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Spectrum of Externally Modulated Optical Signals
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Abstract—The optical power spectrum of a signal externally
modulated using a Mach-Zehnder modulator is calculated
analytically. Optical power spectra are calculated for binary
signals for which the drive signal has either raised-cosine or
Bessel-filtered pulse shape as well as for duobinary signals created
by Bessel filtering. While the optical power spectrum is often
approximated by the electrical power spectrum of the drive signal,
this approximation usually underestimates the spectral spreading
of the optical signal. Differences between the optical spectrum
and the drive-signal electrical spectrum are most significant
for drive signals having longer rise and fall times. Modulator
chirp also broadens the optical spectrum. Chirp-induced spectral
broadening is more significant for drive signals having longer rise
and fall times.

Index Terms—External modulator, optical networks, power
spectrum.

I. INTRODUCTION

ACH-ZEHNDER external modulators provide superior
Msignal quality and are widely used in dense-wave-
length-division-multiplexed (DWDM) systems. Compared
with direct modulation or electroabsorption modulators,
Mach—Zehnder external modulators yield smaller chirp, pro-
viding a narrower signal spectrum and usually resulting in a
larger tolerance to uncompensated chromatic dispersion (con-
sidering both under- and overcompensation). Mach—Zehnder
modulators (MZMs) can be made using various materials
[1]-[6], and LiNbOs is the most popular material [1], [3].
Almost all commercial long-haul DWDM systems use LiNbOg
MZMs.

Along with error probability and eye diagram, the optical
spectrum of a signal is one of its most important attributes.
In DWDM systems, the optical spectrum becomes especially
important when the channel separation is small. When optical
filters are used to separate adjacent wavelength-division-mul-
tiplexed (WDM) channels, interchannel crosstalk depends on
the optical spectrum. Literature on WDM systems commonly
shows the measured or simulated optical spectra of optical sig-
nals. However, to our knowledge, no analytical method has been
presented to calculate the spectrum of an externally modulated
optical signal. An MZM separates an optical signal into two
paths, which are phase-modulated and then combined. Because
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the modulator is based on two correlated phase modulators,
analysis of the optical spectrum is difficult.

The optical spectrum has often been approximated using the
electrical spectrum of the drive signal, especially when a zero-
chirp modulator is employed. As shown subsequently, this ap-
proximation is valid only for wide-band drive signals that are
close to a rectangular pulse shape. In the practical cases of a
band-limited drive signal or a chirped modulator, this approx-
imation always underestimates the spectral spread of the op-
tical signal. If the drive signal has long rise and fall times, this
approximation significantly underestimates the spectral spread,
even when a zero-chirp modulator is used.

The remainder of this paper is organized as follows. Section II
derives the optical spectrum of a binary signal with a chirped
modulator. Section III derives the optical spectrum of a binary
signal with either raised-cosine or Bessel-filtered pulse shape.
Section IV derives the optical spectrum of a duobinary signal
created by Bessel filtering. Finally, Section V presents the con-
clusions of the paper.

II. DERIVATION OF OPTICAL SPECTRUM OF BINARY SIGNAL

An MZM has many different possible configurations [1].
The most general case is a dual-drive modulator with two
possibly independent drive signals. A single-drive modulator
can be modeled using a dual-drive modulator in which the two
driving voltages have a fixed relationship.

When an MZM is biased at the middle inflection point and the
drive signal has a peak-to-peak voltage of V, the normalized
baseband representation of the electric field at the output of the
modulator is

e(t) = 5 {om | 240 e |15 g0 |
(nH

where « is the chirp coefficient [7], and ¢(¢) is the normalized
binary drive signal

+o0
¢(t)= > bip(t — kT) )

k=—o00

where b;, = =+1 is the transmitted random data stream, p(¢) is
the pulse shape of the drive signal, and 7" is the bit interval of
the data. The two terms in (1) correspond to the two phase-mod-
ulated paths of the MZM. The differential phase shift between
the two phase modulators is w¢(t)/2. The normalized intensity
of the modulator output |e(t)|? = sin[r(1 + ¢(t))/4]? is inde-
pendent of the chirp coefficient. The relation (1) can be used to
model all types of MZMs having different values of chirp co-
efficient «. For example, a dual-drive modulator has adjustable
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chirp [8], a single-drive z-cut modulator has a chirp coefficient
a = £0.75 [9], and an z-cut push—pull MZM has zero chirp.
Because most external modulators have very large extinction ra-
tios, the expression (1) assumes an infinite extinction ratio. A
finite extinction ratio may contribute a small amount of chirp
into the optical signal [10], [11].

