides, in the pure random walk search, it is difficult to determine 
the optimal number of walkers in advance. With this dynamic 
forwarding mechanism, peers can generate probabilistically the 
dynamic number of query messages according to their linking 
status and the time state of the search. Therefore, users have the 
flexibility of how aggressively they want to search the network and 
how far they want to extend the search coverage. If a user wants to 
search results aggressively or covers the search in a wider range, 
he or she can set a lager number of n. The number of query 
messages is determined topologically and probabilistically based 
on local connections of the searching node within the radius of n. 

4. DYNAMIC P2P MODELING 
In order for strong evaluation environment, we have built a 
simulator, with search algorithms in question embedded, to model 
possible aspects in file-sharing P2P systems: network topology [1], 
peer cycle [37], peer querying [9], and object replication [10]. The 
significance of this simulator comes from those modeled aspects 
that strongly reflect the real measurement studies [1, 10, 28, 36, 9], 
and the dynamic modeling of peer cycle, thus producing virtually 
realistic results. We discuss the construction of the dynamic P2P 
environment, in which the simulator is built, in two 
tracks—network charactering and peer behaving—in the following 
two sub-sections, respectively. 

4.1 Network Modeling 
For the network topology modeling, we choose to model our P2P 
network as one of the popular P2P systems, Gnutella, to provide a 
network context in which peers can perform their intended 
activities. The measurements in [1, 10] have suggested that the 
topology of Gnutella network has the property of two-segment 
power-law link distribution. Thus, we construct a P2P network of 
100,000 peers in our simulator, in which the link distribution 
follows the reported the two-segment power law. The resulted 
statistics of the topology embedded in our simulator are that the 
maximum link degree is 632, mean is 11.73, and standard 
deviation is 17.09. Once the node (peer) degrees are chosen, we 
connect these peers randomly and reassure every peer is connected 
(each peer has at least one link). 

For the object distribution of the network, we assume there are 100 
distinct objects with replication ratio of R = 1%; totally there are 
100,000 objects in the network. The distribution of the 100,000 
objects over the network follows the measurement characteristics 
reported in [28]. In addition, due to the dynamic 
environment—peers join and leave dynamically—described in the 
following sub-section, the total number of objects available in the 
network will fluctuate according to the network size (number of 
on-line peers) but the replication ratio will roughly remain 
constant.  

4.2 Dynamic Peer Behavior Modeling 
Our dynamic peer behavior modeling largely follows the proposed 
idea of peer cycle [37], which includes joining, querying, idling, 
leaving, and joining again to form a cycle. The joining and leaving 
operations of peers (include idling) are inferred and then modeled 
by the uptime and session duration distributions measured in [28, 
36]. These measurement studies show similar results in the peer 
uptime distribution, where half of the peers have uptime 
percentage less than 10% and the best 20% of peers have 45% 
uptime or more. We use the log-quadratic distribution suggested in 
[36] to re-build the uptime distribution, which is plotted in Figure 1. 
But for the session duration distribution, those two studies lead to 
different results. The median of session time in [36] is about 15 
minutes while it is 60 minutes in [28]. In our modeling, we choose 
the median session duration time to be 20 minutes. The re-built 
session duration distribution is drawn in Figure 2.  

 

 
Figure 1. CDF of uptime 
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Figure 2. CDF of session duration 

By these two rebuilt distributions, we can generate a probability 
model to decide when a peer should join or leave the network and 
how long it should continually be online. The basic rule to assign 
peers’ attributes is that peers with higher link degrees are assigned 
to higher uptime percentages and longer session durations, and 
vice versa. With these conditions, we map a two-hour long 
dynamic join/leave pattern for peers. On average, there are 10 
peers joining or leaving simultaneously. Since the mean value of 
uptime distribution is about 18%, the resulting average number of 
online peers is 18,152. Moreover, the maximum number of online 
nodes is 24,218 while the minimum number is 4,886. 

