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Abstract—Information-theoretic limits to spectral efficiency
in dense wavelength-division-multiplexed (DWDM) transmission
systems are reviewed, considering various modulation techniques
(unconstrained, constant-intensity, binary), detection techniques
(coherent, direct), and propagation regimes (linear, nonlinear).
Spontaneous emission from inline optical amplifiers is assumed
to be the dominant noise source in all cases. Coherent detection
allows use of two degrees of freedom per polarization, and its
spectral efficiency limits are several b/s/Hz in typical terrestrial
systems, even considering nonlinear effects. Using either con-
stant-intensity modulation or direct detection, only one degree
of freedom per polarization can be used, significantly reducing
spectral efficiency. Using binary modulation, regardless of de-
tection technique, spectral efficiency cannot exceed 1 b/s/Hz per
polarization. When the number of signal and/or noise photons
is small, the particle nature of photons must be considered. The
quantum-limited spectral efficiency for coherent detection is
slightly smaller than the classical capacity, but that for direct
detection is 0.3 b/s/Hz higher than its classical counterpart. Var-
ious binary and nonbinary modulation techniques, in conjunction
with appropriate detection techniques, are compared in terms of
their spectral efficiencies and signal-to-noise ratio requirements,
assuming amplified spontaneous emission is the dominant noise
source. These include a) pulse-amplitude modulation with direct
detection, b) differential phase-shift keying with interferometric
detection, c) phase-shift keying with coherent detection, and
d) quadrature-amplitude modulation with coherent detection.

Index Terms—Differential phase-shift keying, heterodyning,
homodyne detection, information rates, optical fiber communi-
cation, optical modulation, optical signal detection, phase-shift
keying, pulse-amplitude modulation.

I. INTRODUCTION

THE throughput of a dense wavelength-division-multi-
plexed (DWDM) transmission system can be increased

by using a wider optical bandwidth, by increasing spectral
efficiency, or by some combination of the two. Utilizing a
wider bandwidth typically requires additional amplifiers and
other optical components, so raising spectral efficiency is often
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the more economical alternative. Ultimate limits to spectral
efficiency are determined by the information-theoretic capacity
per unit bandwidth [1], [2]. While closely approaching these
limits may require high complexity and delay [3], [4], estab-
lishing accurate estimates of the limits can yield insights useful
in practical system design. In this paper, we review spectral
efficiency limits, considering various modulation techniques
(unconstrained, constant-intensity [5]–[7] or binary), various
detection techniques (coherent or direct [8]), and various
propagation regimes (linear or nonlinear [9], [10]). In all cases,
amplified spontaneous emission (ASE) from inline optical
amplifiers is assumed to be the dominant noise source. We show
that coherent detection allows information to be encoded in two
degrees of freedom per polarization, and its spectral efficiency
limits are several b/s/Hz in typical terrestrial systems, even
considering nonlinear effects. Using either constant-intensity
modulation or direct detection, only one degree of freedom
per polarization can be exploited, reducing spectral efficiency.
Using binary modulation, regardless of detection technique,
spectral efficiency cannot exceed 1 b/s/Hz per polarization.

When the number of signal and/or noise photons is small, the
information-theoretic capacity of optical communication sys-
tems is also limited by the particle nature of photons. Coherent
communication is equivalent to detecting the real and imagi-
nary parts of the coherent states [11], [12]. Direct detection is
equivalent to counting the number of photons in the number
states [11], [12]. In the coherent states, quantum effects add
one photon to the noise variance [12] (if both signal and noise
are expressed in terms of photon number), yielding a channel
capacity slightly smaller than the classical limit of [1] and [2].
The quantum limit of direct detection is determined by photon
statistics and yields a slightly higher channel capacity than the
classical limit of [8].

While currently deployed DWDM systems use binary on–off
keying (OOK) with direct detection, in an effort to improve
spectral efficiency and robustness against transmission impair-
ments, researchers have investigated a variety of binary and
nonbinary modulation techniques, in conjunction with various
detection techniques. In this paper, we compare the spectral effi-
ciencies and power efficiencies of several techniques, assuming
in all cases that ASE is the dominant noise source. Techniques
considered include pulse-amplitude modulation (PAM) with di-
rect detection [13], [14], differential phase-shift keying (DPSK)
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Fig. 1. Equivalent block diagram of multispan system. After each of the N fiber spans, an amplifier of gain G exactly compensates the span loss. The average
power level per channel at key locations is indicated. At the output of the final amplifier, the total amplified spontaneous emission has a power spectral density per
polarization given by S .

with interferometric detection1 [15]–[17], phase-shift keying
(PSK) with coherent detection [18], [19], and (d) quadrature-
amplitude modulation (QAM) with coherent detection [20]. We
argue that at spectral efficiencies below 1 b/s/Hz per polariza-
tion, binary PAM (OOK) and binary DPSK are attractive op-
tions. At spectral efficiencies between 1 and 2 b/s/Hz, quater-
nary DPSK and PSK are perhaps the most attractive techniques.
Techniques such as 8-PSK or 8- and 16-QAM are necessary
to achieve spectral efficiencies above 2 b/s/Hz per polarization.
Historically, the main advantages of coherent optical detection
were considered to be high receiver sensitivity and the ability to
perform channel demultiplexing and chromatic dispersion com-
pensation in the electrical domain [21]. In this paper, we argue
that from a more modern perspective, the principal advantage of
coherent detection is superior spectral efficiency. We remind the
reader that in ASE-limited coherent systems, there is no funda-
mental sensitivity difference between 2- and 4-PSK, nor is there
one between synchronous homodyne and heterodyne detection.

The remainder of this paper is organized as follows. In
Section II, we review information-theoretic spectral efficiency
limits for various modulation and detection techniques, in
linear and nonlinear propagation regimes. We also calculate the
quantum-limited capacity due to the particle nature of photons.
In Section III, we compare the power efficiencies and spectral
efficiencies of various uncoded modulation and detection
techniques, and comment on nonlinear phase noise and on
coding techniques for nonbinary modulation. Conclusions and
suggestions for future work are given in Section IV.

