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 II

中文摘要 

本研究計畫對於如何衡量搜尋網路效能的諸多重要議題做深入思考。現有的評量

標準可能會對於搜尋的效能做出偏頗的結論，或是對於演算法的設計提供錯誤的方

向。因此，我們定義一個統一的準則，稱之為「搜尋效能」(Search Efficiency, SE)，

以綜合廣泛的方式來處理搜尋效能的問題。SE的目標在於更充分的描述搜尋網路效能

的特性，並對未來的設計提供方向。我們首先在一個理想的網路拓墣，strictly binary 

tree，藉由分析SE在兩種典型的搜尋方法，包括breadth first search以及random 

walk，來驗證SE的正確性。另外，基於各種不同的網路狀況，我們進一步展現SE在

真實世界網路拓墣，power-law random graph，描述效能特性的能力。最後，基於SE

的分析，我們設計一個演算法，dynamic search。Dynamic search展現出的優異性能，

對於SE提供未來搜尋網路設計方向的能力做出絕佳示範。 

關鍵詞 

組合數學，圖形理論，決定型網路計算法。 

 



 III 

英文摘要 

This project deliberates on various critical aspects in evaluating 

searching networks. Existing metrics either draw biased conclusions regarding 

search performance or provide wrong guidelines for algorithm design. We, 

therefore, define a unified criterion, Search Efficiency (SE), to objectively 

address search performance in a comprehensive manner. The goal of SE is to 

better characterize performance of searching networks than existing metrics 

do as well as to guide the design of future ones. We first validate the 

correctness of SE in performance evaluation in an ideal graph, strictly binary 

tree, by analyzing SE for two typical search methods, breadth first search and 

random walk. We further show its strength in performance characterization in 

the real-world topology, power-law random graph, under various network 

conditions. We finally design an algorithm, dynamic search, based on SE 

analysis. Its proved outstanding performance demonstrates the strength of SE 

to provide guidance for the future design of searching networks. 

 

Keywords 

Combinatorics, Graph theory, Deterministic network calculus 
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前言 

Searching networks, including social networks and computer networks, play 

an increasingly important role in human activity. A significant example is the 

recently popular peer-to-peer (P2P) file-sharing systems, e.g. Gnutella and 

KaZaA, where every peer collaboratively forms a searching network to locate 

desired files by a real-time search. In the social context of searching networks, 

people search their acquaintances for a particular item or expertise in a 

specific domain. Their acquaintances in turn report whether they have the 

desired item (expertise) or subsequently deliver this query to their next-step 

acquaintances. In this fashion, a social searching network or so called human 

acquaintanceship graph [8] is formed. Thus, a searching network is a system 

where each participant contributes to the network and collaborates to help 

others search targeted resources. 

In a searching network, one of the critical issues is to maximize search 

performance by choosing or designing algorithms used to perform the search 

process. Novel algorithms [5, 6, 7] have been proposed to address different 

search aspects, such as success rate, search cost, coverage, or number of hits, 

but an objective and comprehensive evaluation metric is missing. As a result, 

these algorithms tend to be designed with biased considerations and evaluated 

in limited dimensions.  
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研究目的 

In summary, our objectives are stated as follows: 

n We propose a unified and objective metric, Search Efficiency, for 

evaluating searching networks and characterizing search algorithms. 

n We mathematically analyze critical performance metrics—search 

coverage, cost, success rate, number of hits, and SE—in searching 

networks.  

n We analytically evaluate various algorithms, including BFS, M-BFS, RW, 

and a novel search, in SBT and PLRG, under uniform and non-uniform 

object distributions. 

n We devise a new search algorithm, dynamic search, based on the 

knowledge from temporal SE analysis. It is shown to outperform other 

existing ones, thus SE proved to provide solid guidance for algorithm 

design. 
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文獻探討 

Breadth-first search (BFS) and random walk (RW) [5] are two basic and 

typical search methods in searching networks. BFS inherently maximizes the 

search speed and coverage but risks generating search queries in an 

uncontrolled (exponential) manner. RW, on the other hand, minimizes search cost 

but generates limited search coverage and results. As a result, one might draw 

distinct conclusions about algorithm performance, if different metrics are 

concerned. For example, Gkantsidis et al. [12] claimed RW performs better than 

BFS in terms of number of hits and failure probability give the same search 

cost for BFS and RW, but implicitly assumed an infinite search time for RW, 

which is clearly unfair. Jiang et al. [9] evaluated their proposed search scheme 

only by search coverage and message cost, leaving search speed and success rate 

unchecked. Lv et al. [5] provided a spectrum of aspects on evaluation, but 

analyzed them individually and still lacked an overall consideration.  

Our work, therefore, deals with these one-sided perspectives and 

synthesizes a unified search criterion, Search Efficiency (Section II), which 

is critical particularly in P2P endeavors, to objectively evaluate search 

algorithms and provide overall guidance for the design of searching networks. 

With the unified metric SE, we first validate its correctness by deriving 

its mathematic formulas for BFS and RW in a simple topology, strictly binary 

tree (SBT), and analyzing whether the performance indicated by SE is reasonable. 

Furthermore, we extend the results of Newman [1] and Adamic [2] and further 

consider “redundancy” to analytically approximate SE for BFS, M-BFS [14], 

and RW in a power-law random graph (PLRG), which is shown to be the real topology 

of current searching networks. We thus validate SE in comparison with previous 

simulation works [5, 9, 11], deliver the unique performance characterization 

of SE, and provide in-depth analysis. 

Throughout the analysis in this project, we compare various existing 

metrics with SE to address their limitation and strength. We show that no matter 

in SBT or PLRG, existing metrics draw biased conclusions regarding search 

performance; they either provide one-sided considerations or deliver wrong 

guidelines for algorithm design. Moreover, they fail to characterize 

performance variance under distinct network conditions, such as object 

replication ratios (Section III) and object distributions (Section VI). 

In the final analysis, we propose a new algorithm, dynamic search, based 

on the results of SE analysis. We prove this algorithm outperforms existing 

ones and SE effectively provides guidance for algorithm design. 

 



 4 

研究方法 

SEARCH EFFICIENCY 

 

We argue that to best characterize the efficiency of any system is to measure its ability to transfer its 

input to generate meaningful output, which is applicable in the evaluation of search methods performed in 

any network. In a social network, the input of a search largely involves the cost required for querying 

process including costs of phone calls, transportation, and even consulting. As for output, it should be 

measured by searchers’ satisfaction in terms of the chance of success, the response speed, and quality of 

responsive results. To clarify the definitions of and relations between these inputs and outputs in the 

context of searching networks, we start a series of discussions about Search Efficiency with Query 

Efficiency (QE). 

 
A. Query Efficiency 

In general, the most critical aspects of search performance involve the extent of search coverage (output) 

[2] and the cost required to cover the network (input) [5]. By search coverage, denoted as Coverage or C, 

we mean the number of distinct or effective peers visited by search queries, i.e. we do not count the 

repeatedly visited ones. In addition, by cost, denoted by QueryMsg, we mean the number of queries 

incurred, for it is a representative factor to which other cost factors (e.g. computer processing power or 

costs for phone calls and transportation) tend to be proportional. Thus it is trivial to say a search which 

uses S query messages to traverse distinct S nodes is perfectly or 100% efficient in terms of query 

generation. Additionally, we can define a sort of efficiency as Coverage / QueryMsg. However, the end 

goal of searching is not to cover as many nodes in the network as possible. Rather, its ultimate goal is to 

search out the desired targets or objects, in which covering is only one of the adequate conditions (e.g. 

cache or previous experience) for that end. This is true when the searching network is well-designed, e.g. 

Chord [13], such that large search coverage is not necessary, or when object distribution is not uniform in 

which directed search is preferred. We will show performance difference between Coverage and 

QueryHits under non-uniform object distribution in Section VI. 

Thus, we define QueryHits(t) as the number of desired objects found “at” search time t, which is 

measured by the number of hops or depths, to quantify the yields of a search. We introduce the factor 

search time t for the purpose of future discussion. Again, we might define the efficiency of queries as 

? tQueryHits(t)/QueryMsg. However, this definition is sensitive to the population of desired objects, which 

is irrelevant to the performance of search algorithms themselves and should be factored out. For this 

purpose, we introduce the notion of object replication ratio R defined as the ratio of the number of targeted 

objects to the network size (N). To cancel the population factor out, we normalize it with respect to R and 

thus formulate Query Efficiency (QE) as 

1 ( ) 100%
(%) ,

TTL
t QueryHits t

Query Efficiency
QueryMsg R

== ×
∑   (1) 

where TTL refers to the termination condition of searches, measured in hops. To exemplify, we suppose 

a search consuming 100 messages to find 1 targeted object in a network with R of 1%, which reveals that 

1% of nodes have the desired object. By (1), QE = 100% and we thus call it a perfectly query-efficient 

search. Furthermore, if the objects are uniformly distributed in the network, we can reasonably claim that 
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the search effectively covers 100 nodes (from 1/1% = 100) and this provides a clear view of the perfect 

efficiency. 

 

B. Responsiveness 

One of the goals of searching, as addressed previously, is to find out possible objects while the other is 

to find them as soon as possible. We define search response time, denoted by t, measured by discrete 

numbers of hops, to evaluate the speed of searching objects, or responsiveness of a search. If a search 

finds Q desired objects in its hth step or in its hth-nearest acquaintances, we denote it as QueryHits(t=h)=Q.  

We argue that a search getting hits in a faster fashion delivers better users’ experience and should be 

gauged as higher reputation. More specifically, responsiveness of a search should be inversely 

proportional to the response time t. To consider this factor for SE, we may simply divide QE by the 

weighted response time, which is computed by ? t[t·QueryHits(t)] / ? tQueryHits(t). However, this method 

would generate unjust results. For example, we assume a search that uses 1000 messages to get 99 hits at t 

= 1 and 1 hit at t = 100 with R = 10%, resulting in a weighted response time of (1·99+100·1)/100 or 1.99. 

According to QE in (1), if we don’t count the hit at t = 100, the search is 99% query efficient, but it 

dramatically reduces to 50.25% efficiency due to dividing by response time 1.99 when that hit is 

calculated. This method unreasonably emphasizes the slow search hit. We argue that any query hits 

contribute positively to the search itself despite long response time. We thus aggregate these responsive 

hits rather than divide by the averaged response time to give efficiency as  

1 ( ) / 100%TTL
t QueryHits t t

QueryMsg R
= ×

∑
. 

