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Phase statistics of the soliton
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The characteristic function of soliton phase jitter is found analytically when the soliton is perturbed by ampli-
fier noise. In addition to that from amplitude jitter, the nonlinear phase noise due to frequency and timing
jitter is also analyzed. With nonlinear phase noise, the overall phase jitter is non-Gaussian distributed. For
a fixed mean nonlinear phase shift, the contribution of nonlinear phase noise from frequency and timing jitter
decreases with distance and signal-to-noise ratio. © 2004 Optical Society of America
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1. INTRODUCTION
The phase jitter of soliton due to amplifier noise, like
Gordon–Haus timing jitter,1 is usually assumed to be
Gaussian distributed.2–5 When the phase jitter of soliton
was studied, the phase jitter variance was given or mea-
sured but the statistics of the soliton phase was not
discussed.2,3,6–8

For nonsoliton systems, the statistics of nonlinear
phase noise is found to be non-Gaussian distributed both
experimentally9 and theoretically.10–13 However, those
studies9–13 just include the Gordon–Mollenauer effect14

that is the nonlinear phase noise induced by the conver-
sion of amplitude-to-phase jitter due to the fiber Kerr ef-
fect, mostly self-phase modulation. On the basis of the
well-developed perturbation theory of the soliton,5,15–17

phase jitter can also be induced by the interaction of fre-
quency and timing jitter. In this paper I derive statistics
of the soliton phase including the contribution of timing
and frequency jitter-induced nonlinear phase noise. The
characteristic function of soliton phase jitter is derived
analytically, to my knowledge, for the first time. The
probability density function (pdf) is simply the inverse
Fourier transform of the corresponding characteristic
function.

Most optical communication systems use the intensity
of the optical signal to transmit information. Direct-
detection differential phase-shift keying signaling has re-
newed attention recently,18–27 mostly by use of return-to-
zero (RZ) pulses for long-haul transmission to encode
information in the phase difference between two consecu-
tive pulses. To a certain extent, a soliton differential
phase-shift keying system may be a good approximation
to a phase-modulated dispersion-managed soliton8 or RZ
signal. With well-developed perturbation theory, the dis-
tribution of the soliton phase jitter can be derived analyti-
cally.

The error probability of a differential phase-shift key-
ing soliton signal was calculated in Ref. 28 with the
method of Refs. 29 and 30 without taking into account the
effect of phase jitter. If the phase jitter is Gaussian dis-
0740-3224/2004/020266-07$15.00 ©
tributed, the system can be analyzed by the formulas of
Ref. 31. The phase jitter may be indeed Gaussian dis-
tributed in certain regimes around the center of the
distribution,3,32 especially if the pdf is plotted in linear
scale. The tail probability less than, for example, 1029 is
certainly not Gaussian distributed. As optical communi-
cation systems aim for low error probability, a careful
study of the statistics of the soliton phase is necessary to
characterize the performance of the system.

The remaining sections of this paper are organized as
follows: In Section 2, I give the stochastic equations of
the phase jitter according to the first-order soliton pertur-
bation theory; in Section 3, I derive the characteristic
function of soliton phase jitter; in Section 4, I present the
numerical results; and in Sections 5 and 6, I provide the
discussion and conclusion of the paper, respectively.

2. STOCHASTIC EQUATIONS FROM
SOLITON PERTURBATION
From the first-order perturbation theory, with amplifier
noise, the soliton parameters evolve according to the fol-
lowing equations5,15–17:

dA

dz
5 IH E dtfAn~z, t!J , (1)

dV

dz
5 RH E dtfVn~z, t!J , (2)

dT

dz
5 2V 1 IH E dtfTn~z, t!J , (3)

df

dz
5

1

2
~A2 2 V2! 1 T

dV

dz
1 RH E dtffn~z, t!J ,

(4)

where R$ % and I$ % denote the real and imaginary parts
of a complex number, respectively; n(z, t) is the amplifier
noise with the autocorrelation of
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E$n~z1 , t1!n~z2 , t2!% 5 sn
2d ~z1 2 z2!d ~t1 2 t2!;

(5)

