(2/2)

NSC93-2213-E-002-057-
93 08 01 94 07

94

31

28

I I R I

L] [|
NSC93 2218 002057
93 8 1 94 7 31

(2/2)

tree

wal

k

SE

(Search Efficiency,

SE
strictly binar
SE breadth fir str asnedaornt h
SE SE
powkeaw random graph SE

dynami c Bgmaamihc sear ch

Thi@moet del i ber avtaersi oaursi t i &xapeichn seval uating
searching. nExwestrksg metrics eitheredanadilnigas e
search performance or provide wrong guidel:@
t her efdeerfea,ne a unified criter i &)t oS eoabrjcehc tEifviel
address search perfor mancer .i nT hae cgoSoiaplis eohifen s i \
better charparcftoerrmaznec e of s e arhcami regc i nsetti waogr kirse t
do as welojuiade t he design off ifrustturveal d deas.e M
correctofesE in performance evaluation in an |
treeanmyiyngf &tEwo t y psiecaanle tdhsdyr e a dit hss¢ ar a i d
randwnm.k We f wrhtohveri t s ishrepegt &r mance charact e
t he fwoarll d topmodweyw, randagm uqrdeph vari ous ne
condit Wendinally design an algorithm, dynar
analsy.silts proved outstanding performance der
to provide guidance for the future design of

Keywords

Combi nat oGriacpsh t heory, Deterministic netwo

Searching,ndtnwedrukdi ng s oci aplutnert woerpkwsa yaknsd, c¢
anncreasimgdodiyt ant r ol e i A shiugmainf iaccantvietxya mp| e
recently popeapleaerr p(ePe2s®Phafi hg systems, e.g. G
KazZzaA, wherecelvVeabopbesmal gyearching networ Kk
desired fildg nhey sae atren@toc| al cont exttwofr lse,ar ct
people search their acquaintances for a par

specific domain. Their acquaintancees tihne t ur
desiredexpemtosebsequealtil wer this quesrtyepg o th
acquaintances. I n this fashion, a sdunaanl sea
acquaintancepbB] pogmaphus, hangenetworsky sitsem
wher e eacihpapnatr tciocnt ri butes to the network an
ot hers search targeted resource

I n a searching network, one of the critica
perf ormance by c¢hoosgonrgi tohrmsd eussi egdh ihtsog apaecrhf o r 1r
process. | Jyovethms [5, 6, 7] have been propos
seargplecatlsu,chsauaxcess rate, search cost, cover g
but an obj eotmpwv e hasandsail weatriiccn imse mi ssing. As a

these algorithessi gmeenddbt asleed donsi derations a
i n | i mimeends idons.

n

summaopj eouavesstated as foll ows:

We propose a unified a®%@earmdbh eEftfi iea renred y
evaluating searching networks and charac
We mat hemati cal ly anal yze cr+seamath per
covaegre, coOoSst, success r at eSEinn nsbeear cohfi nhg
net wor ks.

We analytically evaluate vari o-B&Sal Qovip it}
and a novel search, in SBT anduniLfRoG,m un
object distributions.

We devise a negwrgdddymcahmi & , sdarseld on t h
knowl edge fr®Bmanalmpoiral It i s shown to o
existing o%Emr,ovedist o provide solid guide
desi gn.

Breatlt hst seararhd (rB&FnSdom wal k (RW) [5] ar e
typi cscaelamehhodns searching nehewoereks!| yBmME&Xxi mi z
search speed and coverage but erriiessk si mgpeanBtr |
uncont r(elxlpodemanmaeérn onRWhe ot her hsaenadr,cdmsitni mi :
but generates | i mited esewalrfAcsh ac o veesruddge amae mi
di stinct conclusions about algorithm perforr
concerned. For exampllleGkiamedpiedr msebedalt er t |
BFS in terms of number of higtisveand ef asialmer e ep
cost for BFS Bmdl RW, tebdyatna sisnufm ni t e sear ch ti
which is cledr bwpngue[f%lalre vdd Iheaptreoposed search s

onllyy search coverage and message cost, | eavi

uncheclkve deet alpovi[doeld pact r um o fo na sepveacltubautti o n

analyzednthemdaasttliyl | | ackredl anonosederati on.
Our wor k, therewioresteh-eoalde d perspectives

synt hesiidiemned sear ch Scerairtcenr iIEd ri(iSceice n,coyw hli Ic)h

i's critical particularly in P2P endeavor s,

algorithms and provide overall gui dwnmks for |
With the uni$k evde nfeitrrdtc val i date its correc

ts mathematic formulas for BFS and RW in a
ree (SBT), and analyzing whet hSeEi st i e apseornfaobr| m
urt her mexreend wehe oksNeéewsman [1] and rAdami c [.
onsider “redundancy” to aB8Bfgt)j BHBESY[hpJpr ox
nd RW i Al awpmavedom gr awaphchPLBRG3hown to be the
f current sear Mei hbud e tSdb nckosmpar i son with pr
i mul amoirckms [5, ®@el ldér the unicwme apxdrefrdrzman o
fSE apdoviiddeept h anal ysi s.

Throughout the anejegtsi wei nompase pvari ous
metricSEwbtaddr ess attheinr alnidmstrength. We show

o uw o Y o m —+ —

in SBT or PLRG, existing metrics draw biase
perf ormance; they esiitdheedr cpornosviiddeer aotnieons or d
gui del ines for algorithm design. Moirzeeov er ,
performance variance wunder di stinct net wor |
replication ratios (Section 111) and object

I n the final @pamaposene,w vad dymamihocm, skased
on the reSHanal psirsoveWet hpi s al gorithm outper:
ones Saknedf f ecti vely provides guidance for alg

SEARCH EFFICIENCY

We argue that to best characterize the efficiency of any system is to measure its ability to transfer its
input to generate meaningful output, which is applicable in the evaluation of search methods performed in
any network. In a socia network, the input of a search largely involves the cost required for querying
process including costs of phone cals, transportation, and even consulting. As for output, it should be
measured by searchers' satisfaction in terms of the chance of success, the response speed, and quality of
responsive results. To clarify the definitions of and relations between these inputs and outputs in the
context of searching networks, we start a series of discussions about Search Efficiency with Query
Efficiency (QE).