The efficiency of this example becomes 99.01% rather than 50.25%, where the last found hit contributes 

0.01% to efficiency, rather than severely reducing it. 

 

C. Reliability 

The last concern is reliability, which is measured by SuccessRate in our design of SE. We introduce it so 

as to further consider the satisfaction of user experience. Consider two searches (A and B), each 

performing two runs, as shown in Table I. We assume all objects are found at the same response time. The 

success rate of Search A is 50% while B is 100%. 

TABLE I 

SEARCH DATA FOR ILLUSTRATING SUCCESSRATE 

 Search A Search B 

 QueryMsg QueryHits QueryMsg QueryHits 

Run1 100 2 100 1 

Run2 100 0 100 1 

Note that if we compute efficiency without SuccessRate, we will gain the same result for Search A and 

B. However, one of the runs in Search A (Run 2) fails and thereby we neglect to measure the penalty of 

user experience in Run 2. By introducing the term SuccessRate, SE of Search B remains the same, but SE 

of A is halved. In this manner, it successfully addresses the user satisfaction level while the two searches 

get the same number of hits at the same message costs. In sum, the term SuccessRate is aimed to 

successfully measure the satisfaction level from users’ perspective. Finally, we define the overall criterion 
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for evaluating searching by 

1 ( )TTL
t QueryHits t t SuccessRate

Search Efficiency
QueryMsg R

== ×
∑

,(2) 

where TTL stands for the limit of search covering. 

 

D. Limitations of Search Efficiency 

The design goal of SE is to capture a simple but representative view of search performance. As a result, 

it is possible to consider more complex considerations for search evaluation. We list three possible aspects 

that are not covered by SE: 

1) In the context of computer searching networks, the implementation of caches or DHT would 

significantly improve the search performance, which SE could reflect. However, SE doesn’t consider the 

additional resources (processing power or memory) required by performance-boosted mechanisms, such 

as hash functions or caches, thus potentially overestimating the efficiency of algorithms adopting these 

additional mechanisms. 

2) The costs of searching each computer or peer should not be equally weighted. Consulting an 

institution for recommendations is clearly more costly than asking a close friend, although we only assume 

they are equally costly. 

3) We make a limited measure of responsiveness by the factor t. For instance, it would be more flexible 

using ta, a > 0, to adjust the extent to which search responsiveness is concerned. 

 

By means of Search Efficiency, we can objectively evaluate performance of algorithms in searching 

networks. In the remaining of this report, therefore, we aim to characterize various existing search 

algorithms in terms of SE and demonstrate the biased view of existing search metrics compared with SE. 

In the following sections, we will mathematically derive the formulas for SE in the context of three basic 

search approaches, BFS, RW and M-BFS, the variation of BFS, in two representative topologies, the 

strictly binary tree (SBT) as well as the power-law random graph (PLRG), in order to demonstrate the 

strength of SE. 

 

STRICTLY BINARY TREE 

 

We assume an N-vertex strictly binary tree whose depth is about log2N and that the requester is at the 

root such that the response time (t) of a query hit is the same as the depth (d) where the target object is 

located. This tree is shown in Fig. 1. Moreover, for simplicity of analysis, we assume objects are uniformly 

distributed in the tree or graph until Section VI. 
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Before analyzing specific algorithms, we first prepare two common factors for the derivation. Firstly, 

the number of objects searched out (QueryHits) is proportional to the search coverage C. Thus, we have 

QueryHits R C= × .           (3) 

Secondly, the success rate of a search is also relevant to the search coverage. To begin with, we know 

that each node owns the target object with a probability of R; that is, each node lacks the object with a 

probability of 1- R. Suppose a search covers C vertices and thus the probability these C nodes share no 

targeted object is (1- R)C. Inversely, the probability these C nodes share one or more objects, or 

equivalently SuccessRate, is determined by 

1 (1 )CSuccessRate R= − − . (4) 

 

A. Breadth First Search in Strictly Binary Tree (SBT) 

 
Analytic Derivation: Breadth-first search (BFS) performs by broadcasting the received queries to all 

neighbors except where the received query came from. Therefore, by the regular structure of a strictly 

binary tree, the search coverage terminated at depth TTL is given by  

1( ) 2tTTL
tCoverage C == ∑  (5) 

Furthermore, the number of messages required to traverse the tree is the same as the quantity of its 

search coverage due to the very nature of BFS. Thus, QueryMsg = C = ? t 2t. According to (1), (3), and (5), 
we attain   

1

1

2 100%
100%

2

tTTL
t

BFS tTTL
t

R
QueryEfficieny

R
=

=

⋅
= × =

∑
∑

 (6) 

................................ 
Fig. 1. A strictly binary tree with the requester at the root 
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Fig. 2. Search Efficiency for BFS terminated by incremental TTLs (Depth) 

in a strictly binary tree with various replication ratios R 

Surprisingly, the formula of QEBFS yields a constant, 1 or 100%, regardless of the replication ratio R or 

the termination depth TTL. By the definition of QE, this means that BFS is a perfectly query-efficient 

search in the context of a binary tree; that is, BFS generates no redundant messages while traversing a 

binary tree. The idea of redundancy will be further defined and discussed in the next section. 
Finally, the general formula of SE defined in (2) for BFS in a binary tree is 

( ) 1 21

1

2
1 1 .

2

tTTL
t

tTTL
t

BFS tTTL
t

t
SE R =∑=

=

 = × − −  
∑
∑

 (7) 

The derived SEBFS is complex for one to gain insight of its properties due to the running variable t and 

various possible values of R. To deliver a clearer understanding, we assume the replication ratio R << 1, 

which is true in real searching networks, and approximate (7) as 

( )[ ] ∑
∑

∑
==

=

= ⋅=∑⋅−−×≅ TTL
t

tTTL
t

t
TTL
t

t

TTL
t

t

BFS tRR
t

SE 11
1

1 2211
2

2
.(8) 

Search Efficiency Analysis: To exemplify SEBFS, we set R = 0.1% (far less than 1) and obtain by (8) 
SETTL=1 = 0.2%, SETTL=2 = 0.4%, and SETTL=3 = 0.67%. Note SE is strictly increasing with respect to 

TTL— SETTL=2 is exactly twice of SETTL=1 and SETTL=3 is more than three times of SETTL=1. The reasons are 

two-fold. Firstly, as formula (6) shows, BFS in a binary tree is perfectly query-efficient, which means 

every query positively contributes to its search coverage and in turn produces promising increase in SE. 

Secondly, the speed at which query hits are returned is faster than the decay factor of response time t. 

Furthermore, formula (8) tells that the benefits from BFS are increasingly proportionally to 2t while the 

factor t is used to compensate the demerit of long search time, where the factor 2t tends to dominate. Thus 

we conclude every query or every additional covered depth makes a positive contribution to the overall 

performance despite the compensation of time, given that the replication ratio is much smaller than unity. 

We present analytically-derived data of SEBFS, without approximation, by (7) with a spectrum of 

parameters, Rs and TTLs, in Fig. 2. Firstly, we note that SEBFS for all Rs approaches some fixed level in the 

long run. This fixed level, obtained by (7) for large t, is determined by the characteristic of the searched 

topology— strictly binary tree— that is irrelevant to R. Second, the short-term increase of SE for high R 

(10% or 5%) results from the perfect query efficiency and popularly distributed objects, while the 

long-term decrease is due to the compensator of response time t. If we use the notion ta suggested in 

Section II.D, where a is 0 or small for some application scenarios and responsiveness is of little concern, 

SE in (7) will increasingly grow to some fixed level. Third, as for low R (0.1% or 0.5%), the results in Fig. 

2 are reflective of the discussions in the above paragraph— SE is consistently increasing.  

Note that, however, if we take TTL as infinity in (7), it gives zero seemingly contradicting our notion. In 

reality, however, TTL cannot be infinity but is generally 7~10, in which SE still generates a fixed level of 

performance reflecting the characteristics of SBT. 
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Fig. 3. Performance comparison by various metrics— (a) Search Efficiency, (b) SuccessRate, (c) Coverage, and (d) QueryMsg— for RW of various number of 

walkers k and for BFS in a strictly binary tree with R = 1% 

Metrics Analysis: We compare two metrics, SE and Coverage in this scenario. The results of 

Coverage of BFS can be referred to in Fig. 3(c). If we take only Coverage (C) into consideration, it 

produces the same performance in spite of different extents of object replication (different values of R) 

since C by (5) is independent of R. Hence, Coverage fails to characterize the performance variance in 

searching networks with different replication ratios. On top of this, if the design goal is to maximize C, 

then one may conclude that the choice of termination condition TTL is the larger the better— an 

impractical conclusion. On the other hand, if we only inspect QueryMsg, we will get entirely opposite 

conclusions. Therefore, Coverage and QueryMsg draw contradictory conclusions and fail to provide 

comprehensive guidance. 

In fact, by the indication of SE in Fig. 2, TTL should be small when R is large in order to avoid 

unnecessary message propagation when R is large and to generate satisfactory results when R is small. In 

sum, SE better characterizes performance and provides a better guideline of TTL design than Coverage 

and QueryMsg. 

 

B. Multiple Random Walks in Strictly Binary Tree 

When it comes to RW search, we use multiple “walkers” to traverse the network and the number of 

walkers is denoted by k. Each walker independently searches the network and randomly chooses one of 

the next-hop neighbors to continue its journey to the limit of TTL hops. 
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Analytic Derivation: To begin with, we consider Coverage to derive SE. We know each vertex at 

depth t is visited by a random walker with equal probability, 1/2t. Moreover, each random walker 

independently makes its own decisions to traverse the topology. Thus, the probability that all k walkers 

don’t visit a certain vertex is (1- 1/2t)k. As a result, at depth t, the average number of nodes visited 

(Coverage per Depth) by k random walkers is given by the expectation 

1( ) 2 1 (1 )
2

t k
t tE X  = − −  

.          (9) 

By (3), QueryHits(t) = R·E(X)t. Moreover, the query messages of random walk are generated per hop for 

each walker until terminated by the TTL limit, hence  

QueryMsg = k·TTL.   (10) 

As a result, QE of k-random walk is 

1 1( ) ( )TTL TTL
t tt t

RW k

R E X E X
QE

k TTL R k TTL
= =

=

⋅
= =

⋅ ⋅ ⋅
∑ ∑ .  (11) 

Furthermore, from (4), we obtain  

1 ( )1 (1 ) 1 (1 ) .
TTL
t tE XCSuccessRate R R =∑= − − = − − (12) 

Therefore, Search Efficiency for k-random walks is 

( ) 1 ( )1 ( ) /
1 1 ,

TTL
t t

TTL
E Xtt

RW k

E X t
SE R

k TTL
=∑=

=
 = × − − ×  

∑ (13) 

where E(X)t is determined by (9). 