A(z), V(z), T(z), and f(z) are the amplitude, frequency,
timing, and phase parameters of the perturbed soliton of

q0~t, z! 5 A~z!sech$A~z!@t 2 T~z!#%

3 exp@2iV~z!t 1 if~z!# (6)

with initial values of A(0) 5 A and V(0) 5 f(0)
5 T(0) 5 0. Functions related to soliton parameters
are

fA 5 q0* , (7)

fV 5 tanh@A~t 2 T !#q0* , (8)

fT 5
t 2 T

A
q0* , (9)

ff 5 2
1

A
$1 2 A~t 2 T !tanh@A~t 2 T !#%q0* . (10)

The parameters of Eqs. (1)–(4) are normalized.5

From both Eqs. (1) and (2), we obtain

A~z! 5 A 1 wA~z!, (11)

V~z! 5 wV~z!, (12)

where wA and wV are two independent zero-mean Wiener
processes with autocorrelation functions of

E$wA~z1!wA~z2!% 5 sA
2 min~z1 , z2!, (13)

E$wV~z1!wV~z2!% 5 sV
2 min~z1 , z2!, (14)

where sA
2 5 Asn

2 and sV
2 5 Asn

2/3.5,7,17 Defined for
the amplitude, the signal-to-noise ratio (SNR) as a func-
tion of distance is

A2

sA
2z

5
A

sn
2z

. (15)

When we use Eqs. (3) and (12), the timing jitter is

T~z! 5 2E
0

z

wV~z1!dz1 1 wT~z!, (16)

where wT is a zero-mean Wiener process with an autocor-
relation function of

E$wT~z1!wT~z2!% 5 sT
2 min~z1 , z2!, (17)

with5,7,17

sT
2 5

p2

12

sn
2

A
. (18)

When we use Eqs. (3), (11), and (16), the phase jitter is

f~z! 5
1

2
E

0

z

@A 1 wA~z1!#2dz1 2
1

2
E

0

z

wV
2~z1!dz1

1 E
0

zF2E
0

z1

wV~z2!dz2 1 wT~z1!GdwV~z1!

1 wf~z!, (19)
where wf is a zero-mean Wiener process with an autocor-
relation function of

E$wf~z1!wf~z2!% 5 sf
2 min~z1 , z2! (20)

with5,7,17

sf
2 5

sn
2

3A S 1 1
p2

12D . (21)

The Wiener processes of wA , wV , wT , and wf are in-
dependent of each other. The amplitude [Eq. (11)], fre-
quency [Eq. (12)], and timing [Eq. (16)] jitters are all
Gaussian distributed. From Eq. (19), it is obvious that
the phase jitter is not Gaussian distributed. If Eq. (4)
is linearized or all higher-order terms of Eq. (19) are
ignored, the phase jitter is Gaussian distributed and
equal to f(z) ' A*0

zwA(z1)dz1 1 wf(z).5 The charac-
teristic function of the phase jitter of Eq. (19) is derived in
Section 3 and compared with the Gaussian approxima-
tion.

3. CHARACTERISTIC FUNCTIONS OF
PHASE JITTER
In the phase jitter of Eq. (19), there are three independent
contributions from amplitude jitter (the first term), fre-
quency and timing jitter (the second and third terms), and
the projection of amplifier noise to phase jitter wf . In
this section, the characteristic functions of each indi-
vidual component are derived, and the overall character-
istic function of phase jitter is the product of the charac-
teristic functions of each independent contribution.

A. Gordon–Mollenauer Effect
The first term of Eq. (19) is the Gordon–Mollenauer
effect14 of

fGM~z! 5
1

2
E

0

z

@A 1 wA~z1!#2dz1 (22)

induced by the interaction of the fiber Kerr effect and am-
plifier noise, affecting phase-modulated non-RZ and RZ
signal.10,11,13

The characteristic function of Gordon–Mollenauer non-
linear phase noise is given by11,13

CfGM~z!~n! 5 sec1/2~zsAAjn!expF A2

2sA

Ajn tan~zsAAjn!G .

(23)

The above characteristic function of Eq. (23) can also be
derived from Eq. (A7) of Appendix A.