A. Query Efficiency

In general, the most critical aspects of search performance involve the extent of search coverage (output)
[2] and the cost required to cover the network (input) [5]. By search coverage, denoted as Coverage or C,
we mean the number of distinct or effective peers visited by search queries, i.e. we do not count the
repeatedly visited ones. In addition, by cost, denoted by QueryMsg, we mean the number of queries
incurred, for it is a representative factor to which other cost factors (e.g. computer processing power or
costs for phone calls and transportation) tend to be proportional. Thus it is trivial to say a search which
uses S query messages to traverse distinct S nodes is perfectly or 100% efficient in terms of query
generation. Additionally, we can define a sort of efficiency as Coverage / QueryMsg. However, the end
goal of searching is not to cover as many nodes in the network as possible. Rather, its ultimate goal is to
search out the desired targets or abjects, in which covering is only one of the adequate conditions (e.g.
cache or previous experience) for that end. This is true when the searching network is well-designed, e.g.
Chord [13], such that large search coverage is not necessary, or when object distribution is not uniformin
which directed search is preferred. We will show performance difference between Coverage and
QueryHits under non-uniform object distribution in Section V1.

Thus, we define QueryHits(t) as the number of desired objects found “at” search time t, which is
measured by the number of hops or depths, to quantify the yields of a search. We introduce the factor
search time t for the purpose of future discussion. Again, we might define the efficiency of queries as
? {QueryHits(t)/QueryMsg. However, this definition is sensitive to the population of desired objects, which
is irrelevant to the performance of search agorithms themselves and should be factored out. For this
purpose, we introduce the notion of object replication ratio R defined as the ratio of the number of targeted
objects to the network size (N). To cancel the population factor out, we normalize it with respect to R and

thus formulate Query Efficiency (QE) as

o TTL .
= Hits(t 0
Query Efficiency(%) = A =1 QUeNyHIts(h) 100/0, @
QueryMsg R

where TTL refers to the termination condition of searches, measured in hops. To exemplify, we suppose

a search consuming 100 messages to find 1 targeted object in a network with R of 1%, which reveal s that
1% of nodes have the desired object. By (1), QE = 100% and we thus call it a perfectly query-efficient

search. Furthermore, if the objects are uniformly distributed in the network, we can reasonably claim that
4

the search effectively covers 100 nodes (from 1/1% = 100) and this provides a clear view of the perfect
efficiency.

B. Responsiveness

One of the goals of searching, as addressed previoudly, is to find out possible objects while the other is
to find them as soon as possible. We define search response time, denoted by t, measured by discrete
numbers of hops, to evaluate the speed of searching objects, or responsiveness of a search. If a search
finds Q desired objectsin its ™ step or in its h™-nearest acquaintances, we dencte it as QueryHits(t=h)=Q.

We argue that a search getting hits in a faster fashion delivers better users' experience and should be
gauged as higher reputation. More specifically, responsiveness of a search should be inversely
proportional to the response time t. To consider this factor for SE, we may simply divide QE by the
weighted response time, which is computed by ? [t-QueryHits(t)] / ? QueryHits(t). However, this method
would generate unjust results. For example, we assume a search that uses 1000 messages to get 99 hits at t
=1 and 1 hit at t = 100 with R = 10%, resulting in a weighted response time of (1-99+100-1)/100 or 1.99.
According to QE in (1), if we don’'t count the hit at t = 100, the search is 99% query efficient, but it
dramatically reduces to 50.25% efficiency due to dividing by response time 1.99 when that hit is
calculated. This method unreasonably emphasizes the slow search hit. We argue that any query hits
contribute positively to the search itself despite long response time. We thus aggregate these responsive
hits rather than divide by the averaged response time to give efficiency as

& {1 QueryHits(t) /t, 100%

QueryMsg R

The efficiency of this example becomes 99.01% rather than 50.25%, where the last found hit contributes
0.01% to efficiency, rather than severely reducing it.

C. Reliability

Thelast concernis reliability, which is measured by SuccessRate in our desigh of SE. Weintroduce it so
as to further consider the satisfaction of user experience. Consider two searches (A and B), each
performing two runs, as shown in Table |. We assume all objects are found at the same response time. The
success rate of Search A is50% while B is 100%.

TABLE |

SEARCH DATA FOR ILLUSTRATING SUCCESSRATE

SearchA Search B

QueryMsg | QueryHits | QueryMsg | QueryHits

Runl 100 2 100 1

Run2 100 0 100 1

Note that if we compute efficiency without SuccessRate, we will gain the same result for Search A and
B. However, one of the runs in Search A (Run 2) fails and thereby we neglect to measure the penalty of
user experience in Run 2. By introducing the term SuccessRate, SE of Search B remains the same, but SE
of A ishalved. In this manner, it successfully addresses the user satisfaction level while the two searches
get the same number of hits at the same message costs. In sum, the term SuccessRate is aimed to
successfully measure the satisfaction level from users’ perspective. Finally, we define the overall criterion

5

for evaluating searching by

& 11 QueryHits(t)/t . SuccessRate

QueryMsg R
where TTL stands for the limit of search covering.

Search Efficiency =

(2

D. Limitations of Search Efficiency

The design goal of SE isto capture a ssimple but representative view of search performance. As aresult,
it is possible to consider more complex considerations for search evaluation. We list three possible aspects
that are not covered by SE:

1) In the context of computer searching networks, the implementation of caches or DHT would
significantly improve the search performance, which SE could reflect. However, SE doesn’'t consider the
additional resources (processing power or memory) required by performance-boosted mechanisms, such
as hash functions or caches, thus potentially overestimating the efficiency of algorithms adopting these
additional mechanisms.

2) The costs of searching each computer or peer should not be equally weighted. Consulting an
institution for recommendations is clearly more costly than asking a close friend, although we only assume
they are equally costly.

3) We make a limited measure of responsiveness by the factor t. For instance, it would be more flexible
using t%, a> 0, to adjust the extent to which search responsiveness is concerned.

By means of Search Efficiency, we can objectively evaluate performance of algorithms in searching
networks. In the remaining of this report, therefore, we aim to characterize various existing search
algorithms in terms of SE and demonstrate the biased view of existing search metrics compared with SE.
In the following sections, we will mathematically derive the formulas for SE in the context of three basic
search approaches, BFS, RW and M-BFS, the variation of BFS, in two representative topologies, the
strictly binary tree (SBT) as well as the power-law random graph (PLRG), in order to demonstrate the
strength of SE.

STRICTLY BINARY TREE

We assume an N-vertex gtrictly binary tree whose depth is about 1og,N and that the requester is at the
root such that the response time (t) of a query hit is the same as the depth (d) where the target object is
located. Thistreeis shown in Fig. 1. Moreover, for smplicity of analysis, we assume objects are uniformly
distributed in the tree or graph until Section V1.

