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The optimal compensator for nonlinear phase noise
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Abstract

The nonlinear phase noise, often called the Gordon–Mollenauer effect, is correlated with the received intensity. The

optimal compensator is the minimum mean-square error (MMSE) compensator to estimate the nonlinear phase

noise using the received intensity. The MMSE compensator is derived analytically and approximated by subtracting a

correction term proportional to the received intensity.
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1. Introduction

Gordon and Mollenauer [1] showed that when optical amplifiers are used in lightwave communication
systems, the interaction of amplifier noise and fiber Kerr effect causes phase noise, often called the Gordon–

Mollenauer effect. Nonlinear phase noise degrades the performance of both phase-shifted keying (PSK) and

differential phase-shift keying (DPSK) systems. This class of constant-intensity modulation have renewed

attention recently [2–4]. Because the nonlinear phase noise is correlated with the received intensity, the

received intensity can be used to correct the nonlinear phase noise [5–7]. The transmission distance can

approximately be doubled if the nonlinear phase noise is the dominant impairment [5,7].

In all nonlinear phase noise compensators [5–7], the correction term is proportional to the received

intensity, called linear compensator in later parts of this paper. While the all-optical compensator [5]
is limited by the available nonlinear phase shifter, the electro-optic implementation [6] and all-electronic

implementation [7] can use electronic signal processing to provide arbitrary nonlinear functions. To cor-

rect the nonlinear phase noise, a fundamental problem is to find the optimal compensator without the
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constraint of linearity. It is also important to verify whether the linear compensator is close to the optimal

compensator.

The optimal compensator should minimize the variance of the residual nonlinear phase noise [5–7]. The

optimal compensator is the minimummean-square error (MMSE) estimator to estimate the nonlinear phase

noise using the received intensity. This paper derives the MMSE compensator analytically the first time. The

linear compensator derived in [7] can be used to well approximate the nonlinear MMSE compensator.
2. The minimum mean-square error estimator

For an N -span system, the total nonlinear phase noise is [1,5,7]
/NL ¼ cLeff jE0

h
þ n1j2 þ jE0 þ n1 þ n2j2 þ � � � þ jE0 þ n1 þ � � � þ nN j2

i
; ð1Þ
where E0 is the transmitted signal, nk, k ¼ 1; . . . ;N , are the optical amplifier noise introduced into the

system at the kth fiber span, nk are independent identically distributed (i.i.d.) complex zero-mean circular

Gaussian random variables with Efjnkj2g ¼ 2r2, where r2 is the noise variance per dimension per span, c is

the fiber nonlinear coefficient, and Leff is the effective length per span. In the nonlinear phase noise of (1), all

fiber spans are assumed to be identical with the same launched power, the same fiber length, the same span

loss, and using optical amplifiers having the same noise figure. The amplifier noise from the polarization
orthogonal to the signal is ignored [1]. Nonlinear phase noise of (1) is induced by self-phase modulation of

the amplifier noise having a bandwidth matched to the transmitted signal. Cross-phase modulation induced

phase noise is ignored in (1).

The received intensity q2
r is used to compensate the nonlinear phase noise of (1), where the received

amplitude is
qr ¼ jE0 þ n1 þ � � � þ nN j: ð2Þ

The received amplitude of (2) ignores the fiber loss of the last fiber span and the required optical am-

plifier to compensate for it. The actual received electric field is
Er ¼ ðE0 þ n1 þ � � � þ nN Þ exp ð 	 j/NLÞ ð3Þ

with nonlinear phase rotation of /NL. The nonlinear phase noise of (1) does not change the received

amplitude qr of (2). For binary PSK and DPSK, only the real part of the received electric field or the

corresponding real differential component is required to detect the transmitted data. Both real and imag-

inary part of the electric field of Er (3) can be measured by an optical phase-locked loop for PSK signal [8]

and the corresponding differential components can be measured by two interferometers for DPSK signal
[3]. The optimal compensator minimizes the phase noise in the received electric field of Er by minimize the

variance of the residual nonlinear phase noise. Using the received intensity q2
r , the optimal compensator is

the MMSE estimator based on the conditional mean
E /NLjqrf g; ð4Þ

where Ef�g denotes expectation.

