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Non-Gaussian statistics of soliton timing jitter induced
by amplifier noise
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Based on first-order perturbation theory of the soliton, the Gordon–Haus timing jitter induced by amplifier
noise is found to be non-Gaussian distributed. Both frequency and timing jitter have larger tail probabili-
ties than Gaussian distribution given by the linearized perturbation theory. The timing jitter has a larger
discrepancy from Gaussian distribution than does the frequency jitter. © 2003 Optical Society of America
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The Gordon–Haus (GH) timing jitter of the fiber soli-
ton that is due to amplif ier noise is usually assumed to
be Gaussian distributed1 – 3 when first-order perturba-
tion theory of the soliton4 – 6 is used. Previous studies
proved that the non-Gaussian timing jitter is induced
by soliton interactions7 – 9 and regeneration10,11 but not
by amplifier noise alone. When a first-order soliton
perturbation is linearized,1,2 the GH timing jitter is
indeed Gaussian distributed. However, if the equa-
tions from first-order perturbation are not linearized,
as shown later, the amplitude, frequency, and timing
jitters are all non-Gaussian distributed.

From the first-order perturbation theory of a soli-
ton,2,4– 6 with amplifier noise alone, the soliton pa-
rameters evolve according to the following stochastic
differential equations (SDEs):

dA
dz

� nA�z � , (1)

dV

dz
� nV �z � , (2)

dT
dz

� 2V 1 nT �z � . (3)

The phase perturbation is not shown in Eqs. (1)–(3)
because it is not used here. Equations (1)–(3) are as-
sumed Stratonovich but not as Ito SDEs.12 All the
noise terms of nA�z �, nV�z �, and nT �z � are independent
Gaussian processes with autocorrelations of6,9

E�nA�z1�nA�z2�� � Asn
2d�z1 2 z2� , (4)

E�nV �z1�nV�z2�� �
A
3

sn
2d�z1 2 z2� , (5)

E�nT �z1�nT �z2�� �
p2

12A3 sn
2d�z1 2 z2� , (6)

where sn
2 is the noise variance2 and E�?� denotes ex-

pectation. From Eqs. (4) to (6) the variances depend
on the amplitude of A�z � and amplitude jitter transfers
to both frequency and timing jitter. If the amplitude
in the variances of Eqs. (4)–(6) is assumed to be
constant �A�z � � A�0� � A0� as a first-order approxi-
mation, amplitude, frequency, and timing jitters are
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ndeed Gaussian distributed. The inclusion of ampli-
ude jitter in Eqs. (4)–(6) is still within the assumption
f the first-order soliton perturbation theory.4 – 6 The
onlinear f irst-order perturbation can be inter-
reted as repeated usage of the linearized first-order
erturbation.2

Based on Eqs. (1) and (4) with an initial value of
�0� � A0, the amplitude jitter is

A�z � �

µ
A0

1�2 1
wA

2

∂2

(7)

s a noncentral chi-square-distributed random pro-
ess3,11,13,14 with a variance parameter of 1�4sn

2z ,
here wA is a Wiener process with an autocorrelation

f E�wA�z1�wA�z2�� � sn
2 min�z1, z2�.

Using Eqs. (2) and (5) yields a frequency jitter of

V�z � �
Z z

0

µ
A0

1�2 1
wA�z1�

2

∂
dwV , (8)

ith a variance of

sV
2�z � �

1
3
A0sn

2z 1
1
24

sn
4z 2, (9)

here wV is a Wiener process with an autocorrelation
f E�wV�z1�wV �z2�� � 1�3sn

2 min�z1, z2� and is inde-
endent of the Wiener process of wA.
The timing jitter in Eq. (3) has two terms. The first

erm of 2V gives the GH timing jitter and increases
ith z 3, and the second term of nT �z � is just the pro-

ection of amplif ier noise into the timing jitter.1 The
irst term of the GH timing jitter is far more interest-
ng than the second. The SDE of dTGH � 2Vdz has

solution of

TGH�z � � 2
Z z

0
�z 2 z1�

∑
A0

1�2 1
wA�z1�

2

∏
dwV , (10)

ith a variance of

sT
2�z � �

1
9

A0sn
2z 3 1

1
144

sn
4z4. (11)

imilar to option pricing with stochastic volatility,15

he characteristic functions of frequency V�z � and GH
iming jitter TGH�z� are

CV�z ��n� � G1

µ
n2sn

2

6

∂
, (12)
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CTGH�z ��n� � G2

µ
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2

6

∂
, (13)

G1�l� � E
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2l
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2
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dz1

æ!!!
,

(14)
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3
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2
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dz1

æ!!!
, (15)

where G1�2l� and G2�2l� are the moment gen-
erating functions of

R
z

0�A0
1�2 1 1/2wA�2dz1 andRz

0�z 2 z1�2�A0
1�2 1 1/2wA�2dz1, respectively.