Before analyzing specific algorithms, we first prepare two common factors for the derivation. Firstly,

Reniiecter
Depth 1
Depth 2

Depth 3

Fig. 1. A strictly binary tree with the requester at the root

Search Efficiency for BFS
40

——R=10%

35 /\ —8- R=5%

/ \\ R=1%

30 R=0.5% |
/ A —%-R=0.1%

N
(5]

Search Efficiency (%)
N
o

Depth
the number of objects searched out (QueryHits) is proportional to the search coverage C. Thus, we have
QueryHits=R" C. (©))

Secondly, the success rate of a search is also relevant to the search coverage. To begin with, we know
that each node owns the target object with a probability of R; that is, each node lacks the object with a
probability of 1- R. Suppose a search covers C vertices and thus the probability these C nodes share no
targeted object is (1- R)°. Inversely, the probability these C nodes share one or more objects, or
equivalently SuccessRate, is determined by

SuccessRate=1- (1- R)©. (4)

A. Breadth First Searchin Strictly Binary Tree (SBT)

Analytic Derivation: Breadth-first search (BFS) performs by broadcasting the received queries to all
neighbors except where the received query came from. Therefore, by the regular structure of a strictly
binary tree, the search coverage terminated at depth TTL is given by

Coverage (C) =& {12 (5

Furthermore, the number of messages required to traverse the tree is the same as the quantity of its

search coverage due to the very nature of BFS. Thus, QueryMsg = C = ? 2. According to (1), (3), and (5),
we attain

o TTL At
Rx& T2t 1000
QueryEfficieny] g = — il = 102/" ~100% ©6)
Az 2

7

Surprisingly, the formula of QEges yields a constant, 1 or 100%, regardless of the replication ratio R or
the termination depth TTL. By the definition of QE, this means that BFS is a perfectly query-efficient
search in the context of a binary tree; that is, BFS generates no redundant messages while traversing a
binary tree. Theidea of redundancy will be further defined and discussed in the next section.

Finaly, the general formula of SE defined in (2) for BFSin abinary treeis

o TTL ot
a2, L2t a
SEpgrs = —otq—lrLt ? (1- R)a” i (7)
t=1 2

The derived SEgrs is complex for one to gain insight of its properties due to the running variable t and

Fig. 2. Search Efficiency for BFS terminated by incremental TTLs (Depth)

in astrictly binary tree with various replication ratios R

various possible values of R. To deliver a clearer understanding, we assume the replication ratio R << 1,
which istruein real searching networks, and approximate (7) as

o 'I'I'L 2t/t

SEprs @O ——— om_ ot

[1 (1 RxaTrLZt) Rxa TT-2!/t (8)

Sear ch Efficiency Analysis: To exemplify SEgrs, we set R=0.1% (far lessthan 1) and obtain by (8)
Erm-1 = 0.2%, SEm=> = 0.4%, and SEm-3 = 0.67%. Note SE is strictly increasing with respect to
TTL—SEm =5 is exactly twice of SE =1 and SE=3 is more than three times of SEr -1. The reasons are
two-fold. Firstly, as formula (6) shows, BFS in a binary tree is perfectly query-efficient, which means
every query positively contributes to its search coverage and in turn produces promising increase in SE.
Secondly, the speed at which query hits are returned is faster than the decay factor of response time t.
Furthermore, formula (8) tells that the benefits from BFS are increasingly proportionally to 2' while the
factor t is used to compensate the demerit of long search time, where the factor 2' tends to dominate. Thus
we conclude every query or every additional covered depth makes a positive contribution to the overall
performance despite the compensation of time, given that the replication ratio is much smaller than unity.

We present analytically-derived data of SEgrs, without approximation, by (7) with a spectrum of
parameters, Rsand TTLs, in Fig. 2. Firstly, we note that SEg-5 for all Rs approaches some fixed level in the
long run. This fixed level, obtained by (7) for larget, is determined by the characteristic of the searched
topology—strictly binary tree—that is irrelevant to R. Second, the short-term increase of SE for high R
(10% or 5%) results from the perfect query efficiency and popularly distributed objects, while the
long-term decrease is due to the compensator of response time t. If we use the notion t* suggested in
Section |1.D, where a is 0 or small for some application scenarios and responsiveness is of little concern,
SEin (7) will increasingly grow to some fixed level. Third, asfor low R (0.1% or 0.5%), the resultsin Fig.
2 arereflective of the discussionsin the above paragraph—SE is consistently increasing.

Note that, however, if we take TTL asinfinity in (7), it gives zero seemingly contradicting our notion. In
reality, however, TTL cannot be infinity but is generally 7~10, in which SE still generates a fixed level of
performance reflecting the characteristics of SBT.

Coverage

(a) Search Efficiency (b) Success Rate

18 100 =
- k=2 k=2
16 s k=5
14 || k=20 ——k=20
= —— k=50 —— k=50
S 12 BES << | BFS
z - Sy
& 3
T g o o 19
£ /‘//.(/./ @
§ e &
4
: 7,%/'-/
o : ‘ ‘
1 2 3 4 5 6 7 8 9 10 1
Depth 1 2 3 4 5 6 7 8 9 10
Depth
(c) Coverage (d) QueryMsgy
10000 10000
k=2 —|— k=2
k=5 k=5
—%—k=20 —#—k=20
L 1000 [_
1000 | _¢— k=50 ~8— k=50 i
BES - BFS
S 10 e
100 2}
(o4
10 —
10 /./-/./
|

Depth
Depth

Fig. 3. Performance comparison by various metrics—(a) Search Efficiency, (b) SuccessRate, (c) Coverage, and (d) QueryMsg—for RW of various number of

walkers k and for BFSin astrictly binary tree with R= 1%

Metrics Analysis. We compare two metrics, SE and Coverage in this scenario. The results of
Coverage of BFS can be referred to in Fig. 3(c). If we take only Coverage (C) into consideration, it
produces the same performance in spite of different extents of object replication (different values of R)
since C by (5) is independent of R. Hence, Coverage fails to characterize the performance variance in
searching networks with different replication ratios. On top of this, if the design goal is to maximize C,
then one may conclude that the choice of termination condition TTL is the larger the better—an
impractical conclusion. On the other hand, if we only inspect QueryMsg, we will get entirely opposite
conclusions. Therefore, Coverage and QueryMsg draw contradictory conclusions and fail to provide
comprehensive guidance.

In fact, by the indication of SE in Fig. 2, TTL should be smal when R is large in order to avoid
unnecessary message propagation when R is large and to generate satisfactory results when Ris small. In
sum, SE better characterizes performance and provides a better guideline of TTL design than Coverage
and QueryMsg.