The random process (1) is cyclo-stationary with a period of
T and has an average autocorrelation function of

T
R(7) = %/0 R(t+ 7, t)dt 3)

where the autocorrelation function is R(t + 7,t) = E{e(t +
7)e*(t)}, where E{-} denotes expectation. Because R(7) =

R (—7), the power spectral density is

®.(f) =2R {/0+oo R(7) exp(—j?wf*r)d*r} 4)

where R{-} denotes the real part of a complex number.
The autocorrelation function R(¢ + 7,t) is

R(t+rt) =15 {exp [j(”%)%(t fr)- «s(t))} }
o)

# 1p Lo IS 01— )]

_ %E{exp [ji(l Za)ﬂqb(t +7)

-]}
+ ‘iE{eXp[—j—(l _Z T o+ 7)

el

The terms in (5) need to be calculated one by one. First, using (2)
and assuming that binary bits b5, = £1 have equal probability,
similar to the approach of [12] and [13], the first term of (5) is

£ {exo | P02 004 1) - o) |}
+o0 )r

- 1] cos{(l%

k=—oc0
The second term of (5) is

B {oxp |05 000 ) - )]}
+oo

-0

k=—o0

&)

[p(t+ 7 — kT) — p(t — kT)]} (6

The third and fourth terms in (5) sum to zero. The fourth term
is the complex conjugate of the third term. The summation of the
third and fourth terms is also the complex conjugate of itself and
must be a real number. Because both the third and fourth terms
are purely imaginary numbers, the summation of the third and
fourth terms is equal to zero.

Using (3) and (5)—(7), the average autocorrelation function is

i) = 3% (5 ) 43 (R E5) o

[p(t+7—kT)—p(t — kT)]} . (D
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where
1 T +oo
= T/@ H cos{y[p(t+7—kT)—p(t—kT)]}dt
k=—oc0
&)

where - can be considered as the modulation index of the signal.
From the average autocorrelation function (8), we see that both
the average autocorrelation function and the power spectral den-
sity are independent of the sign of the chirp coefficient. Chirp
coefficients of +« give identical power spectral densities. Be-
cause the average autocorrelation function R(7) is a real even
function, the power spectral density ®.(f) is a real even func-
tion. In subsequent sections of this paper, we only plot the pos-
itive-frequency side of ®.(f).

Similar to the approach of [12], the average autocorrelation
function (9) can be calculated for different values of the mod-
ulation index ~. The pulse p(t) is centered around ¢ = 0. As-
sume that [p(¢)| > € if and only if — KT < ¢t < MT, where ¢
is a small positive number, and K and M are two integers. For
|7| > (M + K)T, the pulses p(t—kT') and p(t+7— kT') do not
overlap with each other for all values of k. Letting 7 = £ + nT,
where the variable £ is confined to 0 < ¢ < T and n is an in-
teger larger than M + K, we get

R(§+nT,v) / H cos[yp(t — mT)]
0 m=—(M—1)
K+1
X H cos[yp(t + & — mT)]dt (10)
m=—(M-1)

where n > M + K. For |7| > (M + K)T, the average autocor-
relation function R(7, ) is a periodic function having period 7.
For |7| < (M + K)T, the average autocorrelation function is

/T K+[71/T]
—p(t —mD)]}dt (11)

where the symbol [z] denotes the smallest integer greater than
or equal to x. Using both (10) and (11), the average autocorre-
lation function (8) can be calculated by the summing the two
cases with v = (1 & )7 /4. The average autocorrelation func-
tion E(’T) also has two parts, corresponding to (10) and (11),
respectively. For 7] > (M + K)T, the average autocorrelation
function R(7) is also a periodic function having period 7'.

Taking into account the two parts of the average autocorrela-
tion function R(7), using (4), we get

(K+M)T
@.(f) = 2%{ [ mo

—R(r + KT + MT)] e—izﬂdeT}
L i" 5(5- 1)
T T

T J— .
X / R {R(g + KT+ MT)e—ﬂmf/T} de
0
(12)

cos{v[p(t + 7 —mT)
m=— (]\[ 1)
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Fig. 1. (a) Raised-cosine pulse shape and (b) the corresponding eye opening.

where the first term is the continuous spectrum corresponding
to (11) for |7| < (K + M)T, and the second term consists of

discrete tones at frequencies n/7, n = 0,4+1,+2,..., corre-
sponding to the periodic autocorrelation function (10) for |7| >
(K + M)T.

The optical spectrum of the signal (1) is often approximated
by the electrical spectrum of the drive signal (2). The drive
signal (2) has an electrical power spectral density of

1 2
@4(f) = FP()| (13)
where P(f) is the Fourier transform of the pulse p(¢). Com-
paring the spectra (12) and (13), an obvious difference is the ap-
pearance of discrete tones in the optical spectrum ®.(f) given
by (12). In particular, the tone at f = 0 is due to the average
electric field, which carries no information.