We model the dynamic querying model as Poisson distribution 
with idle time λ= 50 minutes; that is, each peer will initiate a 
search every 50 minutes on average. Since there is no direct 
measurement about the idle time, we just use an experiential value. 
The choice of this parameter is insensitive to our search 
performance evaluation.  With the idle time 50 minutes, there are 
thus about 6 queries or searches processing concurrently in the 
network on average. Totally, in this 2-hour simulation, we generate 
43,632 search queries. Furthermore, for the query distribution of 
search objects, we model it as zipf distribution with parameter a = 
0.82, similar to the ones used in [10, 33]. Finally, our simulator’s 
central clock is triggered per second, which measures a hop for 
messaging passing and serves as a basic time unit for all peer 
operations. 

5. A UNIFIED ANALYSIS CRITERION: 
SEARCH EFFICIENCY 
A good search algorithm must be scalable, reliable, and responsive. 
A unified performance indicator, which takes all factors into 
consideration, is important and helpful. In this section, we will 
propose a unified search analysis criterion and demonstrate its 
power by analytically formulizing performance of flooding and 
random walk in a structured graph—full binary tree. 

5.1 Search Efficiency 
We argue that an efficient search tends to be a scalable one 
because it doesn’t generate a huge number of redundant messages 
in an uncontrolled fashion or overwhelmingly waste the network 
bandwidth unnecessarily.  In addition, an efficient algorithm 
means that the query messages generated during the search process 
should have a high hit rate (finding the target objects). To design 
an objective search performance, we first consider “query 
efficiency”. 

In the most efficient case, one query message will result in one 
query hit. If a search generates 100 messages and gets 20 query 
hits (20/100 = 0.2), it should be considered better or more efficient 
than a search that incurs 50 messages to obtain 1 query hit (1/50 = 
0.02) although the latter generates fewer messages. On the other 
hand, if a search gets 100 hits at the cost of 10,000 messages, it 
should be worse or less efficient than a search that obtains 50 hits 
at the cost of 100 messages although the former acquires more 
query hits.  In a word, the key point is the ratio of query hits 
gained to messages incurred, or the efficiency a search transforms 
the search messages into search hits. With this reason, we may 
simply define the query efficiency as the percentage of the number 
of query hits to the number of messages generated. Furthermore, 
we consider a normalization factor: replication ratio R. Replication 
ratio is defined as the ratio of the average number of available files 
in the network to the number of nodes, i.e., the network size. If the 
replication ratio is high, a search tends to find targets easily; 
otherwise, it is hard to get a hit. However, the efficiency of search 
algorithms should not be affected by network conditions. Hence, 
we must cancel out this factor in the query efficiency evaluation. 
Therefore, “Query Efficiency (QE)” to measure the transformation 
efficiency from query messages to query hits can be defined as:  

( ) 100%
( )

QueryHitsQueryEfficiency
QueryMsg ReplicaitonRatio

⋅= ×
⋅

 (4) 

If the replication ratio is 1%, it means a search covering 100 nodes 
(un-repeatedly) will get a query hit on the average. In this case, 
when a search generates 100 messages to obtain a hit, Query 
Efficiency is calculated as 100%. From a statistic point of view, it 
indicates these 100 messages efficiently visit 100 distinct nodes, 
and no redundant messages occur.   

However, it is possible to have a Query Efficiency over 100%. It 
doesn’t mean the query messages traverse distinct nodes more than 
the number of messages or the number of redundant messages is 
negative. In fact, it implies that the search is apt to find target 
object over the average basis. This is true especially when a node 
has the training mechanism to build the knowledge of the target 
[11, 32, 33, 34]. 

