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Probability density of nonlinear phase noise
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The probability density of nonlinear phase noise, often called the Gordon–Mollenauer effect, is derived ana-
lytically. The nonlinear phase noise can be accurately modeled as the summation of a Gaussian random vari-
able and a noncentral chi-square random variable with two degrees of freedom. Using the received intensity
to correct for the phase noise, the residual nonlinear phase noise can be modeled as the summation of a Gauss-
ian random variable and the difference of two noncentral chi-square random variables with two degrees of
freedom. The residual nonlinear phase noise can be approximated by Gaussian distribution better than the
nonlinear phase noise without correction. © 2003 Optical Society of America
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1. INTRODUCTION
Gordon and Mollenauer1 showed that, when optical am-
plifiers are used to compensate for fiber loss, the interac-
tion of amplifier noise and the fiber Kerr effect causes
phase noise, often called the Gordon–Mollenauer effect or
nonlinear phase noise. By broadening the signal
linewidth,2 nonlinear phase noise degrades both phase-
shifted keying and differential phase-shift keying sys-
tems, which have renewed attention recently.3–5 Be-
cause the nonlinear phase noise is correlated with the
received intensity, the received intensity can be used to
correct the nonlinear phase noise.6–8 The transmission
distance can be doubled if the nonlinear phase noise is the
dominant impairment.6,8

Usually, the performance of the system is estimated
based on the variance of the nonlinear phase noise.1,6–8

The probability-density function (pdf) is necessary to bet-
ter understand the system and evaluates the system per-
formance. This paper provides an analytical expression
of the pdf for the nonlinear phase noise with6–8 and
without1 the correction by the received intensity. The
characteristic functions are first derived analytically, and
the pdf ’s are the inverse Fourier transform of the charac-
teristic functions.

2. PROBABILITY-DENSITY FUNCTION
For simplicity and without loss of generality, assume that
the total nonlinear phase noise is1,6,8

fNL 5 uA 1 n1u2 1 uA 1 n1 1 n2u2

1 ¯ 1 uA 1 n1 1 ¯ 1 nNu2, (1)

where A is a real number representing the amplitude of
the transmitted signal, nk 5 xk 1 iyk , k 5 1,..., N, are
the optical amplifier noise introduced into the system at
the kth fiber span, and nk are independent identically dis-
tributed complex zero-mean circular Gaussian random
variables with E$xk

2% 5 E$ yk
2% 5 E$unku2%/2 5 s 2, where

s 2 is the noise variance per dimension per span and
E$ % denotes expectation. The product of fiber nonlin-
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ear coefficient and the effective length per span gLeff is
ignored in Eq. (1) for simplicity.1,6,8 The random variable
of Eq. (1) is a quadratic form of complex random
variables9; in order to find a simplified representation, we
derive its characteristic function here.

First, we consider the random variable of

w1 5 uA 1 x1u2 1 uA 1 x1 1 x2u2

1 ¯ 1 uA 1 x1 1 ¯ 1 xNu2. (2)

The overall nonlinear phase noise of Eq. (1) is fNL 5 w1
1 w2 , where

w2 5 y1
2 1 u y1 1 y2u2 1 ¯ 1 u y1 1 ¯ 1 yNu2 (3)

is independent of w1 and has a pdf equal to that of w1
when A 5 0. The random variable of Eq. (2) can be ex-
pressed as

w1 5 NA2 1 2AwTx 1 xTCx, (4)

where w 5 $N, N 2 1,..., 2, 1%T, x 5 $x1 , x2 ,..., xN%T,
and the covariance matrix C 5 MTM with

M 5 F 1 0 0 ¯ 0

1 1 0 ¯ 0

1 1 1 ¯ 0

] ] ] � ]

1 1 1 ¯ 1

G . (5)

The pdf of x is (2ps 2)2N/2 exp(2xTx/2s 2). The char-
acteristic function of w1 , Cw1

(n) 5 E$exp( jnw1)%, is

Cw1
~n! 5

exp~ jnNA2!

~2ps 2!N/2
E exp~2jnAwTx 2 xTGx!dx,

(6)

where G 5 I/(2s 2) 2 jnC and I is an N 3 N identity ma-
trix. Using the relationship of

xTGx 2 2jnAwTx 5 ~x 2 jnAG21w!TG~x 2 jnAG21w!

1 n2A2wTG21w, (7)
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with some algebra, the characteristic function of Eq. (6) is

Cw1
~n! 5

exp~ jnNA2 2 n2A2wTG21w!

~2s 2!N/2 det~G!1/2
, (8)

where det[ ] is the determinant of a matrix. The char-
acteristic function of Eq. (8) is

Cw1
~n! 5

exp@ jnNA2 2 2s 2n2A2wT~I 2 2jns 2C!21w#

det~I 2 2jns 2C!1/2
.