III. NUMERICAL RESULTS OF OPTICAL SPECTRUM OF
BINARY SIGNAL

Using the analytical formulas given in Section II, the power
spectral density of random data stream having either raised-co-
sine or Bessel-filtered pulse are evaluated in this section.

A. Raised-Cosine Pulse

The raised-cosine pulse is

1, < (1-8)%

p(t) — % |:1 —sin (ﬂ(liilT?))] ’ |t| Z (1 - 5)% (14)
1< (1+8)3
0, [t > (1+8)%

where 0 < 3 < 1 is the roll-off factor. The rectangular pulse
corresponds to a zero roll-off factor § = 0. Fig. 1 plots the
raised-cosine pulse shape and the corresponding optical eye
opening. The definition of raised-cosine pulse in (14) is not
the same as that in standard digital communication textbooks,
e.g., [14]. In (14), the pulse is defined to be a raised cosine in
the time domain, in order to time-limit the pulse. The pulse
(14) has smooth rising and falling edges with well-defined rise
and fall times of 0.5987". The raised-cosine pulse is equal to
zero for t > T, limiting the spectral density (12) to terms for
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(o) [e®]?

K = M = 1, simplifying the calculation procedure. Com-
paring the pulse shape Fig. 1(a) and the eye opening Fig. 1(b),
we see that the MZM’s nonlinear transfer characteristic modi-
fies the waveform substantially. Because the rise and fall times
of the optical intensity are shortened to 0.4087, the optical
spectrum broadens accordingly. However, an analysis based
solely on the eye diagram of Fig. 1(b) cannot take into account
the effects of modulator chirp upon the optical spectrum.

Fig. 2 show the single-sided power spectral density of the
optical signal (12) modulated by a random pulse stream with
the raised-cosine pulse shape of Fig. 1(a). Values of the roll-off
factor § = 0.5 and 8 = 1 are shown in Fig. 2(a) and (b),
respectively. Fig. 2 also shows the power spectral densities for
different values of the chirp coefficient « = 0, 0.5, 1. The
case of a rectangular pulse 5 = 0 is shown in both Fig. 2(a) and
(b) for comparison. Fig. 2 also plots the electrical spectrum of
the drive signal ®4( f) calculated by (13) for comparison.

When the drive signal is a rectangular pulse with § = 0, the
power spectral density is independent of the chirp coefficient,
and the optical power spectral density (12) is identical to the
electrical power spectral density of the drive signal given by
(13).

When the drive signal is a low-pass-filtered signal with
nonzero roll-off factor § > 0, a nonzero chirp coefficient
broadens the optical spectrum. Fig. 2 shows that approximating
the optical spectrum by the electrical spectrum of the drive
signal (13) underestimates the spectral spread of the optical
signal. In Fig. 2, we see major differences at the normalized
frequencies fT = =+1,42,.... While the electrical spectrum
of the drive signal (13) has notches at those normalized
frequencies, the optical spectrum (12) has discrete tones at
those same frequencies and also has a tone at f = 0 due to
the dc value of the electric field (1). In Fig. 2(b), for 5 = 1,
the electrical spectrum (13) has notches at the normalized
frequencies fT = +1.5,£2.5, ..., while the optical spectrum
(12) has nonzero values at those frequencies.

The differences between the power spectra (12) and (13) are
more significant when the raised-cosine pulse (14) has a larger
roll-off factor, corresponding to longer rise and fall times. When
the roll-off factor is # = 0.5 in Fig. 2(a), at the second lobe of
the spectrum at f1" =~ 1.5, the difference is about 3 dB and
increases with increasing chirp coefficient. When the roll-off
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Fig. 2. Power spectral density of the optical signal when raised-cosine pulse
with roll-off factors of (a) 3 = 0.5 and (b) 3 = 1 are used.

factoris 0 = 1 in Fig. 2(b), at the second lobe of the spectrum at
fT = 1.25, the difference is about 5-12 dB and increases with
an increasing chirp coefficient.

The effect of the chirp coefficient depends on the pulse
roll-off factor (3. As discussed previously, for a rectangular
pulse B = 0, the chirp coefficient does not affect the optical
power spectral density (12). With a roll-off factor of 5 = 0.5,
the chirp coefficient does not change the optical power spectral
density (12) as much as when the roll-off factor takes on the
larger value 3 = 1. By comparing Fig. 2(a) with Fig. 2(b), we
may conclude that the chirp coefficient has a greater effect on
the optical spectrum for a drive signal (2) having longer rise or
fall times.