II. SPECTRAL EFFICIENCY LIMITS

A. Preliminaries

According to Shannon [1], the capacity of a communication
channel is the maximum bit rate that can be transmitted without
error, taking into account of noise, available bandwidth, and
constrained power. Computing the capacity of a channel
requires knowledge of the conditional probability of the output
given the input, i.e., the characteristics of the channel “noise.”
Capacity calculations for a variety of discrete and continuous
channels are described in [2]. It is remarkable that the ca-
pacity can be computed without explicitly considering any
specific modulation, coding, or decoding scheme. Likewise,
computation of the capacity does not generally tell us which
specific modulation, coding, or decoding schemes we should
use in order to achieve the capacity. The theory does tell us
the optimal probability density of the transmitted signal. It

1This DPSK detection technique uses an interferometer to convert phase mod-
ulation to intensity modulation, followed by a direct-detection receiver. While
it is often called “direct detection,” here we call it “interferometric detection”
to distinguish it from simple direct detection.

indicates that we must use strong error-correcting codes [3],
[4], and that the decoding complexity and delay must increase
exponentially as we approach the capacity.

In a DWDM system, the spectral efficiency limit is simply
the capacity per channel divided by the channel spacing. In
the linear regime, the spectral efficiency limit is independent
of chromatic dispersion, because it is possible, in principle, to
fully compensate dispersion at the receiver. Alternatively, dis-
persion effects may be avoided by using narrow-band chan-
nels with small channel spacing. Initially, we consider propaga-
tion in a single polarization, neglecting the impact of polariza-
tion-mode dispersion. Polarization effects are addressed briefly
in Section II-B4.

Throughout Section II, denotes the occupied bandwidth
per channel, denotes the channel spacing, denotes the
capacity per channel, and denotes the spectral
efficiency limit. Note that and have units of bits per second
(b/s) and b/s/Hz, respectively. For concreteness, we consider
a multispan system as shown in Fig. 1. The system comprises

fiber spans, each with gain 1 . After each span, an
amplifier of gain compensates the span loss. The average
transmitted power per channel is , while the average power
at the input of each amplifier is . We assume that
for all detection schemes, ASE noise dominates over other
noise sources, including local-oscillator shot noise or receiver
thermal noise, thereby maximizing the receiver signal-to-noise
ratio (SNR) [22]. At the output of the final amplifier, the ASE
in one polarization has a power spectral density (PSD) given by

(1)

where is the spontaneous emission noise factor of one am-
plifier and we have defined the equivalent noise factor of the
multispan system by . At the output of the final
amplifier, the ASE in one polarization in the channel bandwidth

has a power

(2)

Hence, at the output of the final amplifier, the optical SNR in
one polarization in the channel bandwidth is given by

SNR (3)

In optical communications, “coherent detection” has often
been used to denote any detection process involving photoelec-
tric mixing between an optical signal and local oscillator [21].
Information encoded in both in-phase and quadrature field com-
ponents can be detected only using synchronous coherent detec-
tion. Synchronous homodyne or heterodyne detection requires
an optical or electrical phase-locked loop (PLL) or some other
carrier-recovery technique. It has been pointed out that in ASE-
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Fig. 2. Optimal probability density functions of the transmitted signal. (a) Unconstrained modulation, coherent detection: field is complex circular Gaussian-
distributed. (b) Constant-intensity modulation, coherent detection: complex field is uniformly distributed on a circle. (c) Unconstrained modulation, direct detection:
field magnitude is half-Gaussian-distributed.

limited systems, the sensitivity of a synchronous heterodyne re-
ceiver is equivalent to a synchronous homodyne receiver pro-
vided that the ASE is narrow-band-filtered or that image rejec-
tion is employed [23]. Throughout this paper, our use of the term
“coherent detection” assumes that all of the above conditions
have been satisfied and is fully consistent with its use in nonop-
tical communications [20]. These points are further elaborated
upon in Section III-B.

B. Linear Regime

1) Unconstrained Modulation With Coherent Detection: In
the case of coherent detection, information can be encoded
in two degrees of freedom: the in-phase and quadrature field
components and . Alternatively, we can think of the
two degrees of freedom as intensity and phase. ASE noise
is modeled as additive, signal-independent complex circular
Gaussian noise. When no constraints are placed on the mod-
ulation format, the optimal transmitted electric field is also
complex circular Gaussian-distributed, as shown in Fig. 2(a).
The capacity is given by the well-known Shannon formula [1]

SNR (4)

and the spectral efficiency limit is

SNR (5)

Note that at high SNR, the spectral efficiency (5) is given
asymptotically by SNR .

2) Constant-Intensity Modulation With Coherent Detec-
tion: Various modulation techniques, such as DPSK and
continuous-phase frequency-shift keying (CPFSK), encode in-
formation in optical signals having nominally constant intensity.
These techniques are often demodulated using differentially
coherent detection [20], to which interferometric detection is
mathematically equivalent [24]. The capacity of constant-in-
tensity modulation with coherent detection upper bounds the
capacity with differentially coherent or interferometric detec-
tion. The capacity with coherent detection was first presented
in [5] and was later derived independently in [6] and [7]. The
optimal transmitted electric field is uniformly distributed on a
circle, as shown in Fig. 2(b). At arbitrary SNR, the capacity is
given by

(6)

where

(7)

At high SNR, using the asymptotic expression
, (7) is approximated as

,
yielding the asymptotic capacity

SNR (8)

The asymptotic spectral efficiency is
SNR . Observe

that this limit is 1.1 b/s/Hz more than half the Shannon limit
(5), assuming . Intuitively, the factor of two
reduction results from discarding one degree of freedom,
i.e., the field intensity.

3) Unconstrained Modulation With Direct Detection: In
the case of direct detection, the transmitted optical signal is
modeled as a nonnegative, real electric field magnitude.2 In a
well- designed system, the dominant noise is signal-spontaneous
beat noise, which is additive and signal-dependent. To date, spec-
tral efficiency limits have not been derived for arbitrary SNR.
Mecozzi and Shtaif [8] have addressed the high-SNR limit.When
no constraint is placed on the modulation format, the optimal
transmitted field magnitude follows a half-Gaussian distribution,
as shown in Fig. 2(c). Asymptotically, the capacity is given by

SNR (9)

and the spectral efficiency limit is
SNR . Note

that this limit is 1.0 b/s/Hz less than half the Shannon limit (5),
assuming . Intuitively, the factor-of-two reduction
results from discarding one degree of freedom, i.e., one of the
two field quadratures. The additional 1.0-b/s/Hz loss is caused
by discarding the sign of the field.

