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Exact Evaluation of the Capacity for
Intensity-Modulated Direct-Detection Channels

With Optical Amplifier Noises
Keang-Po Ho, Senior Member, IEEE

Abstract—Based on a rigorous model without approximation,
the channel capacity is evaluated numerically for intensity-mod-
ulated direct-detection systems dominated by optical amplifier
noises. With a discrete probability at zero intensity, the optimal
input distribution is both discrete and continuously distributed.
For small signal-to-noise ratio less than about 5 dB, the optimal
signal is binary on–off keying.

Index Terms—Channel capacity, direct-detection, on–off keying.

I. INTRODUCTION

WHEN AN optical signal is contaminated by amplifier
noises, the channel capacity or the ultimate spectral ef-

ficiency is determined by the information-theoretic capacity per
unit bandwidth, in the unit of bits/second/hertz [1]. With op-
tical amplifiers to periodically compensate for fiber loss, most
long-haul lightwave transmission systems are limited by am-
plifier noises. An intensity-modulated direct-detection (IMDD)
signal is used in almost all commercial lightwave transmission
systems.

The Shannon limit of [1]

(1)

is well known for a power-constrained Gaussian channel where
is the signal-to-noise ratio (SNR) as defined in [2]. Using co-

herent detection and with the allowance of high complexity and
long delay, the Shannon limit can be closely approached using
Turbo codes [3]–[5]. When those codes are used for IMDD
systems limited by amplifier noise [6], the channel capacity
must be derived rigorously to understand the limitation. For
single-channel optical signal limited by fiber nonlinearities, the
ultimate spectral efficiency is also limited by that for IMDD
signal [2], [7].

The channel capacity of optically amplified IMDD systems
was studied by [8], [9]. A lower bound is derived in [9] based
on half-Gaussian distribution; the asymptotic spectral efficiency
is equal to 0.5 b/s/Hz less than half of (1), or

using the defination of of (1). Here, the optimal input
distribution is found numerically. Binary modulation is found
to be optimal at low SNR.
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II. CHANNEL CAPACITY OF IMDD CHANNELS

For IMDD systems limited by amplifier noise, the discrete-
time model of the channel with input electric field and output
intensity is [9]

(2)

where the amplifier noise is equivalently either a complex
zero-mean Gaussian random variable or a two-dimensional
zero-mean Gaussian random vector with a variance of per
dimension. The mean output intensity is ,
where is the variance or power of the input . The SNR is

.
For the IMDD channel of (2), the conditional probability den-

sity function (pdf) of is a noncentral -distribution
with two degrees of freedom [10, pp. 41–44]

(3)

with noncentrality parameter of , and is the ze-
roth-order modified Bessel function of the first kind. The pdf
(3) conditions solely on the input amplitude of . The
channel output is the intensity but monotonic one-to-one
transfer to the amplitude of does not change the
channel capacity. Using the input and output amplitude random
variables of and , respectively, the conditional pdf becomes
a Rice distribution of

(4)

The channel capacity, or the maximum spectral efficiency
limit, is equal to the maximum mutual information of

(5)

where denotes expectation, and
are the pdf of the input and output am-

plitudes, respectively. The channel capacity is also equal to
, where the output entropy

of and the conditional entropy of are [1]

(6)

(7)
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Fig. 1. Channel capacity as a function of SNR � . For IMDD channel, the
input has either the optimal, half-Gaussian, or Gaussian distribution.

Fig. 2. Input and output probability density as a function of normalized input
and output amplitude of r=� ; s=� for � = 10 dB.

where all integrations are from 0 to . The capacity of (5)
should be evaluated together with the average power and prob-
ability constraints of

(8)

III. NUMERICAL RESULTS

Based on different assumptions, three algorithms are used to
find the optimal input distribution to maximize the channel ca-
pacity of (5). Fig. 1 shows the channel capacity as a function of
SNR for IMDD channel of (2). Different algorithms give dif-
ferent input distributions as shown in Fig. 2 for dB
but the same channel capacity in Fig. 1. The Shannon limit of
(1) is also shown in Fig. 1 for comparison. Fig. 1 also shows
the capacity of constant-intensity modulation [11]–[13] that has
a spectral efficiency 1.6 b/s/Hz better than IMDD channels at
large SNR.

Other than the optimal input distribution arrived from dif-
ferent algorithms, Fig. 1 also calculates the channel capacity
when the input amplitude of is half-Gaussian distributed
[9] ( is confined to one dimension and is Gaussian) or the
input electric field of is two-dimensionally Gaussian dis-
tributed [2], [14]. Fig. 1 also shows the approximated channel
capacity of [9].

When an artificial peak-power constraint is imposed to
the IMDD channel, the optimal input distribution is discrete
[15]–[17]. Similar to the algorithm of [15] and [16] based on
numerical optimization, Fig. 2 shows the optimal discrete input
distribution as square for a peak-power constraint ten times
the average power. Beginning with binary signal, the number
of discrete points is increased one by one until the channel
capacity converges. Fig. 2 shows the optimal nine discrete
points with the corresponding probability.

Without the artificial peak-power constraint, the optimal
input distribution has continuous component or infinite
number of points very close to each other in its tail. Using
the asymptotic expression of for large
SNR, becomes asymptotically a Gaussian distribution
with variance of and a constant conditional entropy of

. With both large amplitudes
of and , the optimal distribution is asymptotically having a
Gaussian profile of and for input and output,
respectively, where and are two related factors.