Search Efficiency Analysis: Assuming R = 1%, we generate a series of performance results of SE in 

terms of various numbers of walkers k. We thus plot these results of SE (13), SuccessRate (12), Coverage 

(9), and QueryMsg (10) for RW and BFS in Fig. 3.  

In Fig. 3(a), we observe that all SEs of RW consistently increase with respect to the depth or search time. 

Nevertheless, they all are smaller than that of BFS due to too many (redundant) query messages in the 

local search, and the slow covering and low SuccessRate in the long-term search. Therefore, they fail to 

utilize the regular structure of SBT. As for the number of walkers k, a too large (e.g. 50) or too small (e.g. 

2) value of k gives degraded performance, thus resulting in strong sensitivity in the choice of k. 

Metrics Analysis: By merely inspecting Fig. 3(b) for SuccessRate or (c) for Coverage, one may jump 

to a conclusion that the number of walkers k is the larger the better. This aspect disregards the fact that 

larger k would generate larger search cost, shown in Fig. 3(d), and potentially redundant query messages. 

In fact, comparing RW of k = 50 and of k = 20, we find that their values of SuccessRate or Coverage 

during depth t = 1~4 are almost the same while the former generates 2.5 times more search cost— the latter 

search uses less search cost to produce similar search fruits. In consequence, in the short-term search, the 

latter one should be gauged as better search. Thus the conclusion larger k is better for RW would be 

fallacious. Therefore, we argue that neither SuccessRate nor Coverage is a good performance indicator.  

Moreover, the long-term performance will inherent the short-term so that SE in Fig. 3(a) well 

characterizes the better performance for RW of k = 20. Besides, RW of k = 2 would be the best search in 

Fig. 3 if we try to minimize QueryMsg and scalability is the most concerned issue. Yet, this would be a 

specious conjecture since it entirely flies in the face of the final end of search— to find the results 

responsively.    
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C.  Summary of Search Efficiency in SBT 

By the discussion in this section, we validate SE by showing 1) the 100% QEBFS indicates that BFS 

perfectly utilizes the regular structure of SBT and generates no redundant messages, 2) the sagging SERW 

reveals RW fails to take advantage of the structure of SBT, and 3) the fixed level of SEBFS in long-term 

search effectively reflects the characteristics of SBT. The first two results can be confirmed by intuition 

and thus verify the correctness of SE. The third observation further demonstrates the superiority of SE in 

characterizing search performance under specific topologies. 

Through metrics analysis, we have demonstrated that existing metrics, Coverage, QueryMsg, and 

SuccessRate, are one-sided and may lead to biased conclusions. They cannot distinguish performance 

variance in searching networks when replication ratios are distinct, and cannot provide reasonable 

guidance in the design of parameters TTL and k while SE can. 
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結果與討論 

Evaluation metrics are critical in judging search performance. If Coverage is the only metric concerned, 

one may conclude that BFS is the best search algorithm despite the overwhelming search cost. It 

overlooks the system load and the aspect of operation efficiency. Moreover, if search cost is the most 

important criterion of a searching network, RW would be the best appropriate algorithm for that system. 

However, it fails to evaluate the ability to achieve the final end of searching networks— to search out 

targeted results responsively. In consequence, biased metrics may draw biased conclusions and provide 

wrong guidelines for system design. Thus, we endeavor to devise a new search based on the 

comprehensive metric, SE, in order to demonstrate the strength of SE. In addition to its strength in 

performance characterization and reasoning, we show the strength of SE to serve as the design guidance of 

the invented algorithm— dynamic search. 

We attempt to utilize the merits of the three analyzed algorithms from the viewpoint of SE for the new 

search. Accordingly, on the basis of the conclusions drawn in Section IV.E, the new algorithm should 

resemble BFS in short-term searches, mimic RW for long-term propagation, and be able to fine tune the 

performance through certain parameters as used in M-BFS. Therefore, we separate the search process into 

two phases. In the threshold phase (local space), the search is similar to BFS with some dynamic tuning 

forwarding probabilities; in the ultimate phase (long-term space), it operates as the random walk search to 

consistently retain the performance gained from the threshold phase. The detailed operations are described 

in the following subsection.    

 
A. Operation 

Dynamic search starts as a probabilistic search with dynamic fraction parameter fh at different hops h 

when h = n. For h > n, it switches to the random walk search. In the threshold phase, it operates as M-BFS 

but with dynamic fh, for h = 1, 2, … , n. For example, for dynamic search with n = 2, f1 = 1, and f2 = 0.5, 

the search agents at h = 1 perform BFS, perform M-BFS with f = 0.5 at h = 2 and operate as random walk 

for h = 3. Moreover, in the random-walk phase, the number of walkers k is determined by the outstanding 

query messages or the effective search agents covered at the hth hop, that is, Ch.  

Hence, the behavior of dynamic search changes dynamically in terms of time (hop) to adapt to the 

appropriate search properties in different phases. Hopefully, in terms of SE, it would outperform other 

algorithms in each phase thanks to the fine-tuned design. 

 

B. Performance Analysis 

To analyze the characteristics of dynamic search, we use the knowledge we have learned in previous 

sections where we mathematically formulate SE. In this section, we analyze only in the PLRG. The general 

form of SE in (26) applies for dynamic search and Ch is given by (23), except eh=1 = f1·G'0(1), e2=h=n = 

fh·G'1(1)· Ch-1, eh>n = Ch=n, and 
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Fig. 9. Performance comparison by various metrics— (a) Search Efficiency, (b) Query Efficiency, (c) Coverage, and (d) QueryMsg— for RW of various number 

of walkers k and for BFS in PLRG with R = 1% under uniform and non-uniform (NU) object distribution. Solid lines represent data of uniform distribution and 

dashed-lines represent non-uniform distribution. 
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where rh is specified by (12).  

As for the parameter design, we refer to the observation in Fig. 6, where BFS performs the best in the 

first two hops and lower fs for M-BFS achieve more consistent performance in the long-term search. Thus, 

we design two sets of parameters: the first one, Dynamic-1, performs BFS in the first two hops and 

random walks in the following phase (n = 2); the second one, Dynamic-2, performs BFS in the first two 

hops, M-BFS with f = 0.3 at the third hop, and then random walks (n = 3). The number of walkers k in RW 

is dynamically determined by the number of outstanding query messages at hop n, i.e. Ch=n. The detailed 

parameters are shown in Table II. 

We generate SE of Dynamic-1 and -2 and make performance comparison with BFS, M-BFS (f = 0.3), 

and RW (k = 100) in Fig. 8. We take M-BFS with f = 0.3 in order to compare with Dynamic-2, which uses 

f3 = 0.3. And we use 100 as the number of walks for RW since it generates the best performance (in Fig. 

7). 

(a) Search Efficiency

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7

Hop

Se
ar

ch
 E

ff
ic

ie
nc

y 
(%

)

k = 5
k = 10
k = 100
BFS
k = 5 (NU)
k = 10 (NU)
k = 100 (NU)
BFS (NU)

(b) Query Efficiency

0

50

100

150

200

250

1 2 3 4 5 6 7

Hop

Q
ue

rt
 E

ff
ic

ie
nc

y 
(%

)

(c) Coverage

1

10

100

1000

10000

1 2 3 4 5 6 7

Hop

C
ov

er
ag

e

(d) Query Message

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7

Hop

Q
ue

ry
 M

es
sa

ge

k = 5
k = 10
k = 100
BFS
k = 5 (NU)
k = 10 (NU)
k = 100 (NU)
BFS (NU)



 14

In Fig. 8, we can observe that dynamic searches outperform other algorithms especially in the long-term 

search. They resemble BFS within h=2 as expected and perform consistently as random walk does, thus 

outperforming others in long-term search as we design. Note that Dynamic-2 trades its performance at h = 

3 for its long-term efficiency by using a low probability f = 0.3, and vice versa for Dynamic-1.   

 

NON-UNIFORM OBJECT DISTRIBUTION 

 

Throughout our analysis, for simplicity we had assumed the object distribution as uniform. However,  

this assumption leads to the conclusion that QueryHits equals to R·Coverage, which violates our argument 

in Section II.A that Coverage is only one of the conditions to produce QueryHits. To support our argument 

and justify our consideration of QueryHits in SE rather Coverage, we analyze SE under a non-uniform 

object distribution as proposed in [11].  

In this object distribution, the probability a search agent (vertex) owns certain object is proportional to 

its degree d. Let O be the event that certain search agent owns the targeted object, then the probability 

agent i has the object is determined by 

 
1

( ) ,i
i i N

jj

R N d
P O d

d=

⋅ ⋅
∝ =

∑
 (15) 

such that ? iPi(O) = R·N, the total number of objects distributed in the network, where di = m / i1/t  [4]. 

Analytic Derivation: Since the object distribution is not uniform, we cannot simply use R·Coverage 

to represent QueryHits, which in fact is formulated by 
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where Pi(Vh) is given by (5) and Pi(O) by (15). 

For SuccessRate, we generalize the form 1- (1- R)C in (4) for the uniform distribution to deliver the one 

in non-uniform distribution: 

1 1
1 1 ( ) ( ) .

N h

i i j
i j

SuccessRate P O P V
= =

 = − − ∏ ∏  (17) 

Now, equations (16), (17), and (6) suffice to solve SE defined by (2) for BFS.  

For RW, QueryHits(h) follows formula (16) derived in BFS and SuccessRate follows (17) in BFS, where 

Pi(Vh) is given by (13) and Pi(O) by (15). 

Search Efficiency Analysis: We plot analytic data in Fig. 9, where the dashed-lines represent the 

data under non-uniform (NU) object distribution. We use the same colors to represent searches with 

identical parameters. We find that SE in Fig. 9(a) is significantly increased under NU distribution for both 

BFS and RW. The performance increase is around 75% ~ 250% for RW at h = 7 and 250% for BFS at h = 

2. This can be explained by the graph property that vertices tend to connect to those with higher degrees [1, 

2], which has been validated by simulations in [11]. 