4) Discussion of Linear Regime: Spectral efficiency limits
in the linear regime are compared in Fig. 3 for a system using

2In practice, one may not only modulate the magnitude but also modulate the
phase, either intentionally (e.g., duobinary encoding) or unintentionally (e.g.,
chirp). While phase modulation affects the spectrum, it does not affect the de-
tected photocurrent, provided that dispersion is well compensated and the re-
ceiver does not employ an interferometer to convert phase modulation to inten-
sity modulation.
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Fig. 3. Spectral efficiency limits in DWDM systems in linear regime. The x-axes correspond to input power density P =�f and SNR= P =S B. The y-axis
plots S = C=�f . (a) Erbium-doped fiber amplifiers, NF= 4:5 dB; (b) distributed Raman amplifiers, NF = �1:0 dB. Four cases are plotted: 1) unconstrained
modulation with coherent detection, 2) constant-intensity modulation with coherent detection, 3) unconstrained modulation with direct detection (high-SNR
asymptote), and 4) the binary modulation limit B=�f (which is the same for both amplifier types). Parameters assumed: bandwidth per channel B = 40 GHz,
channel spacing �f = 50 GHz, 25 fiber spans, 80 km span length, � = 0:20 dB/km, G = 16 dB, � = 1:55 �m, single polarization.

25 spans of 80 km length, assuming a fractional bandwidth
utilization . Fig. 3(a) considers erbium-doped
fiber amplifiers with noise figure NF dB, while Fig. 3(b)
considers distributed Raman amplifiers with counterpropa-
gating pump and effective noise figure NF dB. In
each case, the spontaneous emission noise factor is related
to the noise figure by NF . It is instructive to compare
the high-SNR slopes of the spectral efficiency limits in Fig. 3(a)

and (b). Unconstrained modulation with coherent detection
(which offers two degrees of freedom per polarization) has
a slope twice as large as constant-intensity modulation with
coherent detection or unconstrained modulation with direct
detection (each offers one degree of freedom per polarization).
At realistic values of the SNR, unconstrained modulation
with coherent detection offers a spectral efficiency limit more
than twice as high as unconstrained modulation with direct
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detection, and all three schemes offer spectral efficiencies well
above the binary limit of b/s/Hz.

Polarization-mode dispersion (PMD) has no fundamental
impact on spectral efficiency limits. By making the bandwidth
per channel sufficiently small, we can neglect PMD-induced
distortion.3 In principle, the spectral efficiency limits described
above can be doubled using polarization-division multiplexing
(PDM), i.e., launching pairs of signals in orthogonal polariza-
tions and employing polarization-resolved detection. When
PMD is nonnegligible, pairs of signals must be launched into the
two principal states of polarizations (PSPs). Because the PSPs
change with time, adaptive polarization control is essential for
PDM to operate without crosstalk between paired signals.

C. Nonlinear Regime

1) Spectral Efficiency Limits With Coherent Detec-
tion: Fiber nonlinearities limit the transmission distance and the
overall capacity of DWDM systems [25]–[28]. The major fiber
nonlinearities are the Kerr effect, stimulated Raman scattering,
and stimulated Brillouin scattering [29]. The Kerr effect leads to
self-phase modulation (SPM), cross-phase modulation (XPM),
and four-wave mixing (FWM). In the Kerr effect, the intensity of
the aggregate optical signal perturbs the fiber refractive index,
thereby modulating the phase of signals. In DWDM systems,
SPM and XPM arise when the phase of a channel is modulated
by its own intensity and by the intensity of other channels,
respectively. FWM arises when two channels beat with each
other, causing intensity modulation at the difference frequency,
thereby phase-modulating all the channels and generating new
frequency components. Fiber propagation with the Kerr effect
is modeled using a nonlinear Schrödinger equation for single
channel systems and coupled nonlinear Schrödinger equations
for DWDM systems. Among the various nonlinearities, the
Kerr effect has the greatest impact on channel capacity.

Early studies focused on the effect of fiber nonlinearity on
specific modulation and detection techniques, including OOK
with direct detection [25], [28] or simple modulations with co-
herent detection [26], [27]. Recently, the combined effect of
ASE and Kerr nonlinearity on the Shannon capacity [1] has been
studied [9], [10], [30]–[37].

Mitra and Stark [10] argued that the capacity of DWDM sys-
tems is limited most fundamentally by XPM. As a signal propa-
gates, chromatic dispersion converts XPM-induced phase mod-
ulation to intensity noise. Capacity limitations caused by XPM
are further studied in [30] and [31]. In fibers with nonzero dis-
persion, XPM has a much greater impact than FWM. DWDM
systems with many channels are likely to be limited by XPM,
perhaps allowing SPM to be ignored to first order. However, the
methods of [10], [30], and [31] do not quantify the importance
of SPM relative to XPM and cannot be applied single-channel
systems, which are limited primarily by SPM.

With constant-intensity modulation, such as phase or fre-
quency modulation [7], ideally, both SPM and XPM cause only
time-invariant phase shifts, eliminating both phase and inten-
sity distortion. If one could further neglect FWM, propagation

3At somewhat larger values ofB, we can restrict attention to first-order PMD,
and by launching a signal into one of the principal states of polarization (which
requires adaptive polarization control at the transmitter), we can avoid PMD-
induced distortion.

would be linear; the capacity would be given by the expressions
in [5]–[7], and increasing the launched power would lead to a
monotonic increase in spectral efficiency. In reality, chromatic
dispersion converts phase or frequency modulation to intensity
modulation [32], and laser intensity noise and imperfect
modulation cause additional intensity fluctuations. Hence, it is
difficult to maintain constant intensity along an optical fiber.
Furthermore, in reality, constant-intensity modulation is subject
to FWM.

Tang [33]–[35] solved the nonlinear Schrödinger equation
using a series expansion, similar to the Volterra series in [36].
The linear term is considered to be signal and all higher order
terms are considered to be noise. If a sufficient number of terms
is included, methods based on series expansion are very accu-
rate. Tang [33]–[35] has included many terms, yielding a quasi-
exact closed-form treatment.