(9)

Substituting A 5 0 into Eq. (9), the characteristic func-
tion of w2 is Cw2

(n) 5 det@I 2 2jns 2C#21/2. The charac-
teristic function of fNL is CfNL

(n) 5 Cw1
(n)Cw2

(n), or

CfNL
~n!

5
exp@ jnNA2 2 2s 2n2A2wT~I 2 2jns 2C!21w#

det~I 2 2jns 2C!
. (10)

If the covariance matrix C has eigenvalues and eigen-
vectors of lk , vk , k 5 1, 2,..., N, respectively, the charac-
teristic function of Eq. (10) becomes

CfNL
~n! 5

expF jnNA2 2 2s 2n2A2(
k51

N
~vk

Tw!2

1 2 2jns 2lk
G

)
k51

N

~1 2 2jns 2lk!

(11)

and can be rewritten to

CfNL
~n! 5 )

k51

N 1

1 2 2jns 2lk

expF jnA2~vk
Tw!2/lk

1 2 2jns 2lk
G . (12)
From the characteristic function of Eq. (12), the random
variable of fNL [Eq. (1)] is the summation of N indepen-
dently distributed noncentral chi-square (x2) random
variables with two degrees of freedom.10 The eigenval-
ues of the covariance matrix of C are all positive and mul-
tiply to unity.

Without going into detail, the matrix

C21 5 F 1 2 1 0 ¯ 0 0

21 2 2 1 ¯ 0 0

0 2 1 2 ¯ 0 0

] ] ] � ] ]

0 0 0 ¯ 2 1 2

G (13)

is approximately a Toeplitz matrix for the series of 2, 21,
0,... For large N, the eigenvalues of the covariance ma-
trix of C are asymptotically equal to11
1

lk
' 2H 1 2 cosF ~2k 1 1 !p

2N G J
5 4 sin2F ~2k 2 1 !p

4N G , k 5 1,..., N. (14)

The values of Eq. (14) are the discrete Fourier transform
of each row of the matrix C21.

With the correction of phase noise using received
intensity,6–8 the residual nonlinear phase noise is

fRES 5 uA 1 n1u2 1 uA 1 n1 1 n2u2

1 ¯ 1 uA 1 n1 1 ¯ 1 nN21u2

2 ~aopt 2 1 !uA 1 n1 1 ¯ 1 nNu2. (15)

As from the appendix, aopt ' (N 1 1)/2 is the optimal
scale factor to correct the nonlinear phase noise of Eq. (1)
using the received intensity of uA 1 n1 1 ¯ 1 nNu2.
The random variable corresponding to w1 [Eq. (4)] be-
comes

~N 2 aopt!A
2 1 2Awr

Tx 1 xTCrx, (16)

where wr 5 w 2 aopt 3 $1, 1,..., 1%T and

Cr 5 ~M 2 L!T~M 2 L! 2 ~aopt 2 1 !LTL, (17)

where

L 5 F 0 0 ¯ 0 0

] ] � ] ]

0 0 ¯ 0 0

1 1 ¯ 1 1
G . (18)

Following the procedure from Eqs. (4) to (10), the char-
acteristic function of fRES is
CfRES
~n! 5

exp@2jn~N 2 aopt!A
2 2 2s 2n2A2wr

T~I 2 2jns 2Cr!
21wr#

det~I 2 2jns 2Cr!
. (19)
The characteristic functions of fRES in the form of eigen-
values and eigenvectors are similar to those of Eqs. (11)
and (12). The characteristic functions of fRES have the
same expression as Eq. (12) using a new set of eigenval-
ues and eigenvectors of the covariance matrix Cr and the
vector of wr .

Except for the first and last rows, the matrix Cr
21 is also

approximately a Toeplitz matrix for the series of 2, 21,
0,... For large N, the eigenvalues of Cr are asymptotically
equal to

1

lk
' 4 sin2F ~k 2 1.25!p

2~N 2 1 !
G , k 5 2,..., N,

l1 ' 2(
k52

N

lk . (20)
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Other than the largest one in absolute value, the eigen-
values of Cr are all positive. All eigenvalues of the cova-
riance Cr sum to approximately zero and multiple to aopt
2 1 ' (N 2 1)/2.

3. NUMERICAL RESULTS AND RANDOM
VARIABLE MODELS
The pdf ’s of both fNL [Eq. (1)] and fRES [Eq. (15)] can be
calculated by taking the inverse Fourier transforms of the
corresponding characteristic functions of CfNL

(n) [Eq.
(10)] and CfRES

(n) [Eq. (19)], respectively. Figure 1
shows the pdf of fNL [Eq. (1)] and fRES [Eq. (15)]. Figure
1 is plotted for the case that the optical signal-to-noise ra-
tio rO 5 A2/(2Ns 2) 5 18, corresponding to an error
probability of 1029 if the amplifier noise is the only im-
pairment. The number of spans is N 5 32. The x axis
is normalized with respect to NA2, approximately equal
to the mean nonlinear phase noise from the appendix.