The mean and variance of the phase jitter of Eq. (22)
are

^fGM~z!& 5 2j
d

dn
CfGM~z!~n!un50 5

1

2
A2z 1

1

4
sA

2z2,

(24)
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sfGM~z!
2 5 2

d2

dn2
CfGM~z!~n!un50 2 ^fGM~z!&2

5
1

3
A2sA

2z3 1
1

12
sA

4z4, (25)

respectively. The first term of Eq. (25) increases with z3,
conforming to that of Ref. 14. Given a large fixed SNR of
A2/( sA

2z) [Eq. (15)], the second term of Eq. (25) is much
smaller than the first term and also increases with z3.
Note that the first term of the mean of Eq. (24) is also
larger than the second term for large SNR.

The characteristic function of Eq. (23) depends on two
parameters: the mean nonlinear phase shift of A2z/2
and the SNR of Eq. (15). Given a fixed mean nonlinear
phase shift of A2z/2, the shape of the distribution depends
only on the SNR.11

On the basis of Eq. (19), comparing Eq. (23) with the
nonsoliton case of Ref. 11, the mean and standard devia-
tion of the Gordon–Mollenauer phase noise of soliton are
approximately half of that of the nonsoliton case with the
same amplitude A as the non-RZ or RZ level.11

B. Frequency and Timing Effect
The frequency and timing jitter contributes to phase jitter
by

fV,T~z! 5 2
1

2
E

0

z

wV
2~z1!dz1 2 E

0

zE
0

z1

wV~z2!dz2dwV~z1!

1 E
0

z

wT~z1!dwV~z1! (26)

as the second and third terms of Eq. (19).
By changing the order of integration for the second

term of Eq. (26), we obtain

fV,T~z! 5
1

2
E

0

z

wV
2~z1!dz1 1 E

0

z

wT~z1!dwV~z1!

2 wV~z!E
0

z

wV~z1!dz1 . (27)

From Eq. (A12) of Appendix A, the characteristic function
of fV,T(z) is

CfV,T~z!~n! 5 Cw1 ,w2 ,w3S n

2
, n, 2n D . (28)

The mean and variance of the phase jitter of Eq. (26)
are

^fV,T~z!& 5 2j
d

dn
CfV,T~z!~n!un50 5 2

1

4
sV

2z2, (29)

sfV,T~z!
2 5 2

d2

dn2
CfV,T~z!~n!un50 2 ^fV,T~z!&2

5
1

2
sV

2sT
2z2 1

1

4
sV

4z4, (30)

respectively.
Comparing the means of Eqs. (24) and (29), in terms of
absolute value, the mean nonlinear phase shift due to the
Gordon–Mollenauer effect is much larger than that due to
the frequency and timing effect. Comparing the vari-
ances of Eqs. (25) and (30), the variance of nonlinear
phase noise due to the Gordon–Mollenauer effect is also
much larger than that due to the frequency and timing ef-
fect.

Unlike the Gordon–Mollenauer effect, the characteris-
tic function of Eq. (28), from Appendix A, is not deter-
mined only on the SNR and the mean nonlinear phase
shift [Eq. (29)].

C. Linear Phase Noise
The last term of Eq. (19) gives the linear phase noise of

fLN~z! 5 wf~z! (31)

with a characteristic function of

CfLN~z!~n! 5 expS 2
1

2
sf

2zn2D . (32)

From the characteristic function of Eq. (32), the linear
phase noise depends solely on the SNR [Eq. (15)].

The characteristic function of the overall phase jitter
f(z) is the multiplication of the characteristic functions of
Eqs. (23), (28), and (32).

Although the actual mean nonlinear phase shift is

^f~z!& 5 ^fV,T~z!& 1 ^fGM~z!&, (33)

we mostly call A2z/2 the mean nonlinear phase shift as a
good approximation in high SNR.

4. NUMERICAL RESULTS
The pdf is the inverse Fourier transform of the corre-
sponding characteristic function. Figures 1(a)–1(d) show
the evolution of the distribution of the phase jitter [Eq.
(19)] with distance. The system parameters are A 5 1
and sn

2 5 0.05. Those parameters are chosen for typical
distribution of the phase jitter.