Metrics Analysis: Fig. 9(c) indicates that every search in question generates 

identical Coverage under different object distributions, and Fig. 9(d) draws the same 
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conclusion for QueryMsg. Therefore, these two metrics totally fail to distinguish the 

performance variance under NU distribution. Moreover, in Fig. 9(b), Query Efficiency, 

defined by QueryHits/(QueryMsg?R), explains the performance increase by indicating 

more QueryHits found given that same number of QueryMsg. In consequence, SE, in which 

QE is a critical element, well characterizes the performance difference in the two 

scenarios.   
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結論與建議 

In this project we define a unified metric, Search Efficiency (SE), 

addressing performance in searching networks in terms of Query Efficiency, 

responsiveness, and reliability. Mathematical formulas and approximations of 

SE and other existing metrics are derived to characterize performance and 

provide in-depth analysis for various search algorithms. We justify the 

correctness of SE in performance evaluation by analyzing it in an ideal topology, 

strictly binary tree. We further demonstrate its ability to characterize search 

performance in a large-scale PLRG, the real-world network topology. 

We conclude that existing metrics either leads to biased conclusions 

regarding performance or fail to reflect performance variance when network 

conditions change. Moreover, they tend to provide wrong guidelines for the 

design of various algorithm parameters (e.g. TTL, k, and f). The proposed metric, 

SE, effectively characterizes the performance variance under different network 

conditions and delivers objective and in-depth performance analysis. 

In the final analysis, the outstanding performance of dynamic search, the 

new algorithm devised based on the guidance of SE, manifests the efficacy of 

SE to conduct design of search algorithms. Therefore, our proposal of SE 

contributes to providing guidance for the future design of searching networks. 
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Abstract-This paper deliberates on various critical aspects 
in evaluating searching networks. Existing metrics either draw 
biased conclusions regarding search performance or provide 
wrong guidelines for algorithm design. We, therefore, define a 
unified criterion, Search Efficiency (SE), to objectively address 
search performance in a comprehensive manner. The goal of 
SE is to better characterize performance of searching networks 
than existing metrics do as well as to guide the design of future 
ones. We first validate the correctness of SE in performance 
evaluation in an ideal graph, strictly binary tree, by analyzing 
SE for two typical search methods, breadth first search and 
random walk. We further show its strength in performance 
characterization in the real-world topology, power-law random 
graph, under various network conditions. We finally design an 
algorithm, dynamic search, based on SE analysis. Its proved 
outstanding performance demonstrates the strength of SE to 
provide guidance for the future design of searching networks. 

 
Index terms— Combinatorics, Graph theory, Deterministic 

network calculus 
 

I. INTRODUCTION 
 
Searching networks, including social networks and 

computer networks, play an increasingly important role in 
human activity. A significant example is the recently popular 
peer-to-peer (P2P) file-sharing systems, e.g. Gnutella and 
KaZaA, where every peer collaboratively forms a searching 
network to locate desired files by a real-time search. In the 
social context of searching networks, people search their 
acquaintances for a particular item or expertise in a specific 
domain. Their acquaintances in turn report whether they 
have the desired item (expertise) or subsequently deliver this 
query to their next-step acquaintances. In this fashion, a 
social searching network or so called human 
acquaintanceship graph [8] is formed. Thus, a searching 
network is a system where each participant contributes to the 
network and collaborates to help others search targeted 
resources. 

In a searching network, one of the critical issues is to 
maximize search performance by choosing or designing 
algorithms used to perform the search process. Novel 
algorithms [5, 6, 7] have been proposed to address different 
search aspects, such as success rate, search cost, coverage, 
or number of hits, but an objective and comprehensive 
evaluation metric is missing. As a result, these algorithms 
tend to be designed with biased considerations and evaluated 
in limited dimensions.  

Breadth-first search (BFS) and random walk (RW) [5] are 

two basic and typical search methods in searching networks. 
BFS inherently maximizes the search speed and coverage 
but risks generating search queries in an uncontrolled 
(exponential) manner. RW, on the other hand, minimizes 
search cost but generates limited search coverage and results. 
As a result, one might draw distinct conclusions about 
algorithm performance, if different metrics are concerned. 
For example, Gkantsidis et al. [12] claimed RW performs 
better than BFS in terms of number of hits and failure 
probability give the same search cost for BFS and RW, but 
implicitly assumed an infinite search time for RW, which is 
clearly unfair. Jiang et al. [9] evaluated their proposed search 
scheme only by search coverage and message cost, leaving 
search speed and success rate unchecked. Lv et al. [5] 
provided a spectrum of aspects on evaluation, but analyzed 
them individually and still lacked an overall consideration.  

Our work, therefore, deals with these one-sided 
perspectives and synthesizes a unified search criterion, 
Search Efficiency (Section II), which is critical particularly 
in P2P endeavors, to objectively evaluate search algorithms 
and provide overall guidance for the design of searching 
networks. 

With the unified metric SE, we first validate its 
correctness by deriving its mathematic formulas for BFS and 
RW in a simple topology, strictly binary tree (SBT), and 
analyzing whether the performance indicated by SE is 
reasonable. Furthermore, we extend the results of Newman 
[1] and Adamic [2] and further consider “redundancy” to 
analytically approximate SE for BFS, M-BFS [14], and RW 
in a power-law random graph (PLRG), which is shown to be 
the real topology of current searching networks. We thus 
validate SE in comparison with previous simulation works [5, 
9, 11], deliver the unique performance characterization of SE, 
and provide in-depth analysis. 

Throughout the analysis in this paper, we compare various 
existing metrics with SE to address their limitation and 
strength. We show that no matter in SBT or PLRG, existing 
metrics draw biased conclusions regarding search 
performance; they either provide one-sided considerations or 
deliver wrong guidelines for algorithm design. Moreover, 
they fail to characterize performance variance under distinct 
network conditions, such as object replication ratios (Section 
III) and object distributions (Section VI). 

In the final analysis, we propose a new algorithm, 
dynamic search, based on the results of SE analysis. We 
prove this algorithm outperforms existing ones and SE 
effectively provides guidance for algorithm design. 

This work was supported in part by National Science Council under grant 
93-2213-E-002-057, and by Quanta Computer Inc. under grant 092E0048.  
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In summary, our contributions are stated as follows: 
‧ We propose a unified and objective metric, Search 

Efficiency, for evaluating searching networks and 
characterizing search algorithms. 
‧ We mathematically analyze critical performance 

metrics— search coverage, cost, success rate, number 
of hits, and SE— in searching networks.  
‧ We analytically evaluate various algorithms, including 

BFS, M-BFS, RW, and a novel search, in SBT and 
PLRG, under uniform and non-uniform object 
distributions. 
‧ We devise a new search algorithm, dynamic search, 

based on the knowledge from temporal SE analysis. It 
is shown to outperform other existing ones, thus SE 
proved to provide solid guidance for algorithm design. 

This rest of this paper first follows with the definition and 
explanation of Search Efficiency in Section II. We then 
analytically derive the general form of SE and provide 
in-depth discussion on the performance of BFS and RW in 
SBT in Section III and PLRG in Section IV. Section V 
presents the novel algorithm, dynamic search. We analyze 
algorithms under non-uniform object distribution in Section 
VI, then finally conclude in Section VII. 

   
II. SEARCH EFFICIENCY 

 
We argue that to best characterize the efficiency of 

any system is to measure its ability to transfer its input 
to generate meaningful output, which is applicable in 
the evaluation of search methods performed in any 
network. In a social network, the input of a search 
largely involves the cost required for querying process 
including costs of phone calls, transportation, and even 
consulting. As for output, it should be measured by 
searchers’ satisfaction in terms of the chance of success, 
the response speed, and quality of responsive results. 
To clarify the definitions of and relations between 
these inputs and outputs in the context of searching 
networks, we start a series of discussions about Search 
Efficiency with Query Efficiency (QE). 

 
A. Query Efficiency 

In general, the most critical aspects of search 
performance involve the extent of search coverage 
(output) [2] and the cost required to cover the network 
(input) [5]. By search coverage, denoted as Coverage 
or C, we mean the number of distinct or effective peers 
visited by search queries, i.e. we do not count the 
repeatedly visited ones. In addition, by cost, denoted 
by QueryMsg, we mean the number of queries incurred, 
for it is a representative factor to which other cost 
factors (e.g. computer processing power or costs for 
phone calls and transportation) tend to be proportional. 
Thus it is trivial to say a search which uses S query 
messages to traverse distinct S nodes is perfectly or 
100% efficient in terms of query generation. 
Additionally, we can define a sort of efficiency as 
Coverage / QueryMsg. However, the end goal of 
searching is not to cover as many nodes in the network 
as possible. Rather, its ultimate goal is to search out the 

desired targets or objects, in which covering is only 
one of the adequate conditions (e.g. cache or previous 
experience) for that end. This is true when the 
searching network is well-designed, e.g. Chord [13], 
such that large search coverage is not necessary, or 
when object distribution is not uniform in which 
directed search is preferred. We will show performance 
difference between Coverage and QueryHits under 
non-uniform object distribution in Section VI. 

Thus, we define QueryHits(t) as the number of 
desired objects found “at” search time t, which is 
measured by the number of hops or depths, to quantify 
the yields of a search. We introduce the factor search 
time t for the purpose of future discussion. Again, we 
might define the efficiency of queries as 
? tQueryHits(t)/QueryMsg. However, this definition is 
sensitive to the population of desired objects, which is 
irrelevant to the performance of search algorithms 
themselves and should be factored out. For this 
purpose, we introduce the notion of object replication 
ratio R defined as the ratio of the number of targeted 
objects to the network size (N). To cancel the 
population factor out, we normalize it with respect to R 
and thus formulate Query Efficiency (QE) as 

1 ( ) 100%
(%) ,

TTL
t QueryHits t

Query Efficiency
QueryMsg R

== ×
∑   (1)

where TTL refers to the termination condition of 
searches, measured in hops. To exemplify, we suppose 
a search consuming 100 messages to find 1 targeted 
object in a network with R of 1%, which reveals that 
1% of nodes have the desired object. By (1), QE = 
100% and we thus call it a perfectly query-efficient 
search. Furthermore, if the objects are uniformly 
distributed in the network, we can reasonably claim 
that the search effectively covers 100 nodes (from 
1/1% = 100) and this provides a clear view of the 
perfect efficiency. 