B. Multiple Random Walksin Strictly Binary Tree
When it comes to RW search, we use multiple “walkers’ to traverse the network and the number of
walkers is denoted by k. Each walker independently searches the network and randomly chooses one of

the next-hop neighbors to continue its journey to the limit of TTL hops.
9

Analytic Derivation: To begin with, we consider Coverage to derive SE. We know each vertex at
depth t is visited by a random walker with equal probability, 1/2'. Moreover, each random walker
independently makes its own decisions to traverse the topology. Thus, the probability that all k walkers
don't visit a certain vertex is (1- U2)%. As a result, at depth t, the average number of nodes visited
(Coverage per Depth) by k random walkersis given by the expectation

E(X), =2 g (- yzt)kg. ©)

By (3), QueryHits(t) = RE(X),. Moreover, the query messages of random walk are generated per hop for
each walker until terminated by the TTL limit, hence
QueryMsg = k-TTL. (20
Asaresult, QE of k-random walk is

of, . = BERE _&ETEOY gy
Rw=k KXTTL xR KITL

Furthermore, from (4), we obtain
SuccessRate =1- (1- R)C =1- (1- R)AFTEX) (12)

Therefore, Search Efficiency for k-random walksis

o TTL
Qo E(X) /6 aTFE(X), U
SE|RW=|< T T g' (1' R) = ta’ (13)

where E(X), is determined by (9).

Sear ch Efficiency Analysis: Assuming R = 1%, we generate a series of performance results of SE in
terms of various numbers of walkers k. We thus plot these results of SE (13), SuccessRate (12), Coverage
(9), and QueryMsg (10) for RW and BFSin Fig. 3.

In Fig. 3(a), we observe that all SEs of RW consistently increase with respect to the depth or search time.
Nevertheless, they al are smaller than that of BFS due to too many (redundant) query messages in the
local search, and the slow covering and low SuccessRate in the long-term search. Therefore, they fail to
utilize the regular structure of SBT. Asfor the number of walkers k, atoo large (e.g. 50) or too small (e.g.
2) value of k gives degraded performance, thus resulting in strong sensitivity in the choice of k.

Metrics Analysis. By merely inspecting Fig. 3(b) for SuccessRate or (c) for Coverage, one may jump
to a conclusion that the number of walkers k is the larger the better. This aspect disregards the fact that
larger k would generate larger search cost, shown in Fig. 3(d), and potentially redundant query messages.
In fact, comparing RW of k = 50 and of k = 20, we find that their values of SuccessRate or Coverage
during depth t = 1~4 are almost the same while the former generates 2.5 times more search cost—the | atter
search uses less search cost to produce similar search fruits. In consequence, in the short-term search, the
latter one should be gauged as better search. Thus the conclusion larger k is better for RW would be
fallacious. Therefore, we argue that neither SuccessRate nor Coverage is a good performance indicator.

Moreover, the long-term performance will inherent the short-term so that SE in Fig. 3(a) well
characterizes the better performance for RW of k = 20. Besides, RW of k = 2 would be the best search in
Fig. 3 if we try to minimize QueryMsg and scalability is the most concerned issue. Yet, this would be a
specious conjecture since it entirely flies in the face of the fina end of search—to find the results
responsively.

10

C. Summary of Search Efficiency in SBT

By the discussion in this section, we validate SE by showing 1) the 100% QEgrs indicates that BFS
perfectly utilizes the regular structure of SBT and generates no redundant messages, 2) the sagging SErw
reveals RW fails to take advantage of the structure of SBT, and 3) the fixed level of SEgrsin long-term
search effectively reflects the characteristics of SBT. The first two results can be confirmed by intuition
and thus verify the correctness of SE. The third observation further demonstrates the superiority of SE in
characterizing search performance under specific topologies.
Through metrics analysis, we have demonstrated that existing metrics, Coverage, QueryMsg, and
SuccessRate, are one-sided and may lead to biased conclusions. They cannot distinguish performance
variance in searching networks when replication ratios are distinct, and cannot provide reasonable
guidance in the design of parameters TTL and k while SE can.

11

Evaluation metrics are critical in judging search performance. If Coverage is the only metric concerned,
one may conclude that BFS is the best search agorithm despite the overwhelming search cost. It
overlooks the system load and the aspect of operation efficiency. Moreover, if search cost is the most
important criterion of a searching network, RW would be the best appropriate algorithm for that system.
However, it fails to evaluate the ability to achieve the final end of searching networks—to search out
targeted results responsively. In consequence, biased metrics may draw biased conclusions and provide
wrong guidelines for system design. Thus, we endeavor to devise a new search based on the
comprehensive metric, SE, in order to demonstrate the strength of SE. In addition to its strength in
performance characterization and reasoning, we show the strength of SE to serve as the design guidance of
the invented a gorithm—dynamic search.

We attempt to utilize the merits of the three analyzed algorithms from the viewpoint of SE for the new
search. Accordingly, on the basis of the conclusions drawn in Section IV.E, the new algorithm should
resemble BFS in short-term searches, mimic RW for long-term propagation, and be able to fine tune the
performance through certain parameters as used in M-BFS. Therefore, we separate the search processinto
two phases. In the threshold phase (local space), the search is similar to BFS with some dynamic tuning
forwarding probabilities; in the ultimate phase (long-term space), it operates as the random walk search to
consistently retain the performance gained from the threshold phase. The detailed operations are described
in the following subsection.

A. Operation

Dynamic search starts as a probabilistic search with dynamic fraction parameter f, at different hops h
when h =n. For h > n, it switches to the random walk search. In the threshold phase, it operates as M-BFS
but with dynamic f,, for h=1, 2, ..., n. For example, for dynamic search withn=2, f; = 1, and f, = 0.5,
the search agents at h = 1 perform BFS, perform M-BFS with f = 0.5 at h = 2 and operate as random walk
for h = 3. Moreover, in the random-walk phase, the number of walkers k is determined by the outstanding
query messages or the effective search agents covered at the h™ hop, that is, C,.

Hence, the behavior of dynamic search changes dynamically in terms of time (hop) to adapt to the
appropriate search properties in different phases. Hopefully, in terms of SE, it would outperform other
agorithms in each phase thanks to the fine-tuned design.