Another important factor in the search performance is “search 
responsiveness”. Responsiveness is the ability to respond quickly 
to meet the needs of a user. In other words, a responsive algorithm 
is the one with a fast lookup mechanism. A direct measurement of 
responsiveness is the search response time; the responsiveness is 
inverse proportional to response time. To incorporate search 
responsiveness into Query Efficiency, we define Hits 
Responsiveness assessing the search speed and quality as: 

      TTL
h 1

QueryHits(h)HitsResponsiveness
h==∑       (5) 

where h is the response time, measured in hops, QueryHits(h) is 
the number of query hits between search time h－1 and h, and TTL 
is the termination condition of search algorithms.  

It is intuitive that a search getting 10 hits during t = 2 performs 
better than one getting the same hits during t = 3 if the number of 
messages incurred is out of considerations. Therefore, in this 
evaluation metric, we put more weight on the query hits found in 
short response time while less weight on hits in longer time. 

Finally, we introduce the factor of Success Rate, the ability to find 
the target successfully, to evaluate the reliability of a search 
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algorithm. Hence the unified performance criteria “Search 
Efficiency(SE)” can be defined as: 

1 ( )TTL
t QueryHits t t SuccessRateSearchEfficiency

QueryMsg R
== ×∑ (6) 

We don’t explicitly evaluate the performance in terms of coverage 
and success rate as [33] and [35], respectively. First of all, large 
search coverage doesn’t directly imply a successive search or many 
query hits, or even a responsive search. Only query hits directly 
indicate the success and search result quality. Second, large 
coverage also means a large number of messages, which is 
probably negative for the search performance. Due to the unclear 
and indirect indication, we don’t consider those factors solely to 
evaluate the search performance.  

Usually a series of M search experiments will be performed. SE at 
the hop count H can be calculated as: 

SEh=H ( )
%100

)(
/)(

1 1

1 1 ××
∑ ∑
∑ ∑=

= =

= =

R
eSuccessRat

hgesQueryMessa
hhQueryHits

M
i

H
h i

M
i

H
h i  (7) 

where i is the index for the M different searches, R is the 
replication ratio, and QueryMessagesi(h) means the number of 
messages generated for the ith search at hop = h (between hop h－
1 to h). With this hop-based SEh, we can observe clearly the 
characteristics of various search algorithms at different hops. Most 
importantly, SE gives an overall view on the scalability, reliability 
and responsiveness of a search algorithm. 

5.2 Analytic Evaluation of Search Efficiency 
To see how SE evaluates the overall performance, we 
derives the following analytic analysis in the simple 
network topology of strictly binary tree for BFS and 
Random walk search algorithm.  
Assume an N-vertex strictly binary tree with depth of log2N 
and that the requester is at the root node. Moreover, we 
assume that the objects are uniformly distributed in the tree. 
Before proceeding to analyze the efficiency of the specific 
algorithms, we first prepare two critical factors that are on a 
common basis of the search coverage C whose actual value 
depends on the specific algorithm and depth a search arrives 
at. First, since the objects are assumed to be uniformly 
distributed, the number of objects searched out (QueryHits) 
is proportional to the search coverage C. Thus, we have 

CRtQueryHits ×=)( .     (8) 

Second, the success rate of a search, although not so 
straightforward to derive, is also relevant to the search 
coverage. To begin with, we know that each node owns the 
targeted object with a probability of R; that is, each node 
doesn’t have it with a probability of 1−R. Suppose a search 
covers C vertices and thus the probability that those C nodes 
share no targeted object is (1−R)C. Inversely, the probability 
for those C nodes to share one and more than one objects, or 
equivalently SuccessRate, is determined by 

CReSuccessRat )1(1 −−=           (9) 

Breadth first search performs as broadcasting the received 
queries to all neighbors except where the received query 
came from. Therefore, by the regular structure of binary tree, 
the search coverage terminated at depth TTL is given by  

 1( ) 2tTTL
tCoverage C ==∑  (10) 

Furthermore, it is interesting to see that the number of 
messages required to traverse the tree is just the same as the 
quantity of its search coverage thanks to the very nature of 
BFS. Thus, QueryMsg = C = ∑t 2t. According to Equation 
(4), (8), and (10), we can get   

 1

1

2 100% 100%
2

tTTL
t

BFS tTTL
t

R
QueryEfficieny

R
=

=

⋅
= × =∑

∑
 (11) 

Surprisingly, the formula of QEBFS yields a constant, 1 or 
100%, which is invariant regardless of the replication ratio 
R or the termination depth TTL. By the definition of QE, it 
means that BFS is a perfectly query-efficient search in the 
context of a binary tree; that is, BFS generates no redundant 
messages while traversing a binary tree. 

