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Performance Degradation of Phase-Modulated
Systems due to Nonlinear Phase Noise

Keang-Po Ho, Member, IEEE

Abstract—The error probability is calculated for phase-mod-
ulated systems with nonlinear phase noise. Using the assumption
that the phase of amplifier noise and nonlinear phase noise are in-
dependent of each other, the error probability and penalty are cal-
culated for both phase-shift keying (PSK) and differential phase-
shift keying (DPSK) systems. The mean nonlinear phase shift must
be less than about 1.00 and 0.63 rad for a penalty less than 1 dB for
PSK and DPSK systems, respectively.

Index Terms—Fiber nonlinearities, nonlinear phase noise, phase
modulation.

I. INTRODUCTION

WHEN OPTICAL amplifiers are used to compensate for
fiber loss, the interaction of fiber Kerr effect and optical

amplifier noise generates nonlinear phase noise, often called
the Gordon–Mollenauer effect [1]. Nonlinear phase noise af-
fects both phase-shift keying (PSK) and differential phase-shift
keying (DPSK) systems [2]–[4] that have renewed interests re-
cently [5]–[7]. Recently, Kim and Gnauck [4] show experimen-
tally and the author [8], [9] shows theoretically that the non-
linear phase noise is not Gaussian distributed and variance or

factor [1], [3] is not sufficient to characterize the system
performance. Using the probability density function (pdf) of
nonlinear phase noise derived in [9], this letter investigates the
performance of phase-modulated systems with nonlinear phase
noise.

Based on the assumption that the nonlinear phase noise is in-
dependent of the phase component of the received electric field
without nonlinear phase noise, the error probability is calculated
for both PSK and DPSK systems. The signal-to-noise (SNR)
penalty is also evaluated for an error probability of 10. Sim-
ulation is conducted to verify the theoretical calculation.

II. ERRORPROBABILITY WITH NONLINEAR PHASE NOISE

A PSK signal can be demodulated using an optical phase-
locked loop [10]. Linear phase noise induced by an optical am-
plifier, called the phase of amplifier noise of here, has a pdf
of [11, Sec. 5.2.7], [12]

(1)
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where is the SNR and is the complementary error
function. The characteristic function of the phase of amplifier
noise is

(2)

Because the pdf of is an even function, the character-
istic function of is a real function. The characteristic
function of can be found in [13].

When the number of fiber spans is very large, the normalized
nonlinear phase noise of has a characteristic function of [9]

(3)

With nonlinear phase noise, if the transmitted phase is zero, the
overall received phase is

(4)

where is the nonlinear phase noise, is the mean non-
linear phase shift, and is the mean normalized
phase. If the phase of amplifier noise of is independent of
the nonlinear phase noise of , the characteristic function of
the received phase of is

(5)

The pdf of the received phase is the inverse Fourier transform
of the above PSK characteristic function

(6)

and the error probability is

(7)

where the decision boundary of is rotated by the mean
nonlinear phase shift of .

A DPSK system is demodulated using interferometer [4]–[7]
to deduce the differential phase of

(8)

where , , and are the received phase, the
phase of amplifier noise, and the nonlinear phase noise as a func-
tion of time and is the symbol interval. The phases atand

are independent of each other but are identically distributed
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Fig. 1. Error probability as a function of SNR for (a) PSK and (b) DPSK
systems.

random variables similar to that of (4). The differential phase of
(8) assumes that the transmitted phases atand are the
same. The characteristic function of the differential phase is

(9)

Taking the inverse Fourier transform of gives the pdf
of the differential phase of . The error probability of
DPSK system is

(10)

Because the DPSK characteristic function of is a real
function, the pdf of is an even function.

III. N UMERICAL RESULTS

Fig. 1 show the error probability for PSK and DPSK systems
with nonlinear phase noise as a function of SNR. Fig. 1(a)
is the error probability for PSK systems calculated by (7) and
Fig. 1(b) is the error probability for DPSK systems calculated
by (10). Fig. 1 is calculated for a mean nonlinear phase shift
of and rad. Without nonlinear phase
noise of , the error probabilities are equal to

[11, Sec. 5.2.7] and [11, Sec. 5.2.8]
for PSK and DPSK systems, respectively. From Fig. 1, DPSK
systems are more sensitive to nonlinear phase noise than PSK
systems.

Fig. 2 plots the required SNR for an error probability of 10
versus the mean nonlinear phase shift of . The mean non-
linear phase shift must be less than about 1.00 and 0.63 rad for
a penalty less than 1 dB for PSK and DPSK systems, respec-
tively. The SNR penalty is negligible for PSK and DPSK sys-
tems when the mean nonlinear phase shift of is less than
0.6 and 0.4 rad, respectively. The mean nonlinear phase shift
must be less than about 1.19 and 0.85 rad for a penalty less than
2 dB for PSK and DPSK systems, respectively.

The optimal operating level is that the increase of mean
nonlinear phase shift, proportional to the increase of launched
power and SNR, does not decrease the system performance.