B. Performance Analysis

To analyze the characteristics of dynamic search, we use the knowledge we have learned in previous
sections where we mathematically formulate SE. In this section, we analyze only in the PLRG. The genera
form of SE in (26) applies for dynamic search and C, is given by (23), except e-1 = f1:G'o(1), €=p=n =
frG'1(1) Ch1, €wn = Ch=n, @nd

12

©
o

(a) Search Efficiency

250

(b) Query Efficiency

—e—k=5
80 —a—k=10 |
—=—k=100
70 BFS — 200 e — ——— —o
= —e—k=5(NU) _ _e—— — — — ke — —A
< 60 —A—k=10(NU) — S /./’ ”,r-""
2 —8— k=100 (NU) & 150 =
& 50 BFS(NU) | = e
2 i) v —n— — —5
T a0 o —a E 4 e
5 - F—dT"_ < 100 — 7 _ =
- Log— ¥ g / A e————r—¢
§ /-7 —_— - © W —
T . e "
20 —— = 50
7
10 A e s
e .
O L L L L O L
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Hop Hop
(c) Coverage (d) Query Message
10000 — 1000000
—e—k=5
—&—k=10
100000 ——#—k =100
BFS
1000 50w
o 10000 ———A—k=10(NU)
® g —m— k=100 (NU)
o BFS (NU)
2 100 = 1000
o & /-————"""——4
leg /
/o—""’_‘ 100
10 M
/ 10 /
1 1 :
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Hop Hop

Fig. 9. Performance comparison by various metrics—(a) Search Efficiency, (b) Query Efficiency, (c) Coverage, and (d) QueryMsg—for RW of various number
of walkersk and for BFSin PLRG with R = 1% under uniform and non-uniform (NU) object distribution. Solid lines represent data of uniform distribution and

dashed-lines represent non-uniform distribution.

R(Vh) =1 fxp >G'o(D), forh=1
]
i1- @- f,xp G M, for 2£hEn
|

N A I
i (Rh)%l(%h)H orh>n

(14)

wherery, is specified by (12).

As for the parameter design, we refer to the observation in Fig. 6, where BFS performs the best in the
first two hops and lower fs for M-BFS achieve more consistent performance in the long-term search. Thus,
we design two sets of parameters: the first one, Dynamic-1, performs BFS in the first two hops and
random walks in the following phase (n = 2); the second one, Dynamic-2, performs BFS in the first two
hops, M-BFS with f = 0.3 at the third hop, and then random walks (n = 3). The number of walkerskin RW
is dynamically determined by the number of outstanding query messages at hop n, i.e. C,-,. The detailed
parameters are shown in Tablell.

We generate SE of Dynamic-1 and -2 and make performance comparison with BFS, M-BFS (f = 0.3),
and RW (k = 100) in Fig. 8. We take M-BFS with f = 0.3 in order to compare with Dynamic-2, which uses
f; = 0.3. And we use 100 as the number of walks for RW since it generates the best performance (in Fig.

7).
13

In Fig. 8, we can observe that dynamic searches outperform other agorithms especialy in the long-term
search. They resemble BFS within h=2 as expected and perform consistently as random walk does, thus
outperforming othersin long-term search as we design. Note that Dynamic-2 trades its performance at h =
3for itslong-term efficiency by using alow probability f = 0.3, and vice versafor Dynamic-1.

NoN-UNIForM OBJECT DISTRIBUTION

Throughout our analysis, for simplicity we had assumed the object distribution as uniform. However,
this assumption leads to the conclusion that QueryHits equals to R-Coverage, which violates our argument
in Section 11.A that Coverageis only one of the conditions to produce QueryHits. To support our argument
and justify our consideration of QueryHits in SE rather Coverage, we analyze SE under a non-uniform
object distribution as proposed in [11].

In this abject distribution, the probability a search agent (vertex) owns certain object is proportiona to
its degree d. Let O be the event that certain search agent owns the targeted object, then the probability

agent i has the object is determined by
RN >d;

ROMd =—,
a j:ldj

such that ?;P;(O) = RN, the total number of objects distributed in the network, whered, = m/i** [4].

Analytic Derivation: Since the object distribution is not uniform, we cannot simply use R-Coverage

(15

to represent QueryHits, which in fact is formulated by
QueryHits(h)
18 RO)RMy), forh=1
_pi (16)
INht1 .
lfiéllglgl‘ RO)RV))PR(O)R (V). forhe 2,
where P;(V,) isgiven by (5) and P;(O) by (15).
For SuccessRate, we generalize the form 1- (1- R)€in (4) for the uniform distribution to deliver the one
in non-uniform distribution:
N b .
SuccessRate=1- O O &- R(O)R(V))Y (17
i=1j=1
Now, equations (16), (17), and (6) suffice to solve SE defined by (2) for BFS.

For RW, QueryHits(h) follows formula (16) derived in BFS and SuccessRate follows (17) in BFS, where
Pi(Vy) isgiven by (13) and P;(O) by (15).

Search Efficiency Analysis. We plot analytic data in Fig. 9, where the dashed-lines represent the
data under non-uniform (NU) object distribution. We use the same colors to represent searches with
identical parameters. We find that SE in Fig. 9(a) is significantly increased under NU distribution for both
BFS and RW. The performance increase is around 75% ~ 250% for RW at h = 7 and 250% for BFS at h =
2. This can be explained by the graph property that vertices tend to connect to those with higher degrees|[1,
2], which has been validated by simulationsin [11].

Metrics ArFalgys®@cc) indicates that every

searc

i deinct&Cloveramgeer di fferent object distributions,

14

concl usiQuerfycWwBlwer ef ore, these two metrics totall
performance variance under NU di sQuebwuwtEkEfofni c Men e
deifnedQbegr yyH)utesr ¥ Js,gx plsaitrhe perfor mance increase
morQauer yHiotumd gi ven thaQueamdlisguombes sl liiem cweh i ¢ h

QEis a critical el ement, well <characterizes the

scenari os.

15

In thi srojpct we deheauni fmetdr ISe arEfhiti e n(S¥E
addr espseirnfgor manseearchingnneew@Qelk&f/ficiency
responsi vemelsisa b dMaidthye.mat ocmahdappr oxi ommhti ons
SEand ot her exi sariehgr inmeacdthiacsact perzeemand
provi dekepitnh analysis for wvarious search alg
correct B€iss mdér f or man b g neavlayl dzuitantgiacmn i deal t opol
strictly biWearfyrttrheeer. d e naobnisiticthyh @ aictt e arzeh

perrfrmance insaal ar BeR6&-woeralld net work topol og)

We conclude that existing metrics either
regarding performance or fail to reflect pert
conditions change. Moreovewr,onghegyuitdeenldi nteos pfr

design of various al goTTIkhmfipdarTahmee tperosp o see dy .mi
SE effectively characterizes the performance
condi ti odnesl iavnedb j ecahd-deptpher f ormaatgsi s.