The variance of /NL 	 E /NLjqrf g is minimized using the nonlinear MMSE compensator of (4). The

optimal compensator can be implemented using a phase modulator [6] driven by the waveform of (4) or an

electrical compensator to calculate Er exp jE /NLjqrf g½ � using electronic signal processing [7]. If the received

phase is demodulated as /r ¼ argðErÞ, the compensator is a combiner of /r þ E /NLjqrf g. There is no

difference between E /NLjq2
r

� �
and the expectation of (4) because the received amplitude is a positive

number qr P 0. Here, we refer the estimator of (4) as a correction by received intensity although the ex-

pression of (4) is based on received amplitude.
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Without loss of generality, assume that the transmitted electric field is E0 ¼ A as a real value, the results

of Appendix A can be used to estimate
E jA
n

þ n1 þ � � � þ nkj2jjAþ n1 þ � � � þ nN j
o
: ð5Þ
Compared the estimation of (5) with (A.1) of Appendix A, we have n1 ¼ n1 þ � � � þ nk and

n2 ¼ nkþ1 þ � � � þ nN that are zero-mean complex circular Gaussian random variables with variance of

Efjn1j2g ¼ 2kr2 and Efjn2j2g ¼ 2ðN 	 kÞr2. Using the function of uðr1; r2Þ defines in (A.1) of Appendix A,

we get
E jA
n

þ n1 þ � � � þ nkj2jqr

o
¼ u

ffiffiffi
k

p
r;

ffiffiffiffiffiffiffiffiffiffiffiffi
N 	 k

p
r

� 	
: ð6Þ
For the estimator of (4), we get
E /NLjqrf g ¼ cLeff

XN
k¼1

u
ffiffiffi
k

p
r;

ffiffiffiffiffiffiffiffiffiffiffiffi
N 	 k

p
r

� 	
: ð7Þ
Substitute the function of uðr1; r2Þ of (A.8) of Appendix A to (7), we get
E /NLjqrf g ¼ cLeff

ð2N 	 1ÞðN 	 1Þ
6N

A2

�
þ N 2 	 1

3
r2 þ ð2N þ 1ÞðN þ 1Þ

6N
q2
r

þ ðN 2 	 1ÞAqr

3N
I1 Aqr=ðNr2Þð Þ
I0 Aqr=ðNr2Þð Þ

�
; ð8Þ
where I0ð�Þ and I1ð�Þ are the zeroth- and first-order modified Bessel function of the first kind. To derive (8),

the following relationships are used:
XN
k¼1

k2 ¼ 1

6
Nð2N þ 1ÞðN þ 1Þ; ð9Þ
XN
k¼1

ðN 	 kÞ2 ¼ 1

6
Nð2N 	 1ÞðN 	 1Þ; ð10Þ
XN
k¼1

k2ðN 	 kÞ ¼
XN
k¼1

kðN 	 kÞ2 ¼ 1

12
N 2ðN 2 	 1Þ; ð11Þ
XN
k¼1

kðN 	 kÞ ¼ 1

6
NðN 2 	 1Þ: ð12Þ
Because I1ðxÞ=I0ðxÞ 
 x=2 for small x < 0:5, the phase estimator of (8) is a linear function of the received

intensity of q2
r when the received signal is small. Because I1ðxÞ=I0ðxÞ 
 1 for large x > 10, the phase esti-

mator of (8) is a quadratic function of the received amplitude of qr when the received signal is large. The

interested systems usually have high optical signal-to-noise ratio (SNR) of qO ¼ A2=ð2Nr2Þ and the received
signal has an amplitude around A, i.e., qr 
 A, the phase estimator of (8) mostly functions as a nonlinear

compensator.

For large number of fiber span of N � 1 and high optical SNR, the phase estimator of (8) is
E /NLjqrf g ¼ h/NLi
3

1



þ q2

r

A2
þ qr

A
I1 qOA=qrð Þ
I0 qOA=qrð Þ

�
; ð13Þ
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where the mean nonlinear phase noise h/NLi ¼ NA2 þ NðN þ 1Þr2 � NA2. The estimation of (13) divides the

estimation into three parts, the first term is one third the mean nonlinear phase, the second term pro-

portional to received intensity, and third term is the nonlinear term.
3. Numerical results

Fig. 1 show the simulated distribution and the decision regions of the received signal with nonlinear

phase noise. The received electric field Er (3) includes the contribution of amplifier noise of

E0 þ n1 þ � � � þ nN . The mean nonlinear phase noise h/NLi are 1 and 2 rad for Figs. 1(a) and 1(b), re-

spectively. The mean nonlinear phase noise of h/NLi ¼ 1 rad corresponds to the limitation estimated by [1].

The mean nonlinear phase noise of h/NLi ¼ 2 rad corresponds to the limitation given by [7] when the

variance of nonlinear phase noise is reduced by a factor of four using a linear compensator. The decision

boundaries shown as solid line are the MMSE compensator of (8). The dotted lines are the optimal decision

boundary using the linear compensator [7].
Fig. 1 are plotted for the case that the optical SNR qO ¼ 18, corresponding to an error probability of

10	9 if the amplifier noise is the sole impairment. The number of spans is N ¼ 32. The transmitted signal is

�A for binary PSK system, the distribution of Fig. 1 has 5000 points for different noise combinations.