 
B. Responsiveness 

One of the goals of searching, as addressed 
previously, is to find out possible objects while the 
other is to find them as soon as possible. We define 
search response time, denoted by t, measured by 
discrete numbers of hops, to evaluate the speed of 
searching objects, or responsiveness of a search. If a 
search finds Q desired objects in its hth step or in its 
hth-nearest acquaintances, we denote it as 
QueryHits(t=h)=Q.  

We argue that a search getting hits in a faster fashion 
delivers better users’ experience and should be gauged 
as higher reputation. More specifically, responsiveness 
of a search should be inversely proportional to the 
response time t. To consider this factor for SE, we may 
simply divide QE by the weighted response time, 
which is computed by ? t[t·QueryHits(t)] / 
? tQueryHits(t). However, this method would generate 
unjust results. For example, we assume a search that 



uses 1000 messages to get 99 hits at t = 1 and 1 hit at t 
= 100 with R = 10%, resulting in a weighted response 
time of (1·99+100·1)/100 or 1.99. According to QE in 
(1), if we don’t count the hit at t = 100, the search is 
99% query efficient, but it dramatically reduces to 
50.25% efficiency due to dividing by response time 
1.99 when that hit is calculated. This method 
unreasonably emphasizes the slow search hit. We argue 
that any query hits contribute positively to the search 
itself despite long response time. We thus aggregate 
these responsive hits rather than divide by the averaged 
response time to give efficiency as  

      1 ( ) / 100%TTL
t QueryHits t t

QueryMsg R
= ×

∑
. 

The efficiency of this example becomes 99.01% rather 
than 50.25%, where the last found hit contributes 
0.01% to efficiency, rather than severely reducing it. 

 
C. Reliability 

The last concern is reliability, which is measured by 
SuccessRate in our design of SE. We introduce it so as 
to further consider the satisfaction of user experience. 
Consider two searches (A and B), each performing two 
runs, as shown in Table I. We assume all objects are 
found at the same response time. The success rate of 
Search A is 50% while B is 100%. 

TABLE I 
SEARCH DATA FOR ILLUSTRATING SUCCESSRATE 

 Search A Search B 
 QueryMsg QueryHits QueryMsg QueryHits 
Run1 100 2 100 1 
Run2 100 0 100 1 

Note that if we compute efficiency without 
SuccessRate, we will gain the same result for Search A 
and B. However, one of the runs in Search A (Run 2) 
fails and thereby we neglect to measure the penalty of 
user experience in Run 2. By introducing the term 
SuccessRate, SE of Search B remains the same, but SE 
of A is halved. In this manner, it successfully addresses 
the user satisfaction level while the two searches get 
the same number of hits at the same message costs. In 
sum, the term SuccessRate is aimed to successfully 
measure the satisfaction level from users’ perspective. 
Finally, we define the overall criterion for evaluating 
searching by 

 1 ( )TTL
t QueryHits t t SuccessRate

Search Efficiency
QueryMsg R

== ×
∑

,(2) 

where TTL stands for the limit of search covering. 
 
D. Limitations of Search Efficiency 

The design goal of SE is to capture a simple but 
representative view of search performance. As a result, 
it is possible to consider more complex considerations 
for search evaluation. We list three possible aspects 
that are not covered by SE: 

1) In the context of computer searching networks, 
the implementation of caches or DHT would 
significantly improve the search performance, which 
SE could reflect. However, SE doesn’t consider the 
additional resources (processing power or memory) 
required by performance-boosted mechanisms, such as 
hash functions or caches, thus potentially 
overestimating the efficiency of algorithms adopting 
these additional mechanisms. 

2) The costs of searching each computer or peer 
should not be equally weighted. Consulting an 
institution for recommendations is clearly more costly 
than asking a close friend, although we only assume 
they are equally costly. 

3) We make a limited measure of responsiveness by 
the factor t. For instance, it would be more flexible 
using ta, a > 0, to adjust the extent to which search 
responsiveness is concerned. 

 
By means of Search Efficiency, we can objectively 

evaluate performance of algorithms in searching 
networks. In the remaining of this paper, therefore, we 
aim to characterize various existing search algorithms 
in terms of SE and demonstrate the biased view of 
existing search metrics compared with SE. In the 
following sections, we will mathematically derive the 
formulas for SE in the context of three basic search 
approaches, BFS, RW and M-BFS, the variation of 
BFS, in two representative topologies, the strictly 
binary tree (SBT) as well as the power-law random 
graph (PLRG), in order to demonstrate the strength of 
SE. 

 
IV. STRICTLY BINARY TREE 

 
We assume an N-vertex strictly binary tree whose 

depth is about log2N and that the requester is at the root 
such that the response time (t) of a query hit is the 
same as the depth (d) where the target object is located. 
This tree is shown in Fig. 1. Moreover, for simplicity 
of analysis, we assume objects are uniformly 
distributed in the tree or graph until Section VI. 

Before analyzing specific algorithms, we first 
prepare two common factors for the derivation. Firstly, 
the number of objects searched out (QueryHits) is 
proportional to the search coverage C. Thus, we have 

QueryHits R C= × .           (3) 

................................ 
 

Fig. 1. A strictly binary tree with the requester at the root 

Depth 2 

Depth 3 

Depth 1 
 

Requester 
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Fig. 2. Search Efficiency for BFS terminated by incremental TTLs (Depth) 
in a strictly binary tree with various replication ratios R 

Secondly, the success rate of a search is also relevant 
to the search coverage. To begin with, we know that 
each node owns the target object with a probability of 
R; that is, each node lacks the object with a probability 
of 1- R. Suppose a search covers C vertices and thus 
the probability these C nodes share no targeted object 
is (1- R)C. Inversely, the probability these C nodes 
share one or more objects, or equivalently SuccessRate, 
is determined by 
 1 (1 )CSuccessRate R= − − . (4) 

 
A. Breadth First Search in Strictly Binary Tree (SBT) 

 
Analytic Derivation: Breadth-first search (BFS) 

performs by broadcasting the received queries to all 
neighbors except where the received query came from. 
Therefore, by the regular structure of a strictly binary 
tree, the search coverage terminated at depth TTL is 
given by  
 1( ) 2tTTL

tCoverage C == ∑  (5) 

Furthermore, the number of messages required to 
traverse the tree is the same as the quantity of its 
search coverage due to the very nature of BFS. Thus, 
QueryMsg = C = ? t 2t. According to (1), (3), and (5), 
we attain   

 1

1

2 100%
100%

2

tTTL
t

BFS tTTL
t

R
QueryEfficieny

R
=

=

⋅
= × =

∑
∑

 (6) 

Surprisingly, the formula of QEBFS yields a constant, 
1 or 100%, regardless of the replication ratio R or the 
termination depth TTL. By the definition of QE, this 
means that BFS is a perfectly query-efficient search in 
the context of a binary tree; that is, BFS generates no 
redundant messages while traversing a binary tree. The 
idea of redundancy will be further defined and 
discussed in the next section. 

Finally, the general formula of SE defined in (2) for 
BFS in a binary tree is 

 ( ) 1 21

1

2
1 1 .

2

tTTL
t

tTTL
t

BFS tTTL
t

t
SE R =∑=

=

 = × − −  
∑
∑

 (7) 

The derived SEBFS is complex for one to gain insight 
of its properties due to the running variable t and 
various possible values of R. To deliver a clearer 
understanding, we assume the replication ratio R << 1, 
which is true in real searching networks, and 
approximate (7) as 

( )[ ] ∑
∑

∑
==

=

= ⋅=∑⋅−−×≅ TTL
t

tTTL
t

t
TTL
t

t

TTL
t

t

BFS tRR
t

SE 11
1

1 2211
2

2
.(8) 

Search Efficiency Analysis: To exemplify SEBFS, we 
set R = 0.1% (far less than 1) and obtain by (8) SETTL=1 
= 0.2%, SETTL=2 = 0.4%, and SETTL=3 = 0.67%. Note SE 
is strictly increasing with respect to TTL— SETTL=2 is 
exactly twice of SETTL=1 and SETTL=3 is more than three 
times of SETTL=1. The reasons are two-fold. Firstly, as 
formula (6) shows, BFS in a binary tree is perfectly 
query-efficient, which means every query positively 
contributes to its search coverage and in turn produces 
promising increase in SE. Secondly, the speed at which 
query hits are returned is faster than the decay factor of 
response time t. Furthermore, formula (8) tells that the 
benefits from BFS are increasingly proportionally to 2t 
while the factor t is used to compensate the demerit of 
long search time, where the factor 2t tends to dominate. 
Thus we conclude every query or every additional 
covered depth makes a positive contribution to the 
overall performance despite the compensation of time, 
given that the replication ratio is much smaller than 
unity. 

We present analytically-derived data of SEBFS, 
without approximation, by (7) with a spectrum of 
parameters, Rs and TTLs, in Fig. 2. Firstly, we note that 
SEBFS for all Rs approaches some fixed level in the 
long run. This fixed level, obtained by (7) for large t, is 
determined by the characteristic of the searched 
topology— strictly binary tree— that is irrelevant to R. 
Second, the short-term increase of SE for high R (10% 
or 5%) results from the perfect query efficiency and 
popularly distributed objects, while the long-term 
decrease is due to the compensator of response time t. 
If we use the notion ta suggested in Section II.D, where 
a is 0 or small for some application scenarios and 
responsiveness is of little concern, SE in (7) will 
increasingly grow to some fixed level. Third, as for 
low R (0.1% or 0.5%), the results in Fig. 2 are 
reflective of the discussions in the above 
paragraph— SE is consistently increasing.  

Note that, however, if we take TTL as infinity in (7), 
it gives zero seemingly contradicting our notion. In 
reality, however, TTL cannot be infinity but is 
generally 7~10, in which SE still generates a fixed 
level of performance reflecting the characteristics of 
SBT. 