I the final,amal ywtist andi ng dprea rhios psaehadrec o f
new al gorithm dewviesgdi d&Becdaonfests the effi
SEto codescgn of searchiHhargbdborehmourSEpr opos
contribptrewntgpui dlamrt he future design of searc

16

(1

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

(10]

(11]

(12]

(13]

(14]

M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree
distribution and their applications. Phys. Rev. E, 64:026118, 2001.

L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman. Search in power-law
networks. Phys. Rev. E, 64:046135, 2001.

L. A. Adamic. The small world web. Proceedings of the 31 European Conf. on Digital
Libraries, volume 1696 of Lecture notes in Computer Science, pages 443-452. Springer,
1999.

W. Aidllo, F. Chung, and L. Lu. A random graph model for massive graphs. Proceedings of
the thirty-second annual ACM symposium on Theory of Computing, pages 171-180, 2000.

Q. Lv, P. Can, E. Cohen, K. Li and S. Shenker. Search and replication in unstructured
peer-to-peer networks. ICS, June 2002.

B. Yang and H. GarciaMolina. Improving Search in Peer-to-Peer Networks. ICDCS, July
2002.

D. Tsoumakos and N. Roussopoulos. Adaptive Probabilistic Search (APS) for Peer-to-Peer
Networks. Technical Report CS-TR-4451, Un. of Maryland, 2003.

S. Milgram, The small-world problem. Psychology Today, 1:62-67, 1967.

S. Jiang, L. Guo and X. Zhang. LightFlood: an Efficient Flooding Scheme for File Search in
Unstructured Peer-to-Peer Systems. |CPP, Oct. 2003.

B. F. Cooper and H. GarciaMolina. SIL: Modeling and measuring scalable peer-to-peer
search networks. International Workshop on Databases, Information Systems and
Peer-to-Peer Computing, Berlin, 2003.

T. Lin, H. Wang, and J. Wang. Search Performance Analysis and Robust Search Algorithmin
Unstructured Peer-to-Peer Networks. CCGrid, April 2004.

C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer networks. Infocom,
March 2004.

|. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. SIGCOMM, 2001.

V. Kaogeraki, D. Gunopulos and D. Zeinalipour-Yazti, A Local Search Mechanism for
Peer-to-Peer Networks, CIKM, Nov. 2002.

17

Hsi nping Wand an‘dOm skfnfgin@ainemwaewyn,i n Searchin
I nfocom 2005.

18

On Efficiency in Searching Networks

Hsinping Wang and Tsungnan Lin
Graduate I nstitute of Communication Engineering
National Taiwan University
Taipei, 10617 Taiwan
{ hpwang, tsungnan} @ntu.edu.tw

Abstract-This paper deliberates on various critical aspects
in evaluating sear ching networks. Existing metrics either draw
biased conclusions regarding search performance or provide
wrong guidelines for algorithm design. We, therefore, define a
unified criterion, Search Efficiency (SE), to objectively address
search performance in a comprehensive manner. The goal of
SE isto better characterize performance of searching networks
than existing metrics do as well asto guide the design of future
ones. We first validate the correctness of SE in performance
evaluation in an ideal graph, strictly binary tree, by analyzing
SE for two typical search methods, breadth first search and
random walk. We further show its strength in performance
characterization in the real-world topology, power-law random
graph, under various network conditions. We finally design an
algorithm, dynamic search, based on SE analysis. Its proved
outstanding performance demonstrates the strength of SE to
provide guidance for the future design of sear ching networks.

Index terms—Combinatorics, Graph theory, Deterministic
network calculus

|. INTRODUCTION

Searching networks, including social networks and
computer networks, play an increasingly important role in
human activity. A significant example is the recently popular
peer-to-peer (P2P) file-sharing systems, e.g. Gnutella and
KaZaA, where every peer collaboratively forms a searching
network to locate desired files by a real-time search. In the
social context of searching networks, people search their
acquaintances for a particular item or expertise in a specific
domain. Their acquaintances in turn report whether they
have the desired item (expertise) or subsequently deliver this
guery to their next-step acquaintances. In this fashion, a
social searching network or so caled human
acquaintanceship graph [8] is formed. Thus, a searching
network is a system where each participant contributes to the
network and collaborates to help others search targeted
resources.

In a searching network, one of the critical issues is to
maximize search performance by choosing or designing
algorithms used to perform the search process. Novel
algorithms [5, 6, 7] have been proposed to address different
search aspects, such as success rate, search cost, coverage,
or number of hits, but an objective and comprehensive
evauation metric is missing. As a result, these algorithms
tend to be designed with biased considerations and evaluated
in limited dimensions.

Breadth-first search (BFS) and random walk (RW) [5] are

This work was supported in part by National Science Council under grant
93-2213-E-002-057, and by Quanta Computer Inc. under grant 092E0048.

two basic and typical search methods in searching networks.
BFS inherently maximizes the search speed and coverage
but risks generating search queries in an uncontrolled
(exponentia) manner. RW, on the other hand, minimizes
search cost but generates limited search coverage and results.
As a result, one might draw distinct conclusions about
algorithm performance, if different metrics are concerned.
For example, Gkantsidis et al. [12] claimed RW performs
better than BFS in terms of number of hits and failure
probability give the same search cost for BFS and RW, but
implicitly assumed an infinite search time for RW, which is
clearly unfair. Jiang et al. [9] evaluated their proposed search
scheme only by search coverage and message cost, leaving
search speed and success rate unchecked. Lv et a. [5]
provided a spectrum of aspects on evaluation, but analyzed
them individually and still lacked an overall consideration.

Our work, therefore, deals with these one-sided
perspectives and synthesizes a unified search criterion,
Search Efficiency (Section 1), which is critical particularly
in P2P endeavors, to objectively evaluate search algorithms
and provide overall guidance for the design of searching
networks.

With the unified metric SE, we first validate its
correctness by deriving its mathematic formulas for BFS and
RW in a simple topology, strictly binary tree (SBT), and
analyzing whether the performance indicated by SE is
reasonable. Furthermore, we extend the results of Newman
[1] and Adamic [2] and further consider “redundancy” to
analytically approximate SE for BFS, M-BFS [14], and RW
in a power-law random graph (PLRG), which is shown to be
the rea topology of current searching networks. We thus
validate SE in comparison with previous simulation works [5,
9, 11], deliver the unique performance characterization of SE,
and provide in-depth analysis.

Throughout the analysis in this paper, we compare various
existing metrics with SE to address their limitation and
strength. We show that no matter in SBT or PLRG, existing
metrics draw biased conclusions regarding search
performance; they either provide one-sided considerations or
deliver wrong guidelines for algorithm design. Moreover,
they fail to characterize performance variance under distinct
network conditions, such as object replication ratios (Section
I11) and object distributions (Section V1).