Figures 1(a)–1(c) are the distribution of the Gordon–
Mollenauer nonlinear phase noise [Eq. (23)], frequency
and timing nonlinear phase noise [Eq. (28)], and the lin-
ear phase noise [Eq. (32)], respectively, as components of
the overall phase jitter of Eq. (19). Figure 1(d) is the dis-
tribution of the overall phase jitter Eq. (19). The pdf ’s in
Figs. 1(a)–1(d) are normalized to a unity peak value for
illustration purpose. The x axes do not have the same
scale. From Fig. 1, the nonlinear phase noises from the
Gordon–Mollenauer effect and frequency and timing ef-
fect are obviously not Gaussian distributed. With small
mean and variance, the nonlinear phase noise from the
frequency and timing effect has a long tail.

Figures 2(a) and 2(b) plot the pdf ’s of Fig. 1 in logarith-
mic scale for the cases of z 5 1,2. The Gaussian approxi-
mation is also plotted in Fig. 2 for the overall phase jitter
f(z). In both cases of z 5 1,2, the Gaussian approxima-
tion is not close to the exact pdf ’s in the tails. However, if
the pdf ’s are plotted in linear scale, the Gaussian approxi-
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Fig. 1. Distributions of soliton phase jitter for different distances for A 5 1 and sn
2 5 0.05. (a) fGM(z), (b) fV,T(z), (c) fLN(z), (d)

f(z). The distributions are normalized for a unity peak. The x axes are not in the same scale. The distribution is plotted in linear units.
mation may be close to the actual distribution, especially
for large phase jitter.32 The pdf ’s in Fig. 2 are not nor-
malized to a unity peak.

From both Figs. 1 and 2, the nonlinear phase noises of
fGM and fV,T are not symmetrical with respect to their
corresponding means. Whereas fGM spreads further to
positive phase, fV,T spreads further to negative phase.
Plotted in the same scale, the nonlinear phase noise of
fGM due to the Gordon–Mollenauer effect is much larger
than the nonlinear phase noise of fV,T due to the fre-
quency and timing effect.

The pdf ’s in Fig. 1 cannot cover all possible cases. Al-
though both the Gordon–Mollenauer and linear phase
noises depend on the mean nonlinear phase shift A2z/2
and SNR, the nonlinear phase noise induced by the fre-
quency and timing effect does not have a simple scaled re-
lationship.

For a mean nonlinear phase shift of 1
2A2z 5 1 rad,14

Figs. 3(a) and 3(b) plot the distribution of the overall
phase jitter [Eq. (19)] for a SNR of 10 and 20 for z
5 1, 10. After a scale factor, the distributions of both
the Gordon–Mollenauer and the linear phase noise are
the same as that in Fig. 2. In addition to the overall
phase jitter, Fig. 3 also plots the distribution of the non-
linear phase noise from the frequency and timing effect of
fV,T .

For a fixed mean nonlinear phase shift and SNR, from
Fig. 3, the nonlinear phase noise from the frequency and
timing effect of fV,T(z) has less of an effect on the overall
phase jitter for long distance than for short distance.
Figure 1 is plotted for a short distance of z < 3 to show
the contribution of frequency and timing jitter to nonlin-
ear phase noise. The effect of fV,T(z) is smaller for a
large SNR of 20 than a small SNR of 10. The main con-
tribution to the overall phase jitter is always the Gordon–
Mollenauer effect and the linear phase noise.

5. DISCUSSION
The phase jitter of Eq. (19) is derived on the basis of the
first-order perturbation theory5,15–17 of Eqs. (1)–(4). The
non-Gaussian distribution is induced by the higher-order
terms of Eq. (19) or the nonlinear terms of Eq. (4).
Second- and higher-order soliton perturbation33,34 may
give further non-Gaussian characteristics to the phase jit-
ter. Currently, there is no comparison between contribu-
tions of the higher-order terms of Eq. (4) and higher-order
soliton perturbation.