To find the optimal continuous distribution, the continuous
IMDD channel is transformed to an to discrete channel
with input and output probabilities of and ,
where and and are the
step size. The traditional Arimoto algorithm [18] with

is modified to include the average-power constraint
and the known tail profile. The Arimoto algorithm gives only
a single discrete point at zero intensity. Instead of using contin-
uous distribution as the initial assumption, the algorithm is mod-
ified with discrete probability at zero intensity. Fig. 2 shows the
optimal input distribution with discrete probability at zero in-
tensity (overlapped with the square there) and continuous-dis-
tribution as a dashed–dotted line. Note that unlike the Rayleigh
channel in [16], the Arimoto algorithm converges very fast for
IMDD channel.

Although the first two algorithms give the same channel ca-
pacity shown in Fig. 1 and we may prove the existence of a dis-
crete probability exactly at zero intensity, more discrete points
may exist between the continuous distribution at large ampli-
tude and the zero-intensity discrete point. The third algorithm is
the combination of the Arimoto algorithm [18] and numerical
optimization [15], [16] with the prior assumption that there are
several discrete points at small input amplitude. The Arimoto
algorithm is used to find the optimal continuous distribution
and numerical optimization is used to find the optimal discrete
points. The two procedures are used alternatively with increase
channel capacity in each iteration. Fig. 2 also shows the optimal
input distribution with two discrete points at low intensity (solid
circles, the circle at zero intensity overlapped with the square)
and the continuous distribution at large amplitude (solid line).
Not shown in Fig. 2, more than two discrete points are used for
low intensity in further calculations that do not give a channel
capacity with observable difference with that in Fig. 1.
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All three algorithms converge to the same channel capacity
without observable difference. However, Fig. 2 shows that the
input distribution of has significant difference from one al-
gorithm to others. At dB, the three algorithms give
a channel capacity within 0.05%. The output distributions of

in Fig. 2 from the three input distributions also have no sig-
nificant difference at small amplitude. Only the tail distribution
of has major difference when the input distribution is to-
tally or partially discrete.

Fig. 1 also shows the channel capacity for binary signal (two
discrete points in the input distribution) calculated by numer-
ical optimization. Binary signal achieves the channel capacity
for SNR less than about 5 dB. The channel capacity of binary
signal was also calculated in [9] with the assumption that the two
levels are equally probable. Except for large SNR ( dB),
the optimal binary signal has larger probability at zero-inten-
sity and smaller probability at nonzero-intensity. For example,
if only 10% probability at nonzero-intensity, the nonzero-inten-
sity is ten times the averaged intensity as compared with twice
the averaged intensity for equal-probable case. Compared to a
similar curve in [9], the binary signal can achieve better channel
capacity at low SNR. By sending occasional pulses with large
intensity above the noise, the system is similar to the essence of
return-to-zero signaling. Systems with powerful forward error
correction [6] can operate around dB. Binary in-
stead of multilevel signals may be sufficient for those systems.

Based on the same channel model of (2), the half-
Gaussian distribution of [9] provides a lower bound and is
0.07–0.21 b/s/Hz worse than the optimal distribution. As dis-
cuss earlier, the optimal distribution has a tail profile of ,
similar to that of half-Gaussian distribution. For very large
SNR ( dB), the discrete region of Fig. 2 at low intensity
becomes insignificant and the half-Gaussian distribution should
be very close to the optimal distribution.

In [19], the channel capacity is derived for nonlinear
channnel. In the linear case, the channel capacity is equal to
the one-dimensional Shannon limit of by
assuming that the output of is Gaussian distributed. In prac-
tice, as has only positive value but the Gaussian distribution
implicitly assumes that the random variable may have negative
value. The approximation of [19] overestimates the channel
capacity by 0.5 b/s/Hz. As shown in [9], input distribution is
not discussed in [8]. The model of [8] gave a capacity between

1 b/s/Hz of depending on the definition of
SNR. The SNR in [8] is approximately the ratio of the power
of signal–noise and noise–noise beating, twice larger than that
in this letter.

Fig. 1 also includes the channel capacity for Gaussian
input-distribution of [14] that is 0.19–0.35 b/s/Hz worse than
the optimal distribution. The asymptotic spectral limit of
[14] is 0.19 b/s/Hz less than that of [9] using half-Gaussian
distribution.

The optimization problem to find the channel capacity is a
convex problem with an unique global maxima. The variations
of Fig. 2 show that a large variety of input distributions is very
close to the global maxima. With a power limit, the discrete
point at zero intensity increases the input entropy but not the
power. The spectral efficiency of Fig. 1 shows that the input

distributions with the profile of Fig. 2 provide larger channel
capacity than the previous proposal of [9] and [14].

IV. CONCLUSION

The capacity of IMDD channel, to our knowledge, has been
calculated rigorously the first time based on numerical optimiza-
tion. Three algorithms find significantly different input distribu-
tions but the channel capacity converges to the same value. The
optimal input distribution has at least a single discrete point at
zero intensity. At low SNR, the optimal distribution is found to
be binary on–off keying signal. At very large SNR, when the
single discrete point at zero intensity becomes insignificant, the
optimal distribution is very close to half-Gaussian distribution.
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