Then, SE defined in Equation (6) for BFS in a binary tree 
becomes 

 

( )

( )

1

1

2
1

1

21

1

1 12

2

2
1 1

2

tTTL
t

tTTL
t

tTTL
t

BFS tTTL
t

tTTL
t

tTTL
t

RR t
SE

R

t
R

=

=

∑
=

=

∑=

=

− −⋅
= ×

 = × − −  

∑
∑

∑
∑

 (12) 

The derived SEBFS is a little complex for one to gain a 
clear picture of its properties. To deliver a clearer one, we 
assume the replication ratio R << 1, which is true in real 
networks.   Thus 
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∑
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(13) 
For instance, R = 0.001 and SETTL=1 = 0.2%, SETTL=2 = 0.4%, 
and SETTL=3 = 0.67% according to Equation (13). Note SE is 
strictly increasing with respect to search time t. SETTL=2 is 
exactly twice of SETTL=1 and SETTL=3 is more than three 
times of SETTL=1. The reasons are two-fold. First, as formula 
(11) shows, BFS in a binary tree is perfectly query-efficient, 
which means every query effectively contributes to the 
search coverage and in turn produces promising increase in 

………………….. 
Fig. 3 A strictly binary tree with the requester at the root

node.  

Depth 2 

Depth 3 

Depth 1 
 

Requester 
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SE. Second, the speed query hits are returned is faster than 
the decaying factor of response time t. Figure 4 plots the 
SEBFS for different Rs and search depth.  

When it comes to RW search, we use multiple “walkers” 
to traverse the network. Each walker independently searches 
the network and randomly chooses one of the next-hop 
neighbors to continue its journey until the limit of TTL hops. 

The chance that each vertex at depth t is visited by a 
random walker is with equal probability of 1/2t. Thus, the 
probability that all of the k walkers don’t visit certain node 
is (1−1/2t)k. As a result, at depth t, the average number of 
nodes visited (Coverage per Depth) by k random walkers is 
given by the expectation value 

1( ) 2 1 (1 )
2

t k
t tE X  = − −  

.           (14) 

By (8), QueryHits(t) = R·E(X)t. Moreover, the query 
messages of random walk are generated per hop for each 
walker till terminated by TTL limit, hence QueryMsg = 
k·TTL. As a result, QE of k-random walks is 

1 1( ) ( )TTL TTL
t tt t

RW k
R E X E X

QE
k TTL R k TTL
= =

=
⋅

= =
⋅ ⋅ ⋅

∑ ∑ .  (15)   

Furthermore, by (9), we can get  

∑ =−−=−−=
TTL
t tXEC RReSuccessRat 1 )()1(1)1(1 . 

Therefore, Search Efficiency for k-random walks is 

( ) 1 ( )1 ( ) /
1 1

TTL
t t

TTL
E Xtt

RW k
E X t

SE R
k TTL

=∑=
=

 = × − − ×  
∑ (16) 

where E(X)t is determined by (14). 
Assume a network with R = 1%, we can have a series of 
performance results of SE in terms of various numbers of walkers 
in Figure 5. We observe that all SEs consistently increase with 
respect to the depth or search time. Nevertheless, they all are 
smaller than that of BFS due to the too slow covering. As for the 
number of walkers k, too large (e.g. 50) or too small (e.g. 2) ks 

give degraded performance, thus resulting in a strong sensitivity in 
the design of k. 