In a single-channel system, the channel capacity is limited
by SPM. In a DWDM system, when all channels are detected
together, the impact of XPM can be reduced using a multiuser
detection or interference-cancellation scheme. Using perturba-
tion methods, Narimanov and Mitra [9] found the channel ca-
pacity of single-channel systems. For a single-channel system
with zero average dispersion, the nonlinear Schrödinger equa-
tion has been solved analytically in [37] to find the channel ca-
pacity.

To quantify the SNR in the presence of XPM noise, Mitra and
Stark [10] introduced a nonlinear intensity scale . For trans-
mitted power per channel well below , increasing the power
raises the SNR, increasing capacity. As the transmitted power
approaches , however, XPM noise increases rapidly, causing
capacity to decrease precipitously. This nonlinear intensity scale

is also applicable to the models of Tang [33]–[35], Nari-
manov and Mitra [9], constant-intensity modulation [7], and
even the quantum limit [37]. In each of the models of [7], [9],
[10], [30], [31], [33]–[35], the launched power that maximizes
capacity increases with . In DWDM systems, the nonlinear
intensity scale , and thus the capacity, increases with fiber dis-
persion, channel spacing, and signal bandwidth, and decreases
with the total number of spans and the total number of channels.

In the pioneering paper [10], the nonlinear intensity scale for
XPM was found to be

(10)

and the maximum spectral efficiency is lower bounded by

(11)

where is the fiber dispersion coefficient, is the fiber
nonlinear coefficient, is the number of DWDM channels,

is the overall nonlinear length of the fiber for
fiber spans, and is the fiber attenuation coefficient.

Using the spectral efficiency lower bound (11), the power per
channel that maximizes spectral efficiency is approximately
equal to , and the maximum spectral efficiency is
approximately equal to [10].
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Fig. 4. Spectral efficiency limits in DWDM systems with coherent detection.
Dashed lines describe the linear regime and are identical to those in Fig. 3(a).
Solid lines correspond to the nonlinear regime as limited by XPM or FWM. All
system parameters are the same as in Fig. 3(a), with the following additional
parameters assumed:  = 1:24=W/km, N = 101, and D = 17 ps/km/nm.

In a DWDM system limited by FWM instead of XPM, the
spectral efficiency bound is given by (11), and the nonlinear
intensity scale is given by

(12)

where , , if
and if , , is the
optical wavelength, and is the speed of light. Expression (12)
has been derived for the center (worst case) channel.

Fig. 4 shows the nonlinear spectral efficiency limits of a
101-channel DWDM system using coherent detection and ei-
ther unconstrained or constant-intensity modulation, assuming
the same parameters as in Fig. 3(a). The limits in the linear
regime, taken from Fig. 3(a), are shown as dashed lines. When
either unconstrained or constant-intensity modulation is limited
by FWM, an optimal power density of about 10 W/Hz
maximizes spectral efficiency. Fig. 4 also shows the XPM-lim-
ited spectral efficiency for unconstrained modulation from
[10], which is maximized for an input power density of about
10 W/Hz. For the specific parameters assumed in Fig. 4,
the FWM-limited spectral efficiency of constant-intensity
modulation is comparable to, but less than, the XPM-limited
spectral efficiency of unconstrained modulation.

2) Discussion of Nonlinear Regime: While the nonlinear
Schrödinger equation with noise provides a very accurate
model for nonlinear propagation in fiber, the equation does not
have an analytical solution except in some special cases [37].
While [7], [9], [10], [30], [31], [33]–[35], and [37] are based
on this accurate formulation, they make different assumptions,
leading to different estimates of channel capacity.

In order to illustrate the major qualitative differences between
the various models, we consider a simplified memoryless mono-
tonic transfer characteristic , where and

are the input and output, respectively, and is a small number.
While there is no nonlinear fiber channel having transfer char-
acteristic , this simple function with linear term and non-
linear term yields insight into fiber systems. For a mono-
tonic, one-to-one function such as , if we interpret both
terms and as signal, then in the absence of any noise, the
entropy of the output given the input is equal to zero.
The mutual information between the input and the output, and
thus the channel capacity, equals the entropy of the input .

We draw an equivalence to the models [7], [9], [10], [30], [31],
[33]–[35] by considering the linear term to be signal and the
nonlinear term to be noise. In DWDM systems with many
channels, the nonlinear term includes “intermodulation
products” corresponding to the XPM and FWM caused by other
channels. As all channels are typically independent from one
another, the models [10], [30], [31] concerning XPM-induced
distortion can indeed model XPM as noise independent from
the signal. Likewise, the model [7] concerning FWM compo-
nents from other channels for constant-intensity modulation
can model FWM to be noise independent from the signal. In a
single-channel system [9], the nonlinear distortion caused by
SPM depends on the signal and cannot be modeled as signal-
independent noise. While only contributions from XPM are
modeled as signal-independent noise in [10], [30], and [31], the
series expansion model of [33]–[35] regards all higher order
terms as noise independent of the signal. In fact, the two main
groups of models are not complete because Tang [33]–[35]
cannot account for the dependence of higher order terms on the
signal and Mitra et al. [10], [30], [31] cannot include the higher
order terms caused by SPM. In DWDM systems with many
channels, the methods of [10], [30], [31], and [33]–[35] can be
considered to be equivalent if the effect of SPM is negligible
compared to XPM. In single-channel systems, where SPM must
be considered, only the method of Turitsyn et al. [37] yields the
probability density of the channel output including nonlinearity
and uses it to calculate the channel capacity. In all cases, if the
nonlinear term of is considered as noise, the channel
capacity decreases at high launched power, and a nonlinear
intensity scale similar to (10) and (12) can be evaluated. In the
single-channel system of Narimanov and Mitra [9], the channel
capacity curve behaves like the curves in Fig. 4 for FWM.

The single-channel capacity of Turitsyn et al. [37] has been
evaluated for fiber links with zero average dispersion. Only non-
linear phase noise, or the Gordon–Mollenauer effect [39], mod-
ulates the phase of the signal. The channel capacity is calculated
using the probability density of the signal with nonlinear phase
noise [37], [40]. In the limit of very high nonlinear phase noise,
the capacity degenerates to that of direct detection (discussed in
Section II-B3), which increases logarithmically with launched
power. The nonlinear phase noise causes no amplitude noise.