From the Cameron–Martin integral16 we obtain

G1�l� �
exp

∑
2
2A0

sn

p
l tanh

µ
zsn

2

p
l

∂∏

cosh1�2

µ
zsn

2

p
l

∂ , (16)

G2�l� �

∑
fl�z �
fl�0�

∏1�2
exp�l2sn

2A0b
2 2 lA0z

3�3� , (17)

where

b2 �
Z z

0

∑
1

fl�z1�

Z z

z1

�z 2 z2�2fl�z2�dz2

∏2

dz1 , (18)

fl�z1� �
p

z 2 z1 I21/4

∑p
l sn

2
�z 2 z1�2

∏
, (19)

where In�?� is the nth-order modif ied Bessel function of
the f irst kind. The function of G1�l� [Eq. (16)] is simi-
lar to the characteristic function of nonlinear phase
noise.17,18 Using

R1
0 x

n11In�ax�dx � In11�a��a, 19 we
obtainZ z

z1

�z 2 z2�2fl�z2�dz2 �
�z 2 z1�3�2
p

l sn

3 I3/4

∑p
l sn

2
�z 2 z1�2

∏
, (20)

b2 �
p
2�
p

l sn�27�2
Z p

l snz 2�2

0
x1�2I3/42�x�I21/4

22�x�dx .

(21)

If the amplitude jitter is approximated as A�z � � A0
in both variances of Eqs. (4) and (5), we obtain

G1�l� � exp�2lA0z � ,

G2�l� � exp
µ
2

1
3

lA0z
3
∂
, (22)

which are valid for high signal-to-noise ratio (SNR)
of rO � A0��sn

2z �. With approximations (22), the
characteristic functions of Eqs. (12) and (13) are
zero-mean Gaussian characteristic functions with
variances of Eqs. (9) and (11), respectively, without
the second term. The second term in Eqs. (9) and
(11) increases the jitter variances by fractions 1�8rO

21

and 1�16rO
21, respectively.
From the frequency jitter in Eq. (8), the
non-Gaussian distribution is induced by the term
of 1�2

R
z

0 wAdwV , i.e., the noise and noise interac-
tion. The second-order soliton perturbation also
includes noise and noise interaction.20,21 However,
Eqs. (1)– (3) with noise variances from Eqs. (4)
and (5) are directly from the first-order perturba-
tion of a soliton.4 – 6 Similarly, the non-Gaussian
timing jitter of Eq. (10) is induced by the term of
1�2

R
z

0�z 2 z1�wAdwV, which also includes noise–noise
interaction.

The probability density functions of frequency and
GH timing jitter are the inverse Fourier transforms of
the corresponding characteristic functions of Eqs. (12)
and (13), respectively. Figure 1 plots the probability
density of frequency and GH timing jitter compared
with the Gaussian distribution with variances of
Eqs. (9) and (11), respectively. The probability den-
sity functions are shown for SNRs of rO � 10 and
20. The horizontal axis is normalized with respect
to the standard deviation of frequency sV�z � and
timing sT �z � jitter [see Eqs. (9) and (11)] for Figs. 1(a)
and 1(b), respectively. Because the characteristic
functions of Eqs. (12) and (13) are even real functions,
the probability density functions are also even func-
tions. Figure 1 plots only the positive frequency and
timing jitters. Comparison of the frequency jitter of
Fig. 1(a) and the timing jitter of Fig. 1(b) shows that

Fig. 1. Probability density functions of (a) frequency and
(b) timing jitters compared with a Gaussian distribution
(dashed curve).

Fig. 2. Tail probabilities of (a) frequency and (b) timing
jitters compared with a complementary error function
(dashed curve).
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the frequency jitter has a distribution closer to the
Gaussian distribution than does the timing jitter.

Figure 2 plots the tail probabilities that correspond
to the probability density functions of Fig. 1. The
tail probability is defined as

R`

x p�x�dx for a proba-
bility density function of p�x�. The tail probability
is compared to the complementary error function of
1�2 erfc�x�

p
2 �, that is, the tail probability of the

Gaussian distribution in Fig. 1. Comparing the tail
probability of the frequency jitter of Fig. 2(a) and the
timing jitter of Fig. 2(b), the frequency jitter is closer
to the Gaussian distribution than is the timing jitter.

Both Figs. 1 and 2 are plotted on a logarithmic scale
to show the difference at the tail distribution of both
frequency and timing jitters to the Gaussian distribu-
tion. The non-Gaussian distribution leads to higher
error probability than that of a Gaussian distribution.
Figure 2(b) shows that the GH limit2 for an error
probability of 1029 decreases by 7% [from 6.00 to 6.42
of sT �z �] and by 13% [from 6.00 to 6.76 of sT �z �]
for rO � 20 and 10, respectively. As a comparison,
the timing jitter standard deviation [see Eq. (11)]
increases by factors of 0.16% and 0.31% for rO � 20
and 10, respectively.

Both Figs. 1(b) and 2(b) show that the distribution
of GH timing jitter differs from the Gaussian distribu-
tion at the tail. Comparison of the generating func-
tion of Eq. (17) and the Gaussian approximation of
(22) yields the non-Gaussian timing jitter distribution
of � fl�z ��fl�0��1�2 exp�l2sn

2A0b
2�, which is obviously

non-Gaussian.
In conclusion, based on the first-order soliton per-

turbation theory, both frequency and timing jitters
were found to be non-Gaussian distributed. If the
perturbation equations are linearized, amplitude,
frequency, and timing jitters would all be Gaussian
distributed. The timing jitter distribution differs
more from a Gaussian distribution than does the
frequency jitter.
K.-P. Ho’s e-mail address is kpho@cc.ee.ntu.edu.tw.
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