Fig. 1 show that the decision regions given by the MMSE estimator of (8) and that given by [7] has small

difference. The decision boundary given by [7] for the case of h/NLi ¼ 1 rad has larger rotation then the

MMSE curve given by (8). However, the decision boundary given by [7] for the case of h/NLi ¼ 2 rad has

smaller rotation then the MMSE curve given by (8). Further numerical results show that the decision

boundary given by [7] and the MMSE curve of (8) almost overlap with each other when h/NLi ¼ 1:5.
Fig. 2 shows the simulated phase noise standard deviation as a function of mean nonlinear phase noise

with and without compensation. For all 5000 points in Fig. 1, the standard deviation of the nonlinear phase

noise /NL of (1), denotes as r/NL
, is calculated. When the nonlinear phase noise is compensated using a

linear compensator of aq2
r proportional to the received intensity of q2

r , the standard deviation of the residual

nonlinear phase noise of /NL 	 aq2
r is calculated and denotes as r/NL	aq2r

, where a is the scale factor. When

the nonlinear phase noise is compensated using the MMSE compensator E /NLjqrf g of (8), the standard

deviation of the residual nonlinear phase noise of /NL 	 E /NLjqrf g is calculated and denotes as

r/NL	E /NL jqrf g. Fig. 2 also plots the approximations [7]
Fig. 1

(b) h/
r/NL
� 0:1925h/NLi and r/NL	aq2r

� 0:1925h/NLi: ð14Þ

Fig. 2 shows that there is almost no difference between the standard deviation of the residual nonlinear

phase noise of r/NL	aq2r
using the linear compensator [7] and the standard deviation of the residual nonlinear
. Simulated distribution and the decision regions of the received signal for mean nonlinear phase noises of (a) h/NLi ¼ 1 rad and

NLi ¼ 2 rad. The decision boundary is given by solid line (8) and dotted line [7].



Fig. 2. The standard deviation of nonlinear phase noise with and without compensation. The solid lines are the approximation of (14).
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phase noise of r/NL	E /NL jqrf g using the MMSE compensator (8). In general, r/NL	E /NL jqrf g is smaller than

r/NL	aq2r
by about only 0:2%. Fig. 2 also show that the approximation of (14) is also very accurate.
4. Discussion

While most of the above section is related to PSK systems, as shown in [7], the optimal compensator for

DPSK systems follows the same principle. In DPSK system, the differential phase of /rðtÞ 	 /rðt 	 T Þ is
detected, where T is the symbol period. The optimal MMSE compensator should be
E /NLðtÞjqrðtÞf g 	 E /NLðtf 	 T Þjqrðt 	 T Þg; ð15Þ

similar to (13).

Besides Fig. 1, all the above discussion ignores the contribution of linear phase noise induced by the

optical amplifier noise, i.e., the phase of E0 þ n1 þ � � � þ nN . If the limitation of nonlinear phase noise is

estimated based on the mothod of [1] in which the variances of linear and nonlinear phase noise are more or

less the same, from Fig. 2, the mean nonlinear phase noise can be doubled. Because the mean nonlinear

phase noise is proportional to the distance, the transmitted distance can be doubled if the nonlinear phase

noise is the dominated impairment. Linear phase noise is correlated with neither nonlinear phase noise nor

residual nonlinear phase noise. The variance of the overall phase noise, including both linear and nonlinear

phase noise, is the sum of their corresponding variances. The Q-factor due to all phase noises, defined in [1],
can be calculated accordingly.

Both Figs. 1 and 2 show that the linear compensator from [5–7], if optimized, is very close to the optimal

MMSE compensator given by (4). Using (A.10) of Appendix A in both (7) and (8), the sub-optimal linear

compensator in [7] can be derived as proportional to ðN þ 1Þ=2þ ðN 	 1Þq2
r=2.

As shown in Fig. 2, the variances of the residual nonlinear phase noise of the linear and optimal MMSE

compensator have little difference. When linear and optimal MMSE compensators are used, the probability

density functions of the residual nonlinear phase noise [9]may not be the same, especially the tail probabilities.

With the approximation of (A.9) fromAppendix A, the probability density function of the residual nonlinear
phase noise is Gaussian distributed. In practice, the residual nonlinear phase noise has a larger tail probability

than that of the Gaussian distribution [9]. While it is possible to derive the probability density function of the

residual nonlinear phase for the linear compensator, that for nonlinear compensator is difficult to derive.
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This paper ignores the effects of fiber dispersion. If the nonlinear phase noise is defined as the phase noise

induced by self-phase modulation of the signal and amplifier noise from an optical bandwidth matched to the

signal, the signal and amplifier noise propagates in more or less the same speed. Induced by self-phase

modulation, the nonlinear phase noise of (1) is not changed due to fiber dispersion. For high-order effects, the

model of (1) needs to modify if fiber dispersion changes the optical waveform or optical pulse, reduces or

increases the amplitude of E0, andmay change the effective length of Leff . If dispersion compensation per span
can reshape the optical waveform, to certain extend, fiber dispersion does not change the model of this paper.
5. Conclusion