Search Efficiency for BFS
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Fig. 3. Performance comparison by various metrics— (a) Search Efficiency, (b) SuccessRate, (c) Coverage, and (d) QueryMsg— for RW of various number of 
walkers k and for BFS in a strictly binary tree with R = 1% 

Metrics Analysis: We compare two metrics, SE and 
Coverage in this scenario. The results of Coverage of 
BFS can be referred to in Fig. 3(c). If we take only 
Coverage (C) into consideration, it produces the same 
performance in spite of different extents of object 
replication (different values of R) since C by (5) is 
independent of R. Hence, Coverage fails to 
characterize the performance variance in searching 
networks with different replication ratios. On top of 
this, if the design goal is to maximize C, then one may 
conclude that the choice of termination condition TTL 
is the larger the better— an impractical conclusion. On 
the other hand, if we only inspect QueryMsg, we will 
get entirely opposite conclusions. Therefore, Coverage 
and QueryMsg draw contradictory conclusions and fail 
to provide comprehensive guidance. 

In fact, by the indication of SE in Fig. 2, TTL should 
be small when R is large in order to avoid unnecessary 
message propagation when R is large and to generate 
satisfactory results when R is small. In sum, SE better 
characterizes performance and provides a better 
guideline of TTL design than Coverage and QueryMsg. 

 
B. Multiple Random Walks in Strictly Binary Tree 

When it comes to RW search, we use multiple 
“walkers” to traverse the network and the number of 

walkers is denoted by k. Each walker independently 
searches the network and randomly chooses one of the 
next-hop neighbors to continue its journey to the limit 
of TTL hops. 

Analytic Derivation: To begin with, we consider 
Coverage to derive SE. We know each vertex at depth t 
is visited by a random walker with equal probability, 
1/2t. Moreover, each random walker independently 
makes its own decisions to traverse the topology. Thus, 
the probability that all k walkers don’t visit a certain 
vertex is (1- 1/2t)k. As a result, at depth t, the average 
number of nodes visited (Coverage per Depth) by k 
random walkers is given by the expectation 

1( ) 2 1 (1 )
2

t k
t tE X  = − −  

.          (9) 

By (3), QueryHits(t) = R·E(X)t. Moreover, the query 
messages of random walk are generated per hop for 
each walker until terminated by the TTL limit, hence  

QueryMsg = k·TTL.   (10) 
As a result, QE of k-random walk is 

1 1( ) ( )TTL TTL
t tt t

RW k

R E X E X
QE

k TTL R k TTL
= =

=

⋅
= =

⋅ ⋅ ⋅
∑ ∑ .  (11)   

Furthermore, from (4), we obtain  
1 ( )1 (1 ) 1 (1 ) .

TTL
t tE XCSuccessRate R R =∑= − − = − − (12) 

Therefore, Search Efficiency for k-random walks is 

(a) Search Efficiency
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( ) 1 ( )1 ( ) /
1 1 ,

TTL
t t

TTL
E Xtt

RW k

E X t
SE R

k TTL
=∑=

=
 = × − − ×  

∑ (13) 

where E(X)t is determined by (9). 
Search Efficiency Analysis: Assuming R = 1%, we 

generate a series of performance results of SE in terms 
of various numbers of walkers k. We thus plot these 
results of SE (13), SuccessRate (12), Coverage (9), and 
QueryMsg (10) for RW and BFS in Fig. 3.  

In Fig. 3(a), we observe that all SEs of RW 
consistently increase with respect to the depth or 
search time. Nevertheless, they all are smaller than that 
of BFS due to too many (redundant) query messages in 
the local search, and the slow covering and low 
SuccessRate in the long-term search. Therefore, they 
fail to utilize the regular structure of SBT. As for the 
number of walkers k, a too large (e.g. 50) or too small 
(e.g. 2) value of k gives degraded performance, thus 
resulting in strong sensitivity in the choice of k. 

Metrics Analysis: By merely inspecting Fig. 3(b) for 
SuccessRate or (c) for Coverage, one may jump to a 
conclusion that the number of walkers k is the larger 
the better. This aspect disregards the fact that larger k 
would generate larger search cost, shown in Fig. 3(d), 
and potentially redundant query messages. In fact, 
comparing RW of k = 50 and of k = 20, we find that 
their values of SuccessRate or Coverage during depth t 
= 1~4 are almost the same while the former generates 
2.5 times more search cost— the latter search uses less 
search cost to produce similar search fruits. In 
consequence, in the short-term search, the latter one 
should be gauged as better search. Thus the conclusion 
larger k is better for RW would be fallacious. Therefore, 
we argue that neither SuccessRate nor Coverage is a 
good performance indicator.  

Moreover, the long-term performance will inherent 
the short-term so that SE in Fig. 3(a) well characterizes 
the better performance for RW of k = 20. Besides, RW 
of k = 2 would be the best search in Fig. 3 if we try to 
minimize QueryMsg and scalability is the most 
concerned issue. Yet, this would be a specious 
conjecture since it entirely flies in the face of the final 
end of search— to find the results responsively.    

 
C.  Summary of Search Efficiency in SBT 

By the discussion in this section, we validate SE by 
showing 1) the 100% QEBFS indicates that BFS 
perfectly utilizes the regular structure of SBT and 
generates no redundant messages, 2) the sagging SERW 
reveals RW fails to take advantage of the structure of 
SBT, and 3) the fixed level of SEBFS in long-term 
search effectively reflects the characteristics of SBT. 
The first two results can be confirmed by intuition and 
thus verify the correctness of SE. The third observation 
further demonstrates the superiority of SE in 
characterizing search performance under specific 
topologies. 

Through metrics analysis, we have demonstrated that 

existing metrics, Coverage, QueryMsg, and 
SuccessRate, are one-sided and may lead to biased 
conclusions. They cannot distinguish performance 
variance in searching networks when replication 
ratios are distinct, and cannot provide reasonable 
guidance in the design of parameters TTL and k while 
SE can. 
 

IV. POWER-LAW RANDOM GRAPH 
 

In a random graph or a realistic network, its 
topology is not structurally organized but formed in an 
ad-hoc manner. Adamic’s work [3] demonstrated that 
the current Internet follows a power-law degree 
distribution where a few web pages or web sites are 
extremely highly-connected while others are weakly 
linked. In a power-low random graph (PLRG), the 
probability a vertex has degree k is pk proportional to 
k-t where t  > 0. In this and the following sections, we 
will use PLRG as the network topology to explore the 
efficiency of various search algorithms. 

 
A. Review of Generating functions 

To mathematically describe a power-law random 
graph, we use the generating function formalism 
introduced by Newman et al. [1] with arbitrary degree 
distributions. We first let G0(x) be the generating 
function for the distribution of the vertex degree k in a 
random graph. Then 

 0
0

( ) k
k

k
G x p x

∞

=
= ∑  (14) 

where pk is the probability that a randomly chosen 
vertex on the graph has degree k. 

For a graph with a power-law distribution with 
exponent t , minimum degree k = 1 and an abrupt cutoff 
at m = kmax, the generating function is then given by 

∑
=

−=
m

k

kxkcxG
1

0 )( τ  

with c a normalization constant, depending on m and t  
to satisfy the normalization requirement G0(1) = 1. 

The average degree of a randomly chosen vertex is given 
by 

z1 = < k > = ∑
=

⋅
m

x
kpk

1
 = 0' (1)G    (15) 

Another important quantity is the distribution of the 
degree of the vertex which we arrive at by following a 
randomly chosen edge. Such an edge arrives at a vertex 
with probability proportional to the degree of that vertex, 
and the vertex thus has a probability distribution of 
degree proportional to kpk. By [1], the distribution of 
outgoing edges (except the one we have come from) of 
that vertex, one of the first or immediate neighbors, is 
generated by the function 

'
0

1 0'
10

'( ) 1
( ) ( ).

(1)

G x
G x G x

zG
= =  

The generating function for probability distribution 



of the number of second-nearest neighbors of the 
original vertex can be written as G0(G1(x)) in the limit 
of large N (N is the network size). Hence, the average 
number z2 of second neighbors is 

)1()1())(( '
1

'
0

1
102 GGxGG

dx
d

z
x

=



=

=
  (16) 

Furthermore, the work in [1] generalizes (16) so that 
the average number zh of the hth nearest neighbors is 

-1' '
1 0(1) (1) =  

h
hz G G .       (17) 

Besides, according to approximation in [2], we have 

       ( )2
0

1
' (1) 1

2
G m τ

τ
−≅ −

−
,          (18) 

and 
3

1
0

1
' (1) .

' (1) (3 )
m

G
G

τ

τ

−
≅

−
           (19) 

assuming 2 < t  < 3. 
 

B. Redundancy in Power-law Random Graph 
Equation (17) equivalently tells us that the average 

number of the hth neighbors is strictly the product of 
the average degree of each vertex, G'0(1), and the 
average outgoing degree of vertices arrived by a 
randomly chosen edge, G'1(1), to the (h-1)th power, 
given the graph size N is infinity. However, in 
reality— when N is not infinite— it is simply not the 
case specified in (17) where the number of hth 
neighbors is geometrically increasing. In other words, 
zh should not be geometrically increasing due to the 
“redundancy” in random graphs. By redundancy we 
mean edges of any vertex that leads to repeatedly 
visited vertices, resulting in a fewer effective number 
of vertices reached by edges than the number of 
traversed edges. Thus, to express in the terms of search 
networks, we use a definition similar to [10]: 

“A search network N has ‘redundancy’ if there exists 
a link (edge) in N that can be removed without 
reducing any vertex’s search coverage, which is 
generated by certain search algorithm.” 

To quantify the redundancy of a graph by certain 
search algorithm, we define “redundancy” as 

.   
1

.  
No of Vertices Effectively Reached 

Redundancy
No of Edges Ever Traversed

= −  (20) 

Note that redundancy may actually be useful to 
improve the fault tolerance of the system, since if one 
peer fails, another can perform its processing. 

Moreover, redundancy may be useful to reduce 
response time if a peer stands at a redundant edge 
closer to the searcher. Thus, fault tolerance and search 
latency tradeoff with efficiency when redundancy is 
concerned. 

We illustrate this notion of redundancy by Fig. 4, in 
which we draw a graph with 13 vertices and 15 edges 
where the black node is the search originator, gray 
nodes are the first neighbors of the originator, and the 
white nodes are the second neighbors. Arrows show 
the directions and paths of message forwarding by BFS. 
Inspecting this graph, we have the number of first 
neighbors of the black node, G'0(1) = 3, and the degree 
of outgoing edges of each first neighbor, G'1(1) = 4. 
Nevertheless, the effective number of second neighbors 
is 9, not simply the product of G'0(1) and G'1(1), 12, as 
specified by (16). Thus, we obtain the redundancy by 
(20) as 1 – (3+9) / (3+12), or 1/5, which means in this 
case one-fifth (20%) of the edges are redundant by a 
BFS search. 