In the final analysis, we propose a new algorithm,
dynamic search, based on the results of SE anaysis. We
prove this agorithm outperforms existing ones and SE
effectively provides guidance for algorithm design.

In summary, our contributions are stated as follows:
We propose a unified and objective metric, Search
Efficiency, for evaluating searching networks and
characterizing search agorithms.
We mathematically analyze critica performance
metrics—search coverage, cost, success rate, number
of hits, and SE—in searching networks.
We analytically evaluate various algorithms, including
BFS, M-BFS, RW, and a novel search, in SBT and
PLRG under uniform and non-uniform object
distributions.
We devise a new search algorithm, dynamic search,
based on the knowledge from temporal SE analysis. It
is shown to outperform other existing ones, thus SE
proved to provide solid guidance for algorithm design.

This rest of this paper first follows with the definition and
explanation of Search Efficiency in Section II. We then
analytically derive the genera form of SE and provide
in-depth discussion on the performance of BFS and RW in
SBT in Section Il and PLRG in Section IV. Section V
presents the novel algorithm, dynamic search. We analyze
algorithms under non-uniform object distribution in Section
VI, then finally conclude in Section V1.

I1. SEARCH EFFICIENCY

We argue that to best characterize the efficiency of
any system is to measure its ability to transfer its input
to generate meaningful output, which is applicable in
the evaluation of search methods performed in any
network. In a socia network, the input of a search
largely involves the cost required for querying process
including costs of phone calls, transportation, and even
consulting. As for output, it should be measured by
searchers' satisfaction in terms of the chance of success,
the response speed, and quality of responsive results.
To clarify the definitions of and relations between
these inputs and outputs in the context of searching
networks, we start a series of discussions about Search
Efficiency with Query Efficiency (QE).

A. Query Efficiency

In general, the most critical aspects of search
performance involve the extent of search coverage
(output) [2] and the cost required to cover the network
(input) [5]. By search coverage, denoted as Coverage
or C, we mean the number of distinct or effective peers
visited by search queries, i.e. we do not count the
repeatedly visited ones. In addition, by cost, denoted
by QueryMsg, we mean the number of queries incurred,
for it is a representative factor to which other cost
factors (e.g. computer processing power or costs for
phone calls and transportation) tend to be proportional.
Thus it is trivia to say a search which uses S query
messages to traverse distinct S nodes is perfectly or
100% efficient in terms of query generation.
Additionally, we can define a sort of efficiency as
Coverage / QueryMsg. However, the end goa of
searching is not to cover as many nodes in the network
as possible. Rather, its ultimate goal isto search out the

desired targets or objects, in which covering is only
one of the adequate conditions (e.g. cache or previous
experience) for that end. This is true when the
searching network is well-designed, e.g. Chord [13],
such that large search coverage is not necessary, or
when object distribution is not uniform in which
directed search is preferred. We will show performance
difference between Coverage and QueryHits under
non-uniform object distribution in Section VI.

Thus, we define QueryHits(t) as the number of
desired objects found “at” search time t, which is
measured by the number of hops or depths, to quantify
the yields of a search. We introduce the factor search
time t for the purpose of future discussion. Again, we
might define the efficiency of queries as
? QueryHits(t)/QueryMsg. However, this definition is
sensitive to the population of desired objects, which is
irrelevant to the performance of search agorithms
themselves and should be factored out. For this
purpose, we introduce the notion of object replication
ratio R defined as the ratio of the number of targeted
objects to the network size (N). To cancel the
population factor out, we normalize it with respect to R
and thus formulate Query Efficiency (QE) as
& {11 QueryHits(t) , 100% n

QueryMsg R’
where TTL refers to the termination condition of
searches, measured in hops. To exemplify, we suppose
a search consuming 100 messages to find 1 targeted
object in a network with R of 1%, which reveals that
1% of nodes have the desired object. By (1), QE =
100% and we thus call it a perfectly query-efficient
search. Furthermore, if the objects are uniformly
distributed in the network, we can reasonably claim
that the search effectively covers 100 nodes (from
1/1% = 100) and this provides a clear view of the
perfect efficiency.

Query Efficiency(%) =

B. Responsiveness

One of the goals of searching, as addressed
previously, is to find out possible objects while the
other is to find them as soon as possible. We define
search response time, denoted by t, measured by
discrete numbers of hops, to evauate the speed of
searching objects, or responsiveness of a search. If a
search finds Q desired objects in its h™ step or in its
h'"-nearest acquaintances, we denote it as
QueryHits(t=h)=Q.

We argue that a search getting hitsin a faster fashion
delivers better users experience and should be gauged
as higher reputation. More specifically, responsiveness
of a search should be inversely proportional to the
response time t. To consider this factor for SE, we may
simply divide QE by the weighted response time,
which is computed by ?[t-QueryHits(t)] /
?QueryHits(t). However, this method would generate
unjust results. For example, we assume a search that

Requester
Depth 1
Depth 2

Depth 3

Fig. 1. A strictly binary tree with the requester at the root

uses 1000 messagesto get 99 hitsatt=1and 1L hitat t
= 100 with R = 10%, resulting in a weighted response
time of (1-99+100-1)/100 or 1.99. According to QE in
(1), if we don't count the hit at t = 100, the search is
99% query efficient, but it dramatically reduces to
50.25% efficiency due to dividing by response time
1.99 when that hit is caculated. This method
unreasonably emphasizes the slow search hit. We argue
that any query hits contribute positively to the search
itself despite long response time. We thus aggregate
these responsive hits rather than divide by the averaged
response time to give efficiency as

& [T QueryHits(t) /t, 100%

QueryMsg R

The efficiency of this example becomes 99.01% rather
than 50.25%, where the last found hit contributes
0.019% to efficiency, rather than severely reducing it.

C. Reliability

The last concern is reliability, which is measured by
SuccessRate in our design of SE. We introduce it so as
to further consider the satisfaction of user experience.
Consider two searches (A and B), each performing two
runs, as shown in Table I. We assume all objects are
found at the same response time. The success rate of
Search A is50% while B is 100%.