In this paper, as in much of the literature,1,2,5,7,8,14–17

the effect of amplitude jitter to the noise variances of sA
2,

sV
2, sT

2, and sf
2 is ignored. The noise variances of sA

2,
sV

2, sT
2, and sf

2 are assumed independent of distance.
If the amplitude noise variance is sA

2 5 A(z)sn
2 with de-

pendence on the instantaneous amplitude jitter, ampli-
tude, frequency, and timing jitters are all non-Gaussian
distributed.35 As an example, amplitude jitter is noncen-
tral chi-squared distributed.35,36 However, the statistics
of phase jitter [Eq. (19)] does not have a simple analytical
solution when the noise variance depends on amplitude
jitter. With a high SNR, the amplitude jitter is always
much smaller than the amplitude A(0) 5 A. Even in
high SNR, the phase jitter is non-Gaussian on the basis of
Eq. (19).
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6. CONCLUSION
On the basis of the first-order soliton perturbation theory,
the distribution of soliton phase jitter due to amplifier
noise is derived analytically for the first time to my
knowledge. In addition to the main contribution of the
Gordon–Mollenauer effect, the nonlinear phase noise due
to frequency and timing jitter is also considered. In-
duced by the Gordon–Mollenauer effect or frequency and
timing jitter, neither the nonlinear phase noises nor the
overall phase jitter are Gaussian distributed. For a fixed
mean nonlinear phase shift, the contribution of nonlinear
phase noise from frequency and timing jitter decreases
with distance and SNR.

APPENDIX A
Here we find the joint characteristic function of

w1 5 E
0

z

wV
2~z1!dz1 , (A1)

w2 5 E
0

z

wT~z1!dwV~z1!, (A2)

Fig. 2. Distributions of soliton phase jitter for two distances of
(a) z 5 1 and (b) z 5 2. Solid curves, exact overall phase jitter;
dashed–dotted curves, Gaussian approximation of the overall
phase jitter; dashed curves, components of phase jitter. The dis-
tribution is plotted in algorithmic units.
w3 5 wV~z!E
0

z

wV~z1!dz1 . (A3)

By changing the integration order, we obtain

w2 5 E
0

zE
0

z1

dwT~z2!dwV~z1!

5 E
0

z

@wV~z! 2 wV~z2!#dwT~z2!. (A4)

The joint characteristic function of w1 , w2 , and w3 is

Cw1 ,w2 ,w3
~n1 , n2 , n3! 5 E$exp~ jn1w1 1 jn2w2 1 jn3w3!%,

(A5)

where E$ % denotes expectation. Similar to option pricing
with stochastic volatility,37 the expectation of Eq. (A5) can
be evaluated in two steps, first over wT and then over
wV . In the average over wT , it is obvious that w2 is a
zero-mean Gaussian random variable with a variance of
sT

2*0
z@wV(z) 2 wV(z1)#2dz1 , where we obtain

Fig. 3. Distributions of soliton phase jitter for SNR of (a) 10 and
(b) 20, including the pdf of the overall phase jitter and the con-
tribution from the frequency and timing effect. The distribution
is plotted in algorithmic units.



Keang-Po Ho Vol. 21, No. 2 /February 2004 /J. Opt. Soc. Am. B 271
Cw1 ,w2 ,w3
~n1 , n2 , n3! 5 EH 2

sT
2n2

2

2
E

0

z

@wV~z! 2 wV~z1!#2dz1 1 jn1E
0

z

wV
2~z1!dz1 1 jn3wV~z!E

0

z

wV~z1!dz1J
5 EF2

sT
2n2

2z

2
wV

2~z! 1 ~ jn3 1 sT
2n2

2!wV~z!E
0

z

wV~z1!dz1 1 S jn1 2
sT

2n2
2

2 D E
0

z

wV
2~z1!dz1G .

(A6)

First, we have10,13,38,39

EF jv1wV~z! 1 jv2E
0

z

wV~z1!dz1 1
jv3

2
E

0

z

wV
2~z1!dz1G

5 sec1/2~Ajv3sVz!expH 2
1

2 S v1
2sV

2 1
v2

2

jv3
D tan~Ajv3sVz!

Ajv3sV

1 j
v1v2

v3
@sec~Ajv3sVz! 2 1# 2 j

v2
2z

2v3
J

5 sec1/2~Ajv3sVz!expF2
1

2
v1,2

TC~ jv3!v1,2G , (A7)

where v1,2 5 (v1 , v2)T and

C~ jv3! 5 5
sV tan~Ajv3sVz!

Ajv3

1

jv3
@sec~Ajv3sVz! 2 1#

1

jv3
@sec~Ajv3sVz! 2 1#

1

jv3
F tan~Ajv3sVz!