When received intensity or amplitude is used to compensate for nonlinear phase noise, the optimal

nonlinear MMSE compensator is derived analytically the first time. The MMSE compensator has a linear

term proportional to the received intensity and a nonlinear term as the product of the received amplitude
and the ratio of two modified Bessel functions of first kind. In term of the variance of the residual nonlinear

phase noise, the linear compensator in which the correction term is proportional to the received intensity

approximates the optimal MMSE compensator well.
Appendix A. The estimation of E{|A+ n1|
2||A+ n1 + n2|}

For a real value A and two zero-mean complex circular Gaussian variables n1 and n2, we would like to
find
uðr1; r2Þ ¼ E jA
n

þ n1j2jq2

o
; ðA:1Þ
where q2 ¼ jAþ n1 þ n2j, Efn1g ¼ Efn2g ¼ 0, Efjn1j2g ¼ 2r2
1, and Efjn2j2g ¼ 2r2

2. The estimation of (A.1)

is used to derive the MMSE estimator of (4). The real value of A can be used to represent the amplitude of
jE0j that is a constant for both PSK and DPSK signal. Define x1 þ jy1 ¼ Aþ n1 and x2 þ jy2 ¼ Aþ n1 þ n2,

the joint probability density function (p.d.f.) of x1; y1; x2; y2 is
fxyðx1; y1; x2; y2Þ ¼
1

ð2pr1r2Þ2
exp

"
	 ðx1 	 AÞ2 þ y21

2r2
1

#
exp

"
	 ðx2 	 x1Þ2 þ ðy2 	 y1Þ2

2r2
2

#
: ðA:2Þ
Changing the variable to x2 ¼ q2 cos h2 and y2 ¼ q2 sin h2, the marginal p.d.f. of q2 is a Rician distri-

bution of
fq2ðq2Þ ¼
Z þ1

	1

Z þ1

	1

Z þp

	p
fxy x1; y1; q2 cos h2; q2 sin h2ð Þq2 dh2 dx1 dy1

¼ q2

ðr2
1 þ r2

2Þ
1=2

exp

�
	 A2 þ q2

2

r2
1 þ r2

2

�
I0

Aq2

r2
1 þ r2

2

� �
; ðA:3Þ
The estimation of (A.1) is
uðr1; r2Þ ¼
Z þ1

	1

Z þ1

	1
ðx21 þ y21Þfxyjq2 x1; y1jq2ð Þdx1 dy1; ðA:4Þ
where the conditional p.d.f. is
fxyjq2 x1; y1jq2ð Þ ¼ 1

fq2ðq2Þ

Z þp

	p
fxy x1; y1; q2 cos h2; q2 sin h2ð Þq2 dh2: ðA:5Þ
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The integration of (A.4) becomes
q2

fq2ðq2Þ

Z þp

	p

Z þ1

	1

Z þ1

	1
ðx21 þ y21Þfxy x1; y1; q2 cos h2; q2 sin h2ð Þdx1 dy1 dh2: ðA:6Þ
Integrated first over x1 and x2, we get
1

2pðr2
1 þ r2

2Þ
2I0

Aq2
r2
1
þr2

2

� 	 Z þp

	p
expð	Aq2 cos h2=ðr2

1 þ r2
2ÞÞ r4

1ðq2
2

�
þ 2r2

2Þ þ r4
2ðA2 þ 2r2

1Þ

þ 2Aq2r
2
1r

2
2 cos h2

�
dh2: ðA:7Þ
The integration of (A.4) is
uðr1; r2Þ ¼
r4
1ðq2

2 þ 2r2
2Þ þ r4

2ðA2 þ 2r2
1Þ

ðr2
1 þ r2

2Þ
2

þ 2Aq2r
2
1r

2
2

ðr2
1 þ r2

2Þ
2

I1 Aq2=ðr2
1 þ r2

2Þ
� �

I0 Aq2=ðr2
1 þ r2

2Þð Þ : ðA:8Þ
For the case of high optical SNR, the expectation of (A.1) can be approximated by
uðr1; r2Þ ¼ E jA
n

þ n1j2jjAþ n1 þ n2j2
o
� E A2

�
þ 2ARðn1ÞjA2 þ 2ARðn1 þ n2Þ

�
; ðA:9Þ
where Rð�Þ denotes the real part of a complex number. Using the approximation of (A.9), the expectation of

(A.1) becomes
uðr1; r2Þ �
r2
2

r2
1 þ r2

2

A2 þ r2
1

r2
1 þ r2

2

q2
2: ðA:10Þ
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