Figure 1 can confirm that, using the received intensity
to correct for nonlinear phase noise, the standard devia-
tion of nonlinear phase noise can be reduced by a factor of
2.6–8 The appendix shows that the variance of nonlinear
phase noise can be reduced by a factor of ;4.

From the characteristic function of Eq. (12), the ran-
dom variables of both fNL and fRES can be modeled as the
combination of N 5 32 independently distributed noncen-
tral x2 random variables with two degrees of freedom.
Some studies1,6,7 implicitly assume a Gaussian distribu-
tion by using the Q factor to characterize the random
variables. When many independently distributed ran-
dom variables with more or less the same variance are
summed (or subtracted) together, the summed random
variable approaches the Gaussian distribution. For the
characteristic function of Eq. (12), the Gaussian assump-
tion is valid only if the eigenvalues lk are more or less the
same. From Eq. (14), the largest eigenvalue l1 of the co-
variance matrix C is ;9 times larger than the second larg-
est eigenvalue l2 . From Eq. (20), the two largest eigen-
values l1 and l2 of the covariance matrix Cr are ;5.5
times larger than the third largest eigenvalue l3 . The
approximation of Eq. (14) is accurate within 3.2% for
N 5 32. The approximation of Eq. (20) is not as good as
that for Eq. (14) and accurate within 10% for N 5 32.

While the Gaussian assumption for both fNL and fRES
may not be valid, other than the noncentral x2 random
variables with two degrees of freedom corresponding to
some large eigenvalues, the other random variables
should sum to a Gaussian distribution. By modeling the
summation of random variables with smaller eigenvalues
as a Gaussian distribution, the nonlinear phase noise of
Eq. (12) can be modeled as a summation of two or three
instead of N 5 32 independently distributed random
variables.

Note that the variance of the noncentral x2 random
variables with two degrees of freedom in Eq. (12) is
4s 4lk

2 1 4A2(vk
Tw)2.10 While the above reasoning just

takes into account the contribution from the eigenvalue of
lk but ignores the contribution from the eigenvector vk ,
numerical results show that the variance of each indi-
vidual noncentral x2 random variable increases with the
corresponding eigenvalue of lk . A later part of this pa-
per also validates the argument.

From Fig. 1, the pdf of fNL has significant difference
from that of a Gaussian distribution. Figure 2 divides
the pdf of fNL into the convolution of two parts. The first
part has no observable difference with a Gaussian pdf and
corresponds to the second largest to the smallest eigen-
values, lk , k 5 2,..., N, of the characteristic function of
Eq. (12). The second part is a noncentral x2 pdf with two
degrees of freedom and corresponds to the largest eigen-
value l1 , where s 2l1 ' 2/(p2rO) 3 NA2. The pdf of
fNL in Fig. 1 is also plotted in Fig. 2 for comparison. The
mean and variance of the first part of the Gaussian
random variable are (k52

N A2(vk
Tw)2/lk 1 2s 2lk and

4(k52
N s 4lk

2 1 A2(vk
Tw)2, respectively. The second part

of the noncentral x2 pdf with two degrees of freedom has
a variance parameter of s 2l1 and noncentrality param-
eter of A2(v1

Tw)2/l1 .10

To verify that the modeling in Fig. 2 is accurate, the cu-
mulative tail probabilities are calculated by *2`

x p(j)dj
and *x

1`p(j)dj, where p(j) is the pdf. Figure 3 shows
the cumulative tail probabilities as a function of the Q
factor for fNL , defined as Q 5 (fNL 2 fNL)/sfNL

, where
fNL and sfNL

2 are the mean and variance of the nonlinear

Fig. 1. pdf of both fNL and fRES .

Fig. 2. pdf of fNL is the convolution of a Gaussian pdf and a
noncentral x2 pdf with two degrees of freedom.
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phase noise given in the appendix. Using Gaussian
approximation,1,6,7 this definition of the Q factor gives the
tail probability or error probability of (1/2)erfc(uQu/A2),
where erfc( ) is the complementary error function. Fig-
ure 3 shows the cumulative tail probabilities calculated
by numerical integration according to Eq. (10) as circles,
the model as the summation of a Gaussian and a noncen-
tral x2 random variable with two degrees of freedom of
Fig. 2 as solid lines, and the Gaussian assumption as dot-
ted lines. From Fig. 3, the Gaussian approximation by
the Q factor is not accurate, especially for the tail prob-
ability for less than the mean. From Fig. 3, the nonlin-
ear phase noise can be modeled very accurately as the
summation of a Gaussian random variable and a noncen-
tral x2 random variable with two degrees of freedom.
From Fig. 2, the noncentral x2 random variable with two
degrees of freedom corresponding to l1 has a very large
variance, such that the pdf of fNL in Fig. 1 has a signifi-
cant difference with a Gaussian pdf.