 
C. Breadth First Search in Power-law Random Graph 

 
Analytic Derivation: To analytically quantify the 

redundancy of a random graph, we first derive the 
number of second neighbors z2 covered by BFS, which 
it is ideally G'0(1)G'1(1) by (16). However, according 
to the discussion in Section V.B, z2 will be lower than 
the ideal value when N is not infinite due to the graph 
redundancy. To derive z2, it is largely equivalent to 
solve the problem that what the number of balls 
(vertices) ever chosen (or inversely left not chosen) is 
when choosing G'1(1) balls out of N balls and put them 
back, and repeat this procedure G'0(1) times, with G'1(1) 
< N. For simplicity, we first assume the probability 
each ball (vertex) to be chosen is uniform. Thus the 
probability that each ball is un-selected is 1 -  [G'1(1)/N] 
after one time of this procedure. After G'0(1) times of 
the procedure, the probability each ball selected 
becomes 

[ ] 0' (1)

11 1 ' (1) /
G

G N− − . 
Hence, if we assume all balls are chosen uniformly and 
the expectation of the effective number of chosen balls 
(second neighbors) is 

[ ] [ ]{ }0 0' (1) ' (1)
1 1

1
1 1 ' (1) / 1 1 ' (1) /

N G G

i
G N N G N

=
− − = − −∑ , 

when neglecting the chance to repeatedly reach the 
first neighbors. 

However, vertices are arrived at by edges with 
probabilities proportional to their degrees [1], rather 
than uniformly, as previously stated (Section V.A). 
Suppose the probability each vertex to be reached by 
certain edge is pi for i = 1, 2, ..., N and p1 + p2 +… + pN 
= 1. In a power-law random graph, the probability pi of 
vertex i is proportional to its degree and equivalently 
given by 

Fig. 4. A random graph for illustrating “redundancy” 
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Second neighbors 
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such that ? i pi = 1, where m, the maximum degree, is 
set by N1/t  [4]. 

If ignoring the chance to revisit the first neighbors, 
we could approximate the effective number of second 
neighbors as 

{ }0' (1)
1

1
1 1 ' (1) ,

N G
i

i
p G

=
− − ⋅  ∑  

where we assume pi << 1 as G'1(1) << N, which is true 
in general cases. Note that the term pi·G'1(1) 
approximately represents the expectation of vertex i to 
be visited with G'1(1) independent selections, each of 
which only selects one vertex among the N ones (with 
returning back). This term is surely not the exact 
expectation of second neighbors (the actual value 
should be a little smaller), but an approximation, which 
holds when pi ·G'1(1) is much smaller than unity.  

To generalize it, the effective number of vertices 
arrived at the hth depth or hop (Coverage per Depth or 
Ch) for h = 2 could be approximated by 

{ }1 
1

1
1 1 ' (1) .h

N z
h h i

i
C z p G −

=
= = − − ⋅  ∑  

Nonetheless, this formula doesn’t consider the 
possibility the search revisits previously reached 
vertices, which is significant when the search is in the 
deeper depth. To eliminate this problem, we first let Vh 
be the event that a vertex is visited at the hth depth or 
hop, then the probability vertex i is visited at the hth 
hop is 

 
1

0
 

1

' (1),  for 1
( )

1 1 ' (1) ,  for 2.h

i
i h C

i

p G h
P V

p G h−

⋅ == 
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 (22) 

Therefore, the average number of non-repeatedly 
visited vertices at the hth hop by BFS in PLRG is 

1
1

1 1

( ),  for 1

1 ( ) ( ) for 2,

N
i h

i
h h hN

i j i h
i j

P V h

C z
P V P V h

=
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= =
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= = 
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

∑

∑ ∏
     (23) 

where Pi(Vh) is given by (22). Intuitively, Coverage or 
C is given by ? hCh. 

To derive the redundancy, we let the number of 
edges traversed or equivalently the number of queries 
generated at the hth hop (depth) be eh. That is, 
QueryMsg is given by 

 0

1 1

' (1),  for 1

' (1) ,  for 2.h
h

G h
e

G z h−

=
=  ⋅ ≥

 (24) 

Thus, the redundancy of BFS terminated at h = TTL is 
determined by 

1

1

1
TTL

hh
BFS TTL
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z
Redundancy

e
=

=

= −
∑
∑

.       (25) 

Note that QEBFS is equivalent to 1- Redundancy. 
Furthermore, according to (2), (3), (4), and (25), we 
obtain 

11

1

/
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TTLBFS
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SE R

e
==

=

∑= × − − ×∑
∑

,(26) 

where Ch is specified by (23) and eh by (24). 
A variation of BFS is Modified-BFS (M-BFS) [14], 

which adopts a fraction parameter f to serve as the 
probability that each search agent uses to forward the 
query message to its neighbors. For example, if f = 0.5 
and certain search agent has 10 neighbors, then it will 
forward the received query message to 0.5·10 or 5 of 
its neighbors (randomly). Since its operation is similar 
to BFS, the formula of SE specified by (26) still holds 
for M-BFS, where Ch is given by (23), except 

1 
2 1( ) 1 1 ' (1) ,hC

i h iP V f p G −
≥ = − − ⋅ ⋅    (27) 

 1 0( ) ' (1),i h iP V f p G= = ⋅ ⋅  (28) 
and eh=2 = f·G'1(1)· Ch-1 and eh=1 = f·G'0(1). 

Performance Analysis: We use the following 
parameters throughout this paper for the power-law 
network: N = 10,000, exponent t  = 2.1, R = 1%, and m = 

Fig. 6. Search Efficiency for M-BFS of various fraction parameters f in a 
power-law random graph with R = 1% 

Fig. 5. Performance results in percentage of QE, SuccessRate, and SE in 
PLRG and SE in a strictly binary tree for BFS with R = 1% 
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N1/t  ~ 80. These parameters are similar to those used in 
[2]. By (18) and (19), G'0(1) = 3.55 and G'1(1) = 16.21. 
Therefore, we present the performance results, through 
a series of calculations of (21), (23), (25), and (26), in 
Fig. 5. 

Note that QE in Fig. 5 is not as perfect as that in a 
binary tree, but decays dramatically during h = 3~5, 
where the redundancy comes from the exponentially 
generated messages, which approves the results in [5] 
and [9]. Furthermore, SE in PLRG is significantly high 
compared with that in a strictly binary tree with the 
same R in the short-term search, while SE in the tree is 
superior to that in PLRG in the long term. In sum, BFS 
performs better in the local and inefficiently in the 
global, when deployed in the power-law random graph. 
Similar conclusion is drawn in the work [11] by its 
simulation results. 

For M-BFS, we generate the data of SE of various 
fraction parameters with the same settings used for 
BFS (N = 10,000 and t  = 2.1) and plot them in Fig. 6. 
We find that the fraction parameter controls the extent 
to which performance increases in the local or 
decreases in the global— the larger the parameter f is 
the more greatly the performance changes. Hence, if 
the search is aimed to gain great performance increase 
in the short term, we should take larger f; on the other 
hand, smaller fs give relatively consistent SE by 
compromising the fast performance increase in the 
short-term search. Therefore, the choice of the fraction 
parameter depends on whether the short-term 
satisfaction or long-term efficiency is more concerned. 
 
D. Multiple Random Walks in PLRG 

The property of random walk is dramatically 
different from BFS. The former traverses a graph in a 
random and unpredictable fashion while the latter 
operates rather regularly. In particular, the concept of 
depth used in BFS is not applicable in random walk in 
that the walkers may go “back and forth” in the graph 
so that we could only describe them with respect to 
hop rather than depth. Therefore, we represent search 
coverage in terms of Coverage per Hop (Ch). 

Analytic Derivation: To derive the analytic formulas 
of performance metrics, we first obtain the number of 
“candidates” that RW might traverse at the h hop, 
which is conceptually similar to the number of hth 
neighbors of BFS, zh, except RW doesn’t have the 
concept of “depth.” We denote that for RW as rh. Let 
Rh be the event a vertex is the candidate of RW at hop 
h (in the hth neighbors of RW), then the probability 
vertex i is the candidate of RW at hop h is 

 
1

0
 

1

' (1),  for 1
( )

1 1 ' (1) ,  for 2.h

i
i h C

i

p G h
P R

p G h−

⋅ == 
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Then, the average number of candidates of RW at hop 
h is  

 
1

( ),
N

h i hi
r P R

=
= ∑  (30) 

where Pi(Rh) is given by (29).  
Since random walkers have the behavior similar to 

those in the binary tree if the forwarding candidates are 
known, we apply the line of reasoning in the binary 
tree for PLRG. Hence, the probability vertex i is visited 
at hop h for RW is   

( )1

( ) ( ) ( ) ( )

( ) 1 1 .
h

i h i h h i h i h h

k
i h r

P V P V R P R P V R

P R

= ∩ = ⋅

 
= ⋅ − − 

 

     (31) 

To deal with the phenomenon vertices may be revisited, 
we apply the line of reasoning in BFS in PLRG. 
Therefore, the formula of Ch in (23) still holds for RW 
except using Pi(Vh) of RW (31). Thus, SE for random 
walk with k walkers is given by 

( ) 1
1 1 1

TTL
h hCTTL

hh
RW k

RC
SE

k TTL R

=∑
=

=

− −
= ×

⋅
∑ , 

where Ch specified is by (23), in which Pi(Vh) is 
formulated by (31). 

Search Efficiency Analysis: By the same conditions 
for BFS, we plot SE for RW of various numbers of 
walkers k and re-plot SE for BFS for comparison in Fig. 
7. This figure shows RW generates consistently 
increasing performance in most cases of k, which can 
be answered by its controlled fashion of message 
generation and granular coverage that have been 
suggested in [5]. In addition, the curve of k = 2,000 
reasonably explains the redundancy generated by too 
many walkers despite its fine properties in PLRG. 
Inspecting the curve of BFS, it outperforms RW in the 
local search but inversely in the global (h=5), which 
confirm the simulation results in [11].  

In sum, SE well characterizes the delayed 
performance increase of RW and its consistent 
long-term performance. 