The impact of Kerr nonlinearity can be reduced or canceled
using phase conjugation [41], [42]. In DWDM systems with
many channels, Kerr effect compensation reduces or cancels
the nonlinear terms originating from other channels. In such a
case, Kerr effect compensation yields the obvious benefit of re-
ducing the “noise.” In single-channel systems, Kerr effect com-
pensation changes the statistics of the signal with noise. While
midspan or distributed Kerr effect compensation can improve
the capacity, Kerr effect compensation just before the receiver
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does not improve capacity, and may actually reduce capacity by
adding more noise.

D. Quantum Regime

When the number of signal and/or noise photons is small,
quantum effects must be considered to compute the capacity of
an optical channel [11], [12]. While a classical continuous-time
channel can be converted to a discrete-time channel using the
sampling theorem [1], the particle-based quantum channel
does not have a corresponding sampling theorem. However,
one may assume that a measurement is made within a time
interval limited by the channel bandwidth. Hence, most studies
of quantum-limited capacity assume a discrete-time channel
[11], [12], [43]–[48].

When the coherent states of a radiation are used for commu-
nication, coherent detection can be used to detect the real and
imaginary parts of the quantum states. The spectral efficiency
with Gaussian noise is given by [12], [44], [46]

(13)

where is the mean number of signal photons and is
the mean number of ASE photons. The spectral efficiency (13)
is the same as (4) with and a quantum SNR given
by . Comparing this with the classical SNR

, it is intuitively clear that there is a minimum of one
noise photon in the coherent states [11], [12], [44]. In a system
with fiber nonlinearity, the noise introduced by intermodulation
products is equivalent to an increase in the number of ASE
photons [38].

The intensity-modulation direct-modulation channel con-
sidered in Section II-B3 is equivalent to the classical limit
of a photon-counting channel. The continuous-time photon-
counting channel is modeled by information theorists as a
Poisson channel with unlimited bandwidth but peak and
average power constraints [49]–[52]. A discrete-time Poisson
channel can be used to model a quantum-limited bandlimited
photon-counting channel [11], [12], [43]–[46].

Optical amplification alters the photon statistics of ampli-
fied light. While an amplified signal has Poisson statistics, ASE
noise obeys Bose–Einstein statistics. For a signal having
signal photons and ASE photons, the ASE noise is equiva-
lent to Poisson-distributed light where the mean number of pho-
tons has the distribution

(14)

and the output photon-number distribution is given by [22], [53]

(15)

where is the Laguerre polynomial

(16)

The distribution (15) includes only ASE noise having the same
polarization as the signal.

If the input distribution is , the output distribution is
. The maximum spectral effi-

ciency is

(17)

As in [11], [43], and [44], the maximum spectral efficiency
can be derived by maximizing the output entropy

(18)

If the input electric field is Gaussian distributed with
, the output photon distribution is
and

(19)

where . The spectral efficiency limit can be
evaluated numerically using (17) and (19).

For a large number of photons and high SNR, the summation
can be approximated by integration,

and the conditional distribution can be assumed to be
Gaussian distributed with variance

describing signal shot noise, ASE shot noise,
signal-spontaneous beat noise, and spontaneous–spontaneous
beat noise, respectively [22]. Based on the Gaussian approxi-
mation

(20)

Similar to [12], we obtain

(21)

where is the Euler constant.
The asymptotic limit (21) is 0.312 bit/s/Hz higher than the

classical intensity-modulation/direct-detection limit (9) for the
same classical SNR . The limit (21) is also independent
of the number of modes (or polarizations) in the ASE noise. For
example, ASE in single and dual polarizations gives the same
asymptotic limit (21). When the particle nature of photon is con-
sidered, spectral efficiency can be improved by 0.312 bit/s/Hz
compared to the classical assumption of a continuous-ampli-
tude channel. Based on photon statistics, the asymptotic limits
in Fig. 3(a) and (b) for intensity modulation/direct-detection can
be moved up by 0.312 bit/s/Hz.

Fig. 5(a) and (b) presents spectral efficiency limits given by
(17) for a photon-counting channel with ASE noise. Fig. 5(a)
shows the spectral efficiency (17) as a function of the clas-
sical SNR for various values of the mean number of
signal photons . Fig. 5(a) also shows the asymptotic limit (21)
for large number of signal photons and high SNR. Fig. 5(b)
shows the spectral efficiency (17) as a function of the mean
signal photon number for various values of the SNR. The
case with infinite SNR corresponds to the spectral efficiency for
Poisson-distributed photons [43], [44].
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Fig. 5. Spectral efficiency limits for photon-counting channel with ASE noise
(a) versus SNR for various mean numbers of signal photons and (b) versus mean
number of signal photons for various SNRs.

Unlike the classical case in Fig. 3(a) and (b), in which the
spectral efficiency depends only on the SNR, the quantum-lim-
ited spectral efficiency depends on both the SNR and the number
of signal photons. Even at high SNR, high spectral efficiency
cannot be achieved with a small number of signal photons. As
shown in [38], the effect of fiber nonlinearity upon quantum-
limited spectral efficiency is equivalent to an increase in the
number of ASE photons.

III. MODULATION, DETECTION, AND CODING TECHNIQUES

A. Preliminaries

In this section, we compare the spectral efficiencies and SNR
efficiencies of various modulation and detection techniques. We
mainly consider uncoded modulation, deferring discussion of
coding to Section III. The effects of laser phase noise and fiber
nonlinearity (including nonlinear phase noise) are also deferred
to Section III. Unless stated otherwise, we consider transmission
in a single polarization.

Binary modulation encodes one bit per symbol, while
nonbinary modulation encodes more than one bit per symbol,
leading to higher spectral efficiency. While not considered in

detail in this paper, nonbinary modulation also offers improved
resistance to transmission impairments, including chromatic
and polarization-mode dispersions [13], [54]. There are two
reasons for this improved robustness. For a fixed bit rate, non-
binary modulation can employ a lower symbol rate than binary
modulation, reducing signal bandwidth and thus reducing
pulse spreading caused by chromatic dispersion. Also, because
nonbinary modulation employs a longer symbol duration than
binary modulation, it can often tolerate greater pulse spreading
caused by chromatic and polarization-mode dispersions.