Instead of the combination of N 5 32 noncentral x2

random variables with two degrees of freedom, similar to
the decomposition of Fig. 2, the random variable of fRES

Fig. 3. Cumulative tail probability of fNL as compared with the
model of Fig. 2 and a Gaussian approximation.

Fig. 4. pdf of fRES is the convolution of a Gaussian pdf and two
noncentral x2 pdf ’s with two degrees of freedom.
can be modeled as the summation of a Gaussian random
variable and the difference of two noncentral x2 random
variables with two degrees of freedom. Figure 4 shows
the pdf of fRES as the convolution of a Gaussian pdf and
two noncentral x2 pdf ’s with two degrees of freedom.
The two noncentral x2 random variables correspond to
the two largest eigenvalues of the covariance matrix Cr
with more or less the same magnitude but different signs.
The Gaussian random variable corresponds to the sum-
mation of N 2 2 noncentral x2 random variables with
two degrees of freedom for the eigenvalues of l3 ,..., lN .
Because the variance parameter of s 2l1 is negative, the
corresponding random variable in Eq. (12) is the negative
of a noncentral x2 random variable with two degrees of
freedom. The pdf corresponding to l1 in Fig. 4 is the mir-
ror image of a noncentral x2 pdf with two degrees of free-
dom with respect to the y axis. The random variable cor-
responding to the combined term of both l1 and l2 in Eq.
(12) is the difference of two noncentral x2 random vari-
ables with two degrees of freedom.

Figure 5 shows the cumulative tail probabilities as a
function of the Q factor for fRES , defined as Q 5 (fRES

2 fRES)/sfRES
, where fRES and sfRES

2 are the mean and
variance of the residual nonlinear phase noise shown in
the appendix. The cumulative tail probabilities calcu-
lated by numerical integration according to Eq. (19) is
shown as circles, the model as the summation of a Gauss-
ian random variable and the difference of two noncentral
x2 random variables with two degrees of freedom of Fig. 4
is shown as solid lines, and the Gaussian assumption1,6,7

is shown as dotted lines. From Figs. 1 and 4, the pdf of
fRES resembles a Gaussian pdf with mean and variance
from Ref. 8 and the appendix. The residual nonlinear
phase noise of fRES can be modeled accurately as a
Gaussian random variable, especially for the tail prob-
abilities less than the mean. Even for the tail probabili-
ties larger than the mean, the Gaussian model for fRES is
better than that for fNL . If the tail probabilities for
.1025 is of interest, Gaussian approximation for fRES can
be used.

Fig. 5. Cumulative tail probability of fRES as compared with the
model of Fig. 4 and a Gaussian approximation.
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4. CONCLUSION
The characteristic functions of nonlinear phase noise,
with and without the correction using the received inten-
sity, are derived analytically as a product of N noncentral
x2 characteristic functions with two degrees of freedom.
The pdf ’s are calculated exactly as the inverse Fourier
transform of the characteristic functions. The pdf of the
nonlinear phase noise can be modeled as the convolution
of a Gaussian pdf and a noncentral x2 pdf with two de-
grees of freedom. Using the received intensity to correct
for the phase noise, the pdf of the residual nonlinear
phase noise can be modeled accurately as the convolution
of a Gaussian pdf and two noncentral x2 pdf ’s with two
degrees of freedom. The Gaussian approximation of the
residual nonlinear phase noise is much better than that
for nonlinear phase noise.

APPENDIX A: OPTIMAL LINEAR
COMPENSATOR
This appendix shows important results from Ref. 8. The
optimal scale factor to minimimize the variance of fRES is

aopt 5
N 1 1

2

A2 1 ~2N 1 1 !s 2/3

A2 1 Ns 2
'

N 1 1

2
. (21)

The variance of the residual nonlinear phase noise of
Eq. (15) is reduced to

sfRES

2 5 ~N 2 1 !N~N 1 1 !s 2

3
A4 1 2Ns 2A2 1 ~2N2 1 1 !s 4/3

3~A2 1 Ns 2!
(22)

from that of the nonlinear phase noise of

sfNL

2 5
4

3
N~N 1 1 !s 2F S N 1

1

2 DA2

1 ~N2 1 N 1 1 !s 2G . (23)

The mean of the nonlinear phase noise Eq. (1) is
fNL 5 N@A2 1 ~N 1 1 !s 2#. (24)
The mean of the residual nonlinear phase noise is

fRES 5 fNL 2 aopt~A2 1 2Ns 2!. (25)
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