Fig. 2. Required SNR for an error probability of 10 as a function of the
mean nonlinear phase shift ofh� i.

Fig. 3. Calculated and simulated error probability for a PSK system for a mean
nonlinear phase shift ofh� i = 1 rad.

For Fig. 2, the optimal operation point can be found by
when both the required SNR and mean

nonlinear phase shift are expressed in decibels. About
the same as the estimation of [1], the optimal mean nonlinear
phase shifts are 0.97 and 0.92 rad for PSK and DPSK signals,
respectively.

To verify the accuracy of the error probability in Fig. 1(a),
Fig. 3 compares the theoretical and simulated error probability
as a function of SNR for a typical PSK system having

rad [1]. The simulation is conducted for 32 fiber spans based
on Monte Carlo error counting. The distribution of the received
electric field is found where, depending on
each other, is the electric field with only amplifier noise and

is given by the model of [8] for 32 fiber spans. The error
count is equal to the number of points outside the decision re-
gion. Although DPSK systems have more practical applications,
PSK systems are simulated for its low memory and time require-
ment. The theoretical results are the same as that in Fig. 1(a) but
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extend to high error probability. Fig. 3 shows that the theoretical
and simulation results have an insignificant difference of about
0.15 dB. Part of the difference is because the pdf for 32 fiber
spans has slightly larger tail probability than that corresponding
to (3) [9]. Nevertheless, a discrepancy within 0.15 dB (or 3%)
is more than sufficient to characterize a system.

IV. DISCUSSION

The derivation in this letter uses the independent assumption
that the phase of amplifier noise and the nonlinear phase
noise of are independent of each other. Because the
nonlinear phase noise of is due to the accumulation of
self-phase modulation that is proportional to the intensity of
the signal, it is easy to show that the phase of amplifier noise

is uncorrelated to the nonlinear phase noise of , i.e.,
where denotes expectation. Although

uncorrelated is equivalent to independence for two Gaussian
random variables, both the phase of amplifier noise and
the nonlinear phase noise of are close to but not exactly
Gaussian random variables [4], [8], [9], [11, Sec. 5.2.7]. While
the independent assumption cannot absolutely assured, with
weak dependence, the calculation of Fig. 1 is very accurate, as
confirmed by Fig. 3.

This letter assumes that the optical filter before the receiver is
a matched filter and the electrical filter after the photodetector
does not further distort the signal. Similar to [1] and [9], non-
linear phase noise is induced by self-phase modulation of the
signal and amplifier noise within an optical bandwidth matched
to the signal for dispersionless fiber. With the self-phase modu-
lation assumption, both signal and noise propagate in the same
speed even for dispersive fiber and the characteristic function of
(3) is a very good approximation. If the nonlinear phase noise
induced by cross-phase modulation is taken into account, the
characteristic function of (3) may require small modification but
the independent assumption between adjacent symbols to derive
(9) is not valid for dispersive fiber.

Similar to [1], [8], and [9], all the derivation here assumes
nonreturn-to-zero pulses but most experiments [5], [7] use the
return-to-zero (RZ) pulses. For the RZ pulse, the mean nonlinear
phase shift of in (4) should be the mean nonlinear phase
shift when the peak amplitude is transmitted. Usually, is
increased by the inverse of the duty cycle.

The tail of the pdf corresponding to the characteristic func-
tion of (3) is asymmetrical with respect to the normalized mean
of . The pdf of (6) is also asymmetrical with respect
to the mean of . The error probability of (7) assumes that
the pdf of (6) is symmetrical with respect to . Lower error
probability than that of (7) can be achieved using an “asymmet-
rical” decision boundary. For the more practical DPSK systems,
the pdf of is an even function; the decision boundary
of is the optimal for the error probability of (10).

In practice, an interferometer-based detector [4]–[7] makes
a decision on whether is positive or negative. This
detection method is equivalent to whether the differential phase
of (8) is within or without in the integral of (10).

The error probability given by (7) and (10) is valid for small
error probability. When the error probability is high and with
nonlinear phase noise, as an example, a nonlinear phase noise
larger than still gives a correct decision. In the extreme
case of high error probability, both (7) and (10) overestimate
the error probability.

The SNR of Figs. 1–3 is defined the same as that in [9],
[12], and [13]. When optical SNR (OSNR) is measured using
an optical spectrum analyzer with a bandwidth of , the
SNR is related to OSNR by where

is the data rate of the signal and the factor of two assumes a
polarization-insensitive optical spectrum analyzer.

V. CONCLUSION

The error probability is calculated for PSK and DPSK sys-
tems using a pdf of the summation of the phase of amplifier
noise and the nonlinear phase noise. The required SNR for an
error probability of 10 is also calculated as a function of the
mean nonlinear phase shift. For the typical case of having a
mean nonlinear phase shift of 1 rad, simulation results confirm
that the theoretical calculation is accurate within 0.15 dB. The
mean nonlinear phase shift must be less than about 1.00 and
0.63 rad for an SNR penalty less than 1 dB for PSK and DPSK
systems, respectively.
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