The information bit rate per channel in one polarization is
given by

(22)

The bit rate has units of b/s, and the symbol rate has units
of baud (symbols/s). For an occupied bandwidth per channel ,
avoidance of intersymbol interference requires , with

being achieved by ideal pulses of the form sinc
[20].4 The unitless parameter is the rate of an error-cor-
rection encoder that is used to add redundancy to the signal in
order to improve the SNR efficiency. The uncoded case corre-
sponds to . The parameter is the number of points in
the signal constellation. If the channel spacing is , the spec-
tral efficiency per polarization is

(23)

Our figure of merit for spectral efficiency is , the number
of coded bits per symbol, which determines spectral efficiency
for fixed and fixed .

Referring to Fig. 1, we note that at the input of the final am-
plifier, the average energy per information bit is .
At the output of the final amplifier, the average energy per in-
formation bit is

(24)

i.e., it is identical to the average transmitted energy per informa-
tion bit. Recall that denotes the PSD of ASE at the output of
the final amplifier (in one polarization). Our figure of merit for
SNR efficiency is the value of the received SNR per information
bit required to achieve an information bit error ratio
(BER) . This figure of merit indicates the average
energy that must be transmitted per information bit for fixed
ASE noise, making it appropriate for systems in which the trans-
mitted energy is constrained by fiber nonlinearities. Defining the
average number of photons per information bit at the input of the
final amplifier , and using (1), the figure of merit
is equal to

(25)

4This assumes double-sideband transmission. Using single-sideband trans-
mission with real symbols and direct detection can reduce the bandwidth re-
quired per channel, but only in the limit of high SNR when a strong carrier is
transmitted [55]. With coherent detection, use of quadrature-amplitude modu-
lation is typically preferred over single-sideband transmission [20].
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TABLE I
COMPARISON OF MODULATION AND DETECTION SCHEMES. M DENOTES THE NUMBER OF POINTS IN THE SIGNAL CONSTELLATION. NUMBERS GIVEN REPRESENT

THE VALUES OF GE =S = n =n (PHOTONS/BIT) REQUIRED FOR AN INFORMATION BER P = 10 . NUMBERS IN PARENTHESES ARE THE

CORRESPONDING VALUES OF 10 log (GE =S ) = 10 log (n =n )(dB). ONE AND TWO POLARIZATIONS ARE CONSIDERED. VALUES FOR

PAM, M � 4, ARE ESTIMATED. QUESTION MARKS DENOTE UNKNOWN VALUES

where the approximate equality is valid for high gain .
Equation (25) indicates that the figure of merit can be viewed
as the receiver sensitivity at the final amplifier input (pho-
tons/bit), divided by the equivalent noise factor of the multispan
system . The definition of is similar to the classical
SNR used in the quantum-limited spectral efficiencies
(13) and (21).

B. PSK and QAM With Coherent Detection

As stated in Section II-A, we use “coherent detection” to de-
note synchronous homodyne or heterodyne detection; hetero-
dyne detection is assumed to use narrow-band ASE filtering
or image rejection so that it achieves the same performance as
homodyne detection [23]. These forms of coherent detection
achieve optimal SNR efficiency and, with QAM, can approx-
imately double spectral efficiency by enabling two degrees of
freedom per polarization.

It is not necessary for us to consider heterodyne or phase-di-
versity homodyne detection with differentially coherent (delay)
demodulation of DPSK or CPFSK [20]. The interferometric
detection scheme described in Section III-C is mathematically
equivalent [24] and is easier to implement. Note also that
CPFSK, particularly in nonbinary form, does not offer high
spectral efficiency [20]. Likewise, it is not necessary for us to
consider heterodyne or phase-diversity homodyne detection
with noncoherent demodulation (envelope detection) of PAM,
since the direct detection scheme described in Section III-D is
mathematically equivalent [24] and is more easily implemented.

Homodyne detection requires a receiver electrical bandwidth
approximately equal to the symbol rate , a potential advan-
tage at very high symbol rates. It requires a pair of balanced
receivers for detection of -ary PSK and QAM, , and
usually employs an optical PLL. Heterodyne detection requires
a receiver electrical bandwidth of approximately 2 , which is
potentially problematic at very high symbol rates. For detection
of all modulation techniques, it requires only one balanced
receiver, and it can use either an optical or electrical PLL.

Most DWDM systems use optical demultiplexers that provide
narrow-band filtering of the received signal and ASE, in which
case, image rejection is not required for heterodyne to achieve
the same performance as homodyne detection. Both homodyne
and heterodyne detection require polarization tracking or
polarization diversity. Our analysis assumes tracking, as it
requires fewer photodetectors. Coherent system performance
is optimized by using high amplifier gain and a strong
local-oscillator laser, so that local-oscillator-ASE beat noise
dominates over receiver thermal noise and other noise sources
[22]. This corresponds to the standard case of additive white
Gaussian noise [20].

-ary PSK uses a constellation consisting of points
equally spaced on a circle. In the case of uncoded 2- or 4-PSK,
the BER is given by [20]

(26)

where the function is defined in [20]. Achieving a BER
requires . The BER performance of -PSK,

, is computed in [20]. The spectral and SNR efficiencies
of -PSK for are compiled in Table I and are
plotted as circles in Fig. 6.

-ary QAM uses a set of constellation points that are roughly
uniformly distributed within a two-dimensional region. In the
cases , the points are evenly arrayed
in a square, while in the cases

, the points are often arranged in a cross. The BER
performance of -QAM is computed in [20]. The spectral and
SNR efficiencies of -QAM for are compiled in
Table I and are plotted as squares in Fig. 4.

C. DPSK With Interferometric Detection

-ary DPSK uses a signal constellation consisting of
points equally spaced on a circle, like -PSK. While -PSK
encodes each block of bits in the phase of the trans-
mitted symbol, -DPSK encodes each block of bits
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Fig. 6. Spectral efficiency versus SNR requirement for various modula-
tion and detection techniques. The SNR requirement is the value of
10 log (GE =S ) = 10 log (n =n ) required to achieve a BER
P = 10 . One polarization is assumed.

in the phase change between successively transmitted symbols
[20]. DPSK has recently been employed for fiber transmission
with various formats, including nonreturn-to-zero (NRZ), re-
turn-to-zero (RZ), and chirped RZ (CRZ). In the absence of fiber
nonlinearity, with proper dispersion compensation and matched
filtering, all these formats fundamentally achieve the same SNR
and spectral efficiency figures of merit considered here.