Ajv3sV

2 zG 6 . (A8)
As a verification, if v3 approaches zero, the covariance
matrix is

lim
v3→0

C~ jv3! 5 sV
2F z 1

2 z2

1
2 z2 1

3 z3G , (A9)

that is the covariance matrix of the vector of

wz 5 FwV~z!, E
0

z

wV~z1!dz1GT

(A10)

without any dependence on the random variable w1 .
Note that the equation corresponding to Eq. (A7) in Refs.
10 and 39 does not have the limit of Eq. (A9).

The characteristic function of Eq. (A7) is that of a cor-
related two-dimensional Gaussian random variable of wz

with dependence to w1 . The first two terms of Eq. (A6)
are a quadratic (or bilinear) function of wz , i.e.,
1
2wz

TM( jn2 , jn3)wz , where

M~ jn2 , jn3! 5 F 2sT
2n2

2z jn3 1 sT
2n2

2

jn3 1 sT
2n2

2 0 G .
(A11)

The characteristic function of the quadratic function of
zero-mean Gaussian random variables is det@I
2 CM#21/2 (Ref. 12), where det[ ] denotes the determi-
nant of a matrix.
The joint characteristic function is

Cw1 ,w2 ,w3
~n1 , n2 , n3!

5
sec1/2@~2jn1 2 sT

2n2
2!1/2sVz#

det@I 2 C~2jn1 2 sT
2n2

2!M~ jn2 , jn3!#1/2
, (A12)

where I is the identity matrix. The substitution of jv3
by 2jn1 2 sT

2n2
2 is obvious when we compare Eqs. (A6)

and (A7). We can obtain11,38

Cw1
~n1! 5 sec1/2~A2jn1sVz! (A13)

and also37

Cw2
~n2! 5 sech1/2~ sTsVzn2!, (A14)

respectively. The statistical properties of
*0

zwT(z1)dwV(z1), *0
zwV(z1)dwT(z1), *0

z@wV(z)
2 wV(z1)#dwT(z1), and *0

z@wT(z) 2 wT(z1)#dwV(z1)
are the same.

We can also obtain

Cw3
~n3! 5 F1 2 jn3sV

2z2 1
1

12
n3

2sV
4z4G21/2

.

(A15)

Whereas both random variables w1 and w3 are deter-
mined by sVz, the random variable of w2 is determined by
sTsVz.

The author’s e-mail address is kpho@cc.ee.ntu.edu.tw.



272 J. Opt. Soc. Am. B/Vol. 21, No. 2 /February 2004 Keang-Po Ho
REFERENCES
1. J. P. Gordon and H. A. Haus, ‘‘Random walk of coherently

amplified solitons in optical fiber transmission,’’ Opt. Lett.
11, 865–867 (1986).

2. K. Blow, N. Doran, and S. Phoenix, ‘‘The soliton phase,’’
Opt. Commun. 88, 137–140 (1992).

3. M. Hanna, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes,
‘‘Experimental investigation of soliton optical phase jitter,’’
IEEE J. Quantum Electron. 36, 1333–1338 (2000).

4. M. Hanna, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes,
‘‘Performance assessment of DPSK soliton transmission
system,’’ Electron. Lett. 37, 644–646 (2001).

5. E. Iannone, F. Matera, A. Mecozzi, and M. Settembre, Non-
linear Optical Communication Networks (Wiley, New York,
1998), Chap. 5.

6. M. Hanna, H. Porte, J.-P. Goedgebuer, and W. T. Rhodes,
‘‘Soliton optical phase control by use of in-line filters,’’ Opt.
Lett. 24, 732–734 (1999).

7. O. Leclerc and E. Desurvire, ‘‘Effect of synchronous modu-
lation on the soliton optical phase,’’ Opt. Lett. 23, 1453–
1455 (1998).

8. C. J. McKinstrie and C. Xie, ‘‘Phase jitter in single-channel
soliton systems with constant dispersion,’’ IEEE J. Sel. Top.
Quantum Electron. 8, 616–625 (2002); erratum 8, 956
(2002).

9. H. Kim and A. H. Gnauck, ‘‘Experimental investigation of
the performance limitation of DPSK systems due to nonlin-
ear phase noise,’’ IEEE Photon. Technol. Lett. 15, 320–322
(2003).