TABLE |
SEARCH DATA FOR |LLUSTRATING SUCCESSRATE
SearchA Search B
QueryMsg | QueryHits | QueryMsg | QueryHits
Runl 100 2 100 1
Run2 100 0 100 1
Note that if we compute efficiency without

SuccessRate, we will gain the same result for Search A
and B. However, one of the runs in Search A (Run 2)
fails and thereby we neglect to measure the penalty of
user experience in Run 2. By introducing the term
SuccessRate, SE of Search B remains the same, but SE
of A ishalved. In this manner, it successfully addresses
the user satisfaction level while the two searches get
the same number of hits at the same message costs. In
sum, the term SuccessRate is aimed to successfully
measure the satisfaction level from users' perspective.
Finally, we define the overall criterion for evaluating
searching by

& 11 QueryHits(t)/t . SuccessRate

QueryMsg R
where TTL stands for the limit of search covering.

Search Efficiency = 2

D. Limitations of Search Efficiency

The design goa of SE is to capture a smple but
representative view of search performance. As aresult,
it is possible to consider more complex considerations
for search evaluation. We list three possible aspects
that are not covered by SE:

1) In the context of computer searching networks,
the implementation of caches or DHT would
significantly improve the search performance, which
SE could reflect. However, SE doesn't consider the
additional resources (processing power or memory)
required by performance-boosted mechanisms, such as
hash functions or caches, thus potentialy
overestimating the efficiency of algorithms adopting
these additional mechanisms.

2) The costs of searching each computer or peer
should not be equally weighted. Consulting an
institution for recommendations is clearly more costly
than asking a close friend, although we only assume
they are equally costly.

3) We make a limited measure of responsiveness by
the factor t. For instance, it would be more flexible
using t%, a > 0, to adjust the extent to which search
responsiveness is concerned.

By means of Search Efficiency, we can objectively
evaluate performance of agorithms in searching
networks. In the remaining of this paper, therefore, we
aim to characterize various existing search algorithms
in terms of SE and demonstrate the biased view of
existing search metrics compared with SE. In the
following sections, we will mathematically derive the
formulas for SE in the context of three basic search
approaches, BFS, RW and M-BFS, the variation of
BFS, in two representative topologies, the dtrictly
binary tree (SBT) as well as the power-law random
graph (PLRG), in order to demonstrate the strength of
SE.

V. STRICTLY BINARY TREE

We assume an N-vertex strictly binary tree whose
depth is about log,N and that the requester is at the root
such that the response time (t) of a query hit is the
same as the depth (d) where the target object islocated.
This tree is shown in Fig. 1. Moreover, for simplicity
of analysis, we assume objects are uniformly
distributed in the tree or graph until Section V1.

Before analyzing specific agorithms, we first
prepare two common factors for the derivation. Firstly,
the number of objects searched out (QueryHits) is
proportional to the search coverage C. Thus, we have

QueryHits=R" C. (©))

Search Efficiency for BFS

IS
o

——R=10%

P =gy
\'\ R=1%

R=05%[|

—*—R=0.1%

w w
o a

~
N\

Search Efficiency (%)

AN

=
a o

Depth

Fig. 2. Search Efficiency for BFS terminated by incremental TTLs (Depth)
in astrictly binary tree with various replication ratios R

Secondly, the success rate of a search is aso relevant
to the search coverage. To begin with, we know that
each node owns the target object with a probability of
R; that is, each node lacks the object with a prabability
of 1- R Suppose a search covers C vertices and thus
the probability these C nodes share no targeted object
is (1- R)°. Inversely, the probability these C nodes
share one or more objects, or equivalently SuccessRate,
is determined by

SuccessRate =1- (1- R)°. (4)
A. Breadth First Searchin Srictly Binary Tree (SBT)

Analytic Derivation: Breadth-first search (BFS)
performs by broadcasting the received queries to all
neighbors except where the received query came from.
Therefore, by the regular structure of a strictly binary
tree, the search coverage terminated at depth TTL is
given by

Coverage (C) =8 /- 2 (5)

Furthermore, the number of messages required to
traverse the tree is the same as the quantity of its
search coverage due to the very nature of BFS. Thus,
QueryMsg = C = 2, 2. According to (1), (3), and (5),
we attain

R (2", 100%

al?

Surprisingly, the formula of QEgs Yields a constant,
1 or 100%, regardless of the replication ratio R or the
termination depth TTL. By the definition of QE, this
means that BFS is a perfectly query-efficient search in
the context of a binary tree; that is, BFS generates no
redundant messages while traversing a binary tree. The
idea of redundancy will be further defined and
discussed in the next section.

Finally, the general formula of SE defined in (2) for
BFSinabinary treeis

QueryEfficieny| ;¢ = =100% (6)

o TTL At
a2, e T2 U

SEBFS :o— ?' (1' R) =1 " (7)
aElL 2t H

The derived SEgrs is complex for one to gain insight
of its properties due to the running variable t and
various possible values of R. To deliver a clearer
understanding, we assume the replication ratio R << 1,
which is true in real searching networks, and
approximate (7) as
a kot

SEgrs 5 TTL ot [1 (1 R%Elet)]:Rﬁglezt/t 8

Search Efficiency Analysis: To exemplify SEgrs, we
set R=0.1% (far lessthan 1) and obtain by (8) SErm-=1
= 0.2%, FE17 -2 = 0.4%, and SE'rn_:g = 0.67%. Note SE
is strictly increasing with respect to TTL—SEm =5 IS
exactly twice of SEmr=; and SE=3 IS more than three
times of SEr=1. The reasons are two-fold. Firstly, as
formula (6) shows, BFS in a binary tree is perfectly
query-efficient, which means every query positively
contributes to its search coverage and in turn produces
promising increase in SE. Secondly, the speed at which
query hits are returned is faster than the decay factor of
response time t. Furthermore, formula (8) tellsthat the
benefits from BFS are increasingly proportionally to 2
while the factor t is used to compensate the demerit of
long search time, where the factor 2' tends to dominate.
Thus we conclude every query or every additional
covered depth makes a positive contribution to the
overal performance despite the compensation of time,
given that the replication ratio is much smaller than
unity.

We present analytically-derived data of SEgrs,
without approximation, by (7) with a spectrum of
parameters, Rsand TTLs, in Fig. 2. Firstly, we note that
SExrs for al Rs approaches some fixed level in the
long run. Thisfixed level, obtained by (7) for larget, is
determined by the characteristic of the searched
topology—strictly binary tree—that is irrelevant to R.
Second, the short-term increase of SE for high R (10%
or 5%) results from the perfect query efficiency and
popularly distributed objects, while the long-term
decrease is due to the compensator of response time t.
If we use the notion t* suggested in Section I1.D, where
a is 0 or smal for some application scenarios and
responsiveness is of little concern, SE in (7) will
increasingly grow to some fixed level. Third, as for
low R (0.1% or 0.5%), the results in Fig. 2 are
reflective of the discussions in the