Under interferometric detection of two-DPSK, a Mach–
Zehnder interferometer with a path difference of one-symbol
duration compares the phases transmitted in successive sym-
bols, yielding an intensity-modulated output that is detected
using a balanced optical receiver. In the case of -DPSK,

, a pair of Mach–Zehnder interferometers (with phase
shifts of 0 and 2) and a pair of balanced receivers are used
to determine the in-phase and quadrature components of the
phase change between successive symbols.

Tonguz and Wagner [24] showed that for DPSK, the perfor-
mance with optical preamplification and interferometric detec-
tion is equivalent to that with standard differentially coherent
detection. Their work indicates that 2-DPSK requires

with single-polarization filtering5 and with
polarization diversity in order to achieve a BER
[24]. The performance of -DPSK for with single-po-
larization polarization filtering is described by the analysis in
[20]. At low BERs, the SNR requirement for 4-DPSK is 2.3 dB
higher than for 2- or 4-PSK, while for 8- and 16-DPSK, the
SNR requirements are very nearly 3.0 dB higher than for 8-
and 16-PSK, respectively. The spectral and SNR efficiencies of

-DPSK for with single-polarization filtering
are compiled in Table I and are plotted as triangles in Fig. 4. The
authors are not aware of a performance analysis of M-DPSK for

with polarization diversity.

5Single-polarization filtering uses a polarization-tracking receiver with a po-
larization analyzer that blocks the ASE polarized orthogonal to the signal.

D. PAM With Direct Detection

When used in conjunction with direct detection, -ary PAM
encodes a block of bits by transmitting one of inten-
sity levels. Hence, the signal constellation consists of points
on the nonnegative real line.6 Binary PAM, corresponding to
OOK, is the most commonly used modulation technique. While
OOK and nonbinary PAM have been employed with NRZ, RZ,
and CRZ formats, all these formats fundamentally achieve the
same SNR and spectral efficiency figures of merit considered
here. A finite extinction ratio can strongly impact the SNR effi-
ciency of -PAM, particularly for . For simplicity, we
consider an infinite extinction ratio.

Henry [58] and Humblet and Azizoglu [59] analyzed the
performance of 2-PAM (OOK) with optical preamplification
and direct detection. Including signal-spontaneous beat noise
and spontaneous–spontaneous beat noise, the photocurrents are
squares of Rayleigh- and Rician-distributed random variables
(i.e., central and noncentral chi-square random variables) for
intensity levels zero and one, respectively. In order to achieve
a BER , 2-PAM requires with single-
polarization filtering and with polarization
diversity.

The authors are not aware of an exact performance analysis of
-PAM for . Neglecting all noises except the dominant

signal-spontaneous beat noise, at each intensity level, the pho-
tocurrent is Gaussian-distributed, with a variance proportional
to the intensity. Setting the 1 decision thresholds at the geo-
metric means of pairs of adjacent levels approximately equalizes
the downward and upward error probabilities at each threshold.
In order to equalize the error probabilities at the 1 different
thresholds, the intensity levels should form a quadratic series
[14], i.e., 0, 1, 4, 9, etc. Under these assumptions, and assuming
Gray coding, it is easily shown that the BER is approximately
given by

(27)

For , (27) indicates that is required for
, which is lower by 0.2 dB than the requirement

. For , (27) indicates that the SNR re-
quirement increases by a factor

, corresponding to penalties of 5.5, 10.7, and 15.9 dB for
, respectively. In order to estimate the SNR re-

quirements of -PAM for with single-polarization fil-
tering, we assume the exact requirement for

and then add the respective penalties for . The
spectral and SNR efficiencies of -PAM for
with single-polarization filtering are compiled in Table I and are
plotted as diamonds in Fig. 6.

6The constellation is sometimes expanded to 2M�1 points by including the
negatives of the M�1 nonzero points. The optical spectrum can be controlled
by appropriately choosing between the positive and negatives points, e.g., using
duobinary encoding [56], [57] or other line coding schemes. These techniques
do not affect the SNR or spectral efficiency figures of merit considered here.
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TABLE II
COMPARISON OF DETECTION TECHNIQUES. SHADING DENOTES AN ADVANTAGE

TABLE III
LASER LINEWIDTH REQUIREMENTS FOR VARIOUS MODULATION AND DETECTION TECHNIQUES, ASSUMING A 0.5-dB PENALTY. FOR INTERFEROMETRIC

DETECTION, TRANSMITTER HAS LINEWIDTH �� , WHILE FOR COHERENT DETECTION, EACH OF THE TRANSMITTER AND LOCAL OSCILLATOR

HAS LINEWIDTH �� . QUESTIONS MARKS DENOTE UNKNOWN VALUES

E. Discussion

Fig. 6 compares the spectral efficiencies and SNR require-
ments of the various modulation and detection techniques de-
scribed in the sections above. We observe that for ,
the SNR requirements for PAM increases very rapidly, while
the SNR requirements of the other three techniques increase
at a more moderate rate. Note that for large , the SNR re-
quirements increase with roughly equal slopes for PAM, DPSK,
and PSK, while QAM exhibits a distinctly slower increase of
SNR requirement. This behavior can be traced to the fact that
PAM, DPSK, and PSK offer one degree of freedom per polar-
ization, while QAM offers two degrees of freedom per polar-
ization. Based on Fig. 6, at spectral efficiencies below 1 b/s/Hz
per polarization, 2-PAM (OOK) and 2-DPSK are attractive tech-
niques. Between 1 and 2 b/s/Hz, 4-DPSK and 4-PSK are perhaps
the most attractive techniques. At spectral efficiencies above
2 b/s/Hz, 8-PSK and 8- and 16-QAM become the most attrac-
tive techniques.

Table II compares some of the key attributes of direct, in-
terferometric and coherent detection. The key advantages of
interferometric detection over direct detection lie in the supe-
rior SNR efficiency of 2- and 4-DPSK as compared to 2- and
4-PAM. Coherent detection is unique in offering two degrees
of freedom per polarization, leading to outstanding SNR effi-
ciency for 2- and 4-PSK, and still reasonable SNR efficiency
for 8-PSK and for 8- and 16-QAM. Coherent detection also en-
ables electrical channel demultiplexing and chromatic disper-
sion compensation. Coherent detection requires a local oscil-
lator laser and polarization control, which are two significant
drawbacks.