10. A. Mecozzi, ‘‘Limits to long-haul coherent transmission set
by the Kerr nonlinearity and noise of the in-line amplifiers,’’
J. Lightwave Technol. 12, 1993–2000 (1994).

11. K.-P. Ho, ‘‘Asymptotic probability density of nonlinear
phase noise,’’ Opt. Lett. 28, 1350–1352 (2003).

12. K.-P. Ho, ‘‘Probability density of nonlinear phase noise,’’ J.
Opt. Soc. Am. B 20, 1875–1879 (2003).

13. K.-P. Ho, ‘‘Statistical properties of nonlinear phase noise,’’
in Advances in Optics and Laser Research, W. T. Arkin, ed.
(Nova Science, Hauppauge, N.Y., 2003), Vol. 3.

14. J. P. Gordon and L. F. Mollenauer, ‘‘Phase noise in photonic
communications systems using linear amplifiers,’’ Opt.
Lett. 15, 1351–1353 (1990).

15. Y. S. Kivshar and B. A. Malomed, ‘‘Dynamics of solitons in
nearly integrable systems,’’ Rev. Mod. Phys. 61, 763–915
(1989).

16. D. J. Kaup, ‘‘Perturbation theory for solitons in optical fi-
bers,’’ Phys. Rev. A 42, 5689–5694 (1990).

17. T. Georges, ‘‘Perturbation theory for the assessment of soli-
ton transmission control,’’ Opt. Laser Technol. 1, 97–116
(1995).

18. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold,
C. Doerr, L. Stulz, A. Agrawal, S. Banerjee, D. Grosz, S.
Hunsche, A. Kung, A. Marhelyuk, D. Maymar, M. Movas-
saghi, X. Liu, C. Xu, X. Wei, and D. M. Gill, ‘‘2.5 Tb/s (64
3 42.7 Gb/s) transmission over 40 3 100 km NZDSF using
RZ-DPSK format and all-Raman-amplified spans,’’ in Opti-
cal Fiber Communication Conference (Optical Society of
America, Washington, D.C., 2002), postdeadline paper FC2.

19. Y. Miyamoto, H. Masuda, A. Hirano, S. Kuwahara, Y.
Kisaka, H. Kawakami, M. Tomizawa, Y. Tada, and S. Ao-
zasa, ‘‘S-band WDM coherent transmission of 40
3 43-Gbit/s CS-RZ DPSK signals over 400 km DSF using
hybrid GS-TDFAs/Raman amplifiers,’’ Electron. Lett. 38,
1569–1570 (2002).

20. H. Bissessur, G. Charlet, E. Gohin, C. Simonneau, L.
Pierre, and W. Idler, ‘‘1.6 Tbit/s (40 3 40 Gbit/s) DPSK
transmission over 3 3 100 km of TeraLight fibre with di-
rect detection,’’ Electron. Lett. 39, 192–193 (2003).

21. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold,
C. Doerr, L. Stulz, and E. Burrows, ‘‘25 40-Gb/s copolarized
DPSK transmission over 12 100-km NZDF with 50-GHz
channel spacing,’’ IEEE Photon. Technol. Lett. 15, 467–469
(2003).

22. P. S. Cho, V. S. Grigoryan, Y. A. Godin, A. Salamon, and Y.
Achiam, ‘‘Transmission of 25-Gb/s RZ-DQPSK signals with
25-GHz channel spacing over 1000 km of SMF-28 fiber,’’
IEEE Photon. Technol. Lett. 15, 473–475 (2003).

23. C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B.
Mikkelsen, P. Mamyshev, P. Serbe, P. van de Wagt, Y.
Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-
Hall, ‘‘DWDM 40G transmission over trans-Pacific distance
(10,000 km) using CSRZ-DPSK, enhanced FEC and all-
Raman amplified 100 km Ultra-Wave™ fiber spans,’’ in Op-
tical Fiber Communication Conference (Optical Society of
America, Washington, D.C., 2003), postdeadline paper
PD18.

24. B. Zhu, L. E. Nelson, S. Stulz, A. H. Gnauck, C. Doerr, J.
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