 
E. Summary of Search Efficiency in PLRG 

Based on the unified metric SE and its temporal 
analysis, we better characterize that, in PLRG, BFS 
gains its excellent performance in the local search 
space but decays rapidly in the long-term search, 
M-BFS controls its performance increase or decrease 

Fig. 7. Search Efficiency for RW of various number of walkers k and for 
BFS in a power-law random graph with R = 1% 
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by the fraction parameter f, and RW performs 
consistently in the global search space while its 
performance increase in relatively slow in the 
short-term search. Furthermore, by the analysis of SE 
and QE, we can explain the causes behind the 
ostensive phenomena: the great short-term 
performance of BFS stems from its aggressive search 
to deliver responsive results while keeping little 
redundancy in the local and the long-term performance 
suffers from the overwhelming search cost generated 
while it still retrieves satisfactory results in the global. 
On the other hand, the delayed performance increase of 
RW is due to its conservative search and redundancy in 
the local while its conservatism trades for relatively 
little redundancy and thus consistent performance in 
the global. 

In particular, our work for PLRG strongly reflects 
previous works (simulations) in various respects and in 
turn is validated for its ability of characterizing, 
especially in terms of temporal analysis. Besides, SE 
analysis indicates the choice of the fraction parameter 
depends on whether the short-term satisfaction or 
long-term efficiency is more concerned. 

Thus far, we have shown the potency of SE in 
performance characterizing and reasoning. We will 
further demonstrate its strength in guiding the design 
of search algorithms by inventing a new search based 
on SE and validate the performance improvement of 
the new search, in the following section. 
 
V. DYNAMIC SEARCH: AN ALGORITHM DESIGNED BASED ON 

SEARCH EFFICIECY 
 

Evaluation metrics are critical in judging search 
performance. If Coverage is the only metric concerned, 
one may conclude that BFS is the best search 
algorithm despite the overwhelming search cost. It 
overlooks the system load and the aspect of operation 
efficiency. Moreover, if search cost is the most 
important criterion of a searching network, RW would 
be the best appropriate algorithm for that system. 
However, it fails to evaluate the ability to achieve the 
final end of searching networks— to search out targeted 
results responsively. In consequence, biased metrics 
may draw biased conclusions and provide wrong 
guidelines for system design. Thus, we endeavor to 
devise a new search based on the comprehensive 
metric, SE, in order to demonstrate the strength of SE. 
In addition to its strength in performance 
characterization and reasoning, we show the strength 
of SE to serve as the design guidance of the invented 
algorithm— dynamic search. 

We attempt to utilize the merits of the three analyzed 
algorithms from the viewpoint of SE for the new 
search. Accordingly, on the basis of the conclusions 
drawn in Section IV.E, the new algorithm should 
resemble BFS in short-term searches, mimic RW for 
long-term propagation, and be able to fine tune the 

performance through certain parameters as used in 
M-BFS. Therefore, we separate the search process into 
two phases. In the threshold phase (local space), the 
search is similar to BFS with some dynamic tuning 
forwarding probabilities; in the ultimate phase 
(long-term space), it operates as the random walk 
search to consistently retain the performance gained 
from the threshold phase. The detailed operations are 
described in the following subsection.    
 
A. Operation 

Dynamic search starts as a probabilistic search with 
dynamic fraction parameter fh at different hops h when 
h = n. For h > n, it switches to the random walk search. 
In the threshold phase, it operates as M-BFS but with 
dynamic fh, for h = 1, 2, … , n. For example, for 
dynamic search with n = 2, f1 = 1, and f2 = 0.5, the 
search agents at h = 1 perform BFS, perform M-BFS 
with f = 0.5 at h = 2 and operate as random walk for h 
= 3. Moreover, in the random-walk phase, the number 
of walkers k is determined by the outstanding query 
messages or the effective search agents covered at the 
hth hop, that is, Ch.  

Hence, the behavior of dynamic search changes 
dynamically in terms of time (hop) to adapt to the 
appropriate search properties in different phases. 
Hopefully, in terms of SE, it would outperform other 
algorithms in each phase thanks to the fine-tuned 
design. 
 
B. Performance Analysis 

To analyze the characteristics of dynamic search, we 
use the knowledge we have learned in previous 
sections where we mathematically formulate SE. In 
this section, we analyze only in the PLRG. The general 
form of SE in (26) applies for dynamic search and Ch is 
given by (23), except eh=1 = f1·G'0(1), e2=h=n = fh·G'1(1)· 
Ch-1, eh>n = Ch=n, and 

Fig. 8. Search Efficiency comparison for various algorithms: BFS, M-BFS 
(f=0.3), RW (k=100), and the dynamic search in PLRG with R = 1%. 

 
TABLE II 

PARAMETER DESIGN FOR DYNAMIC SEARCH IN FIG. 8 
 n f1 f2 f3 
Dynamic-1 2 1.0 1.0 N/A 
Dynamic-2 3 1.0 1.0 0.3 
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Fig. 9. Performance comparison by various metrics— (a) Search Efficiency, (b) Query Efficiency, (c) Coverage, and (d) QueryMsg— for RW of various number 
of walkers k and for BFS in PLRG with R = 1% under uniform and non-uniform (NU) object distribution. Solid lines represent data of uniform distribution and 

dashed-lines represent non-uniform distribution. 
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   (32) 

where rh is specified by (30).  
As for the parameter design, we refer to the 

observation in Fig. 6, where BFS performs the best in 
the first two hops and lower fs for M-BFS achieve 
more consistent performance in the long-term search. 
Thus, we design two sets of parameters: the first one, 
Dynamic-1, performs BFS in the first two hops and 
random walks in the following phase (n = 2); the 
second one, Dynamic-2, performs BFS in the first two 
hops, M-BFS with f = 0.3 at the third hop, and then 
random walks (n = 3). The number of walkers k in RW 
is dynamically determined by the number of 
outstanding query messages at hop n, i.e. Ch=n. The 
detailed parameters are shown in Table II. 

We generate SE of Dynamic-1 and -2 and make 
performance comparison with BFS, M-BFS (f = 0.3), 
and RW (k = 100) in Fig. 8. We take M-BFS with f = 
0.3 in order to compare with Dynamic-2, which uses f3 
= 0.3. And we use 100 as the number of walks for RW 
since it generates the best performance (in Fig. 7). 

In Fig. 8, we can observe that dynamic searches 
outperform other algorithms especially in the 
long-term search. They resemble BFS within h=2 as 
expected and perform consistently as random walk 
does, thus outperforming others in long-term search as 
we design. Note that Dynamic-2 trades its performance 
at h = 3 for its long-term efficiency by using a low 
probability f = 0.3, and vice versa for Dynamic-1.   

 
VI. NON-UNIFORM OBJECT DISTRIBUTION 

 
Throughout our analysis, for simplicity we had 

assumed the object distribution as uniform. However,  
this assumption leads to the conclusion that QueryHits 
equals to R·Coverage, which violates our argument in 
Section II.A that Coverage is only one of the 
conditions to produce QueryHits. To support our 
argument and justify our consideration of QueryHits in 
SE rather Coverage, we analyze SE under a 
non-uniform object distribution as proposed in [11].  

In this object distribution, the probability a search 
agent (vertex) owns certain object is proportional to its 
degree d. Let O be the event that certain search agent 
owns the targeted object, then the probability agent i 
has the object is determined by 
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such that ? iPi(O) = R·N, the total number of objects 
distributed in the network, where di = m / i1/t  [4]. 

Analytic Derivation: Since the object distribution is 
not uniform, we cannot simply use R·Coverage to 
represent QueryHits, which in fact is formulated by 
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where Pi(Vh) is given by (22) and Pi(O) by (33). 
For SuccessRate, we generalize the form 1- (1- R)C 

in (4) for the uniform distribution to deliver the one in 
non-uniform distribution: 
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N h

i i j
i j

SuccessRate P O P V
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Now, equations (34), (35), and (24) suffice to solve SE 
defined by (2) for BFS.  

For RW, QueryHits(h) follows formula (34) derived 
in BFS and SuccessRate follows (35) in BFS, where 
Pi(Vh) is given by (31) and Pi(O) by (33). 

Search Efficiency Analysis: We plot analytic data in 
Fig. 9, where the dashed-lines represent the data under 
non-uniform (NU) object distribution. We use the same 
colors to represent searches with identical parameters. 
We find that SE in Fig. 9(a) is significantly increased 
under NU distribution for both BFS and RW. The 
performance increase is around 75% ~ 250% for RW at 
h = 7 and 250% for BFS at h = 2. This can be 
explained by the graph property that vertices tend to 
connect to those with higher degrees [1, 2], which has 
been validated by simulations in [11]. 

Metrics Analysis: Fig. 9(c) indicates that every search 
in question generates identical Coverage under 
different object distributions, and Fig. 9(d) draws the 
same conclusion for QueryMsg. Therefore, these two 
metrics totally fail to distinguish the performance 
variance under NU distribution. Moreover, in Fig. 9(b), 
Query Efficiency, defined by QueryHits/(QueryMsg·R), 
explains the performance increase by indicating more 
QueryHits found given that same number of QueryMsg. 
In consequence, SE, in which QE is a critical element, 
well characterizes the performance difference in the 
two scenarios.   
 

VII. CONCLUSION 
 

This paper defines a unified metric, Search 
Efficiency (SE), addressing performance in searching 
networks in terms of Query Efficiency, responsiveness, 
and reliability. Mathematical formulas and 
approximations of SE and other existing metrics are 
derived to characterize performance and provide 

in-depth analysis for various search algorithms. We 
justify the correctness of SE in performance evaluation 
by analyzing it in an ideal topology, strictly binary tree. 
We further demonstrate its ability to characterize 
search performance in a large-scale PLRG, the 
real-world network topology. 

We conclude that existing metrics either leads to 
biased conclusions regarding performance or fail to 
reflect performance variance when network conditions 
change. Moreover, they tend to provide wrong 
guidelines for the design of various algorithm 
parameters (e.g. TTL, k, and f). The proposed metric, 
SE, effectively characterizes the performance variance 
under different network conditions and delivers 
objective and in-depth performance analysis. 

In the final analysis, the outstanding performance of 
dynamic search, the new algorithm devised based on 
the guidance of SE, manifests the efficacy of SE to 
conduct design of search algorithms. Therefore, our 
proposal of SE contributes to providing guidance for 
the future design of searching networks.  
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