Laser phase noise has traditionally been a concern for op-
tical systems using DPSK, PSK, or QAM. In DPSK, interfer-
ometric detection can be impaired by changes in laser phase
between successive symbols. Laser linewidth requirements for
2-DPSK have been studied in [77] but have not been studied
for 4-DPSK, to our knowledge. In PSK and QAM systems, a
PLL (optical or electrical) attempts to make the local oscillator
track the laser phase noise, but the PLL operation is corrupted
by additive Gaussian noise. Laser linewidth requirements for co-
herent detection have been studied for 2-PSK [78] and 4-PSK
[79].7 The laser linewidth requirements for 2-DPSK, 2-PSK,
and 4-PSK are summarized in Table III. At a bit rate

, the linewidth requirements for 2-DPSK (30 MHz)
and 2-PSK (8 MHz) can be accommodated by standard dis-
tributed-feedback lasers. Four-PSK requires a much narrower
linewidth (250 kHz), which can be achieved by compact ex-
ternal cavity lasers, which offer linewidths below 200 kHz [60].

Nonlinear phase noise [39] is induced by the interaction of
ASE and signal through the Kerr effect. SPM- and XPM-in-
duced nonlinear phase noise are added to the signal phase,
limiting the performance of systems using phase-modulated
signals, such as DPSK and PSK [61]–[66]. The statistical
properties of nonlinear phase noise depend only on the mean
nonlinear phase shift and the SNR [64]. The variance of
SPM-induced nonlinear phase noise is proportional to the
square of launched power per channel and inversely propor-

7These works addressed the local oscillator shot noise-dominated regime,
where the sensitivity limit for heterodyne detection of 2-PSK and homodyne
or heterodyne detection of 4-PSK is n = 18 for P = 10 . The results are
also applicable to homodyne or heterodyne detection of 2- and 4-PSK in the
ASE-limited regime, where the limit is n =n = 18.
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tional to the SNR [39], [64]. The SNR is proportional to the
launched power per channel, so there is an optimal launched
power per channel or, equivalently, an optimal mean nonlinear
phase shift. As shown in [64]–[66], the optimal mean non-
linear phase shifts for 2-PSK and 2-DPSK are about 1.25 and
1.00 rad, respectively. For 4-DPSK, the optimal mean nonlinear
phase shift is 0.89 rad [67]. As shown in Fig. 6, higher level
modulations like QAM require higher SNR. As a high SNR
decreases the variance of nonlinear phase noise, the optimal
mean nonlinear phase shifts are likely to be around 1 rad, close
to the estimate given in [39].

SPM-induced nonlinear phase noise is correlated with the
received intensity, making it possible to partially compensate
the nonlinear phase noise using the received intensity [64],
[66]–[70]. When such compensation is performed, the variance
of nonlinear phase noise can be reduced by a factor of two,
doubling the optimal mean nonlinear phase shift. If nonlinear
phase noise is the dominant impairment, the transmission
distance can also be doubled. While SPM-induced nonlinear
phase noise has received the most attention recently [62],
[64]–[70], there have been few studies on XPM-induced
nonlinear phase noise [63]. While SPM-induced nonlinear
phase noise requires complicated models [64], XPM-induced
nonlinear phase noise should be Gaussian-distributed and may
be modeled as mathematically equivalent to laser phase noise.

Current fiber systems use binary modulation with error-con-
trol coding schemes that are well matched to binary modulation
[71], such as Reed–Solomon codes, BCH codes, turbo codes
[72], or low-density parity-check codes [73]. Nonbinary mod-
ulation will be needed to achieve spectral efficiencies above 1
b/s/Hz. Following lessons learned in nonoptical systems, making
good use of nonbinary modulation requires appropriate coding
schemes, including trellis-coded modulation (TCM) [74], turbo
TCM [75], and shaping codes [76]. Systems using coherent
detection can use coding schemes devised for nonoptical sys-
tems with Gaussian noise. In systems using direct detection or
interferometric detection, the dominant noise at the receiver is
not Gaussian-distributed; as a result, coding schemes developed
for Gaussian-noise channels are not optimal. There is a need to
study TCM, turbo TCM, and shaping codes for these systems.
Accurate analytical bounds on error probability must be devel-
oped, which can lead to design criteria for good codes. Once
good codes are identified, their coding gains must be evaluated.

IV. CONCLUSION AND FUTURE WORK

Increasing spectral efficiency is often the most economical
means to increase DWDM system capacity. In this paper,
we have reviewed information-theoretical spectral efficiency
limits for various modulation and detection techniques in both
classical and quantum regimes, considering both linear and
nonlinear fiber propagation regimes. Spectral efficiency limits
for unconstrained modulation with coherent detection are
several b/s/Hz in terrestrial DWDM systems, even considering
nonlinear effects. Spectral efficiency limits are reduced sig-
nificantly using either constant-intensity modulation or direct
detection. Using binary modulation, regardless of detection
technique, spectral efficiency cannot exceed 1 b/s/Hz per
polarization.

We have compared the spectral efficiency and SNR require-
ments of various modulation and detection techniques in the
ASE-limited regime. At spectral efficiencies below 1 b/s/Hz, bi-
nary PAM (OOK) and DPSK are attractive options. Between
1 and 2 b/s/Hz, quaternary DPSK and PSK are perhaps the
most attractive techniques. Techniques such as 8-PSK or 8- and
16-QAM are necessary to achieve spectral efficiencies above
2 b/s/Hz per polarization.

Many interesting challenges remain. Nonlinear spectral effi-
ciency limits for DWDM systems that simultaneously consider
SPM and XPM are needed. Further investigations of nonlinear
effects, including nonlinear phase noise, on DPSK, PSK, and
QAM systems are warranted. Compensation of nonlinear effects
using such diverse methods as optical phase conjugation and
multiuser detection should be explored further. The impact of
chromatic dispersion and polarization-mode dispersion on non-
binary modulation methods, including PAM, DPSK, PSK, and
QAM, needs to be more fully quantified. Optimal coding tech-
niques for nonbinary DPSK and PAM should be developed.

Optical signals propagating in fibers offer several degrees of
freedom, including time, frequency, and polarization. The com-
bined coding over these degrees of freedom has been seldom
explored as a means to increase transmission capacity in fibers,
especially as a way to combat or benefit from fiber nonlinearity
and polarization-mode dispersion.
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