6. SIMULATION EVALUATION 
We compare four search algorithms (flooding, modified-BFS, 
random walk, and dynamic search) to evaluate Search Efficiency 
performance. For modified-BFS, we perform an experiment of 
fraction parameter of 0.2. The number of walkers for random walk 
is chosen as 10 [33]. For dynamic search, parameters are set as n = 
2, p0 = 1.0, p1 = 0.7, p2 = 0.3, and pu =1/l, where l is the link degree 
of the peer applying this model. With these specifications, the 
dynamic search will operate as flooding at hop count h = 1, as 
modified-BFS with probability of 0.3 at hop count h = 2, and as 
random walk during h 3.≧  

Dynamic network environments are as stated in Section 4. We 
perform a 2-hour simulation, totally initiating 43,632 searches for 
each algorithm (M = 43,632). The environment data and the query 
distribution are all saved in files, and all the simulations for each 
search algorithm use the same files specifying the same network 
environment and peer dynamic behavior; so that, we can make sure 
the fair performance evaluation for each search algorithm. The 
simulation performance data are collected in Table 1 and the 
simulations results for SE defined in (7) with hop depths h = 1 to 7 
are plotted in Figure 4.    

 
Figure 6. Search Efficiency comparison 
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We can observe in Figure 6 that the efficiency of flooding is high 
compared with random walk in the local space (h = 2) but decrease 
dramatically in the global region. Modified-BFS sustains the high 
efficiency from h = 3 to h = 4 but performs poorly in the long-term 
space. The performance degradation of these two algorithms is due 
to the huge number of redundant messages, as discussed in [10, 35]. 
Random walk, on the other hand, needs some “warm up” time to 
explore the search space and the performance increase is delayed 
to the long-term search space due to the limited number of random 
walkers. In the long-term search space, its search efficiency is 
rather consistently high compared with flooding and modified-BFS. 
As for the dynamic search, it inherits the high performance of 
flooding in the local and the consistent performance of random 
walk in the global, thus performing outstanding search efficiency 
within all hop depths. Although the performance of dynamic 
search decays when hop depths increase (there are still some 
redundant messages), it still outperforms other search algorithms 
over all search time. Moreover, in Section 3, we claim that our 
dynamic algorithm decide the number of walkers each node 
forwards to the next-hop peers in a “simulated annealing” style. 
We therefore show the analysis of the number of messages 
(walkers) on a hop-depth basis in Figure 7 based on the data in 
Table 2. 

 
Figure 7. The average number of walkers each peer generates 

at various search time for search algorithms 
 

The walker number analysis in Figure 7 further explains the 
performance characteristics shown in Figure 6 by the principles of 
simulated annealing. For flooding, the apparent large number of 
forwarding walkers “overheats” the search system (overwhelms it 
by messages) since it lacks the “cooling” process essential for the 
optimization. For random walk, the initial number of walkers is 10, 
but it imposes a hard limit on the walker number as 1 when h 2≧ . 
This hard constraint corresponds to the lack of chance to jump out 
the local minima in the annealing process, thus resulting in a too 
“cool” state of annealing and this is why it “warms up” slowly. But 
for our dynamic search, the number of forwarding walkers is 16.2 
initially, annealed to 7.5, and finally kept a constant of 1. In this 
way, dynamic search aggressively explores the local search space, 
giving chance to jump out the local minima, to return responsive 
query hits and increase the success probability. In the global search 
space, it moderately controls the forwarding messages, applying 
the cooling process, thus leading to consistent search performance. 

7. CONCLUSION 
In this paper, we propose a scalable and dynamic search algorithm. 
With its dynamic probabilistically annealing forwarding 
mechanism, the proposed algorithm can decide the number of 
walkers dynamically with respect to the peer’s topological 
information and the search time and then solves the problem of 
how to determine the optimal number of random walkers. In 
addition, through the “simulated annealing” forwarding 
mechanism, the messages generated can be controlled in a constant, 
thus avoiding the overwhelming messages incurred by the flooding 
search. Therefore, the dynamic search is inherently a scalable 
search. 

Another focus of this paper is the dynamic P2P simulation 
environment. Based on the dynamic P2P environment designed 
according to the real measurement [28, 36], more convincing 
results are collected. We also propose a performance evaluation 
criterion, Search Efficiency to measure scalability, reliability, and 
responsiveness of a search algorithm on a unified basis and make it 
possible to get an objective and overall evaluation for various 
search algorithms.  

From simulation results, our dynamic search outperforms other 
search algorithm in all hop-based analyses. It inherits the high 
performance of flooding in the local and keeps the consistent 
performance of random walk search in the long term.  
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Table 1. Simulation data of 43,632 searches from different nodes for various search algorithms in the dynamic 
Gnutella network. “Coverage” means the number of nodes visited un-repeatedly. “Message” shows the total number 
of messages generated. “Rsp Time” indicates the average time a search spends when it succeeds. “Query Hits” means 
the number of the targets returned. “Success (%)” represents the percentage a search returns the target successfully. 

“Hit Rsp” is calculated according to Equation 5. “SE (%)” is calculated as Equation 7. 
 

Hop 1 2 3 4 5 6 7
Coverage 11.53 265.55 3455.76 14179.83 18773.39 19103.41 19103.45
Message 16.00 423.00 7774.00 79206.00 91404.50 158220.30 158268.90
Rsp Time 1.95 2.82 2.33 2.20 2.13 2.18 2.23
Query Hits 0.11 2.72 35.61 145.66 192.20 195.47 195.47
Success (%) 9.71 76.63 99.57 99.99 99.99 99.99 99.99

Hits Rsp 0.11 1.64 12.38 39.89 49.20 54.71 55.98

Fl
oo

di
ng

 

SE(%) 6.67 29.63 15.85 5.036 5.38 3.44 3.54
Coverage 6.81 16.56 26.14 35.78 45.21 54.60 63.82
Message 10.00 20.00 29.90 39.80 49.70 59.50 69.20
Rsp Time 1.00 1.59 2.08 2.54 2.99 3.39 3.79
Query Hits 0.07 0.18 0.29 0.40 0.51 0.62 0.73
Success(%) 6.81 16.66 26.44 33.39 40.96 47.26 53.09

Hits Rsp 0.07 0.13 0.16 0.19 0.21 0.23 0.25R
an

do
m

 W
al

k 

SE(%) 4.82 10.45 13.81 15.91 17.50 18.28 18.81
Coverage 11.69 116.39 229.43 341.44 448.51 553.48 654.11
Message 16.20 137.40 258.50 379.60 499.50 619.40 738.00
Rsp Time 1.00 1.82 2.08 2.25 2.40 2.51 2.61
Query Hits 0.12 1.29 2.58 3.84 5.06 6.25 7.40
Success(%) 10.65 59.89 76.77 84.33 89.05 92.01 93.92

Hits Rsp 0.12 0.70 1.14 1.45 1.69 1.89 2.06D
yn

am
ic

 

SE(%) 7.84 30.64 33.73 32.18 30.18 28.09 26.17
Coverage 4.18 27.50 148.75 860.51 3669.17 9396.35 13450.03
Message 3.40 28.90 162.70 1002.50 5430.30 21957.10 46972.70
Rsp Time 1.00 1.86 2.60 3.08 3.12 3.13 3.13
Query Hits 0.03 0.27 1.52 8.86 37.81 96.69 138.32
Success(%) 3.23 22.66 64.05 97.53 99.95 99.99 99.99

Hits Rsp 0.03 0.15 0.57 2.40 8.19 18.01 23.95

M
od

ifi
ed

 B
FS

 

SE(%) 3.16 11.91 22.37 23.37 15.08 8.20 5.10
 