B. Bessel-Filtered Pulse

In idealized simulations, excellent results are obtained
driving an MZM by an ideal rectangular pulse that has been
filtered by a Bessel low-pass filter. Fig. 3 shows both the pulse
shape and the corresponding eye opening when a fifth-order
Bessel filter having a bandwidth of either 0.75/T or 0.5/T
is used. Owing to the nonlinear transfer characteristic of the
MZM, a bandwidth of 0.5/7T is sufficient to provide an open
eye, but then the receiver must have a very wide bandwidth to
preserve the eye opening at the decision circuit.
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Fig. 3. (a) Bessel-filtered pulse shape and (b) the corresponding eye opening.
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Fig.4. Power spectral density of the optical signal when a Bessel-filtered pulse
is used. The Bessel filter has a bandwidth of (a) 0.75/7 and (b) 0.5/T.

Fig. 4 shows the single-sided optical spectrum of the optical
signal modulated by a random pulse stream with a Bessel-fil-
tered pulse given by Fig. 3(a). Fifth-order Bessel filters having
bandwidths of 0.75/T and 0.5/T are used in Fig. 4(a) and (b),
respectively. Fig. 4 also shows the optical spectrum for different
values of the chirp coefficient & = 0, +0.5, +1. For compar-
ison, Fig. 4 also plots the electrical spectrum of the drive signal
D, (f), calculated using (13).

Modulator chirp broadens the optical spectrum of the signal
(12). Similar to Fig. 2, Fig. 4 shows that approximating the op-
tical spectrum using the electrical spectrum of the drive signal
(13) underestimates the spectral spreading. The differences be-
tween the power spectra of (12) and (13) are more significant
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when the low-pass filter having the smaller bandwidth of 0.5/T
is used. Similar to Fig. 2, Fig. 4 shows that chirp broadens the
optical spectrum, causing more broadening when a Bessel filter
having smaller bandwidth, corresponding to longer rise and fall
times, is used.

IV. SPECTRUM OF OPTICAL DUOBINARY SIGNAL

Optical duobinary signals can be generated by many different
methods, and the use of a Bessel-filtered pulse with a filter band-
width of about 0.28 /T is one of the simplest and most popular
implementations [15]-[17]. The low-pass filter converts the bi-
nary electrical signal to a three-level drive signal. Modulation
is performed using a zero-chirp MZM biased at the minimum
transmission point. The drive signal has a peak-to-peak voltage
of 2V;. A binary receiver can be used because the modulator
converts the three-level electrical drive signal to an optical signal
having three field levels, but only two intensity levels. The nor-
malized baseband representation of the electric field at the mod-
ulator output is

o(t) = g {exw | 00| —exo |- o0}

where ¢(t) is defined as in (2) and where by, represents the pre-
coded data. The electric field (15) is a three-level duobinary
signal, but the optical intensity |e(#)|? is similar to a conven-
tional binary signal [15]. The optical power spectrum (15) has
been measured routinely [16], [17] but has never been analyti-
cally calculated. Following the procedure from (5) —(9), the av-
erage autocorrelation function of (15) is

5)

R(r) = %
x /T ﬁo Cos{g [p(t + 71— kT)
SO0 p=—oo
—p(t — k‘T)} }dt
“ar
T +oo
X / H cos{g[p(t—l—T—kT)
Jo 27

ot — k‘T)} }dt. (16)

Following the procedure from (10) to (12), the power spec-
tral density of the optical signal of (15) can be found using the
average autocorrelation function of (16).

Fig. 5 shows the single-sided optical spectrum of a duobinary
signal, obtained by calculating ®.( f) given by (12) using the av-
erage autocorrelation function (16). The electrical power spec-
tral density of the drive signal is also shown for comparison. Be-
cause the average autocorrelation function approaches zero, i.e.,
R(1) = 0 for large timing differences |7| > (K + M)T, there
are no discrete tones in the optical spectrum (12). Fig. 5 shows
a 20—dB difference between the optical power spectrum P ( f)
and the electrical spectrum of the drive signal ®4(f) at nor-
malized frequencies near f7T" = 1.25. Even when a zero-chirp
modulator is used, the optical power spectrum given by (12) is
far broader than the electrical spectrum of the drive signal (13),
because of the small filter bandwidth of 0.28 /7.
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Fig. 5. Optical power spectral density of duobinary signals.

V. CONCLUSION

The power spectral density of an external modulated optical
signal has been derived analytically for the first time. Optical
spectra are calculated for binary signals with both raised-cosine
and Bessel-filtered drive signal pulse shapes, and for optical
duobinary signals created by Bessel filtering. Approximating
the optical spectrum using the electrical spectrum of the drive
signal significantly underestimates the spectral spreading. The
differences are more significant when the drive signal has longer
rise and fall times. Modulator chirp broadens the optical power
spectrum, and the broadening is more significant when the drive
signal has longer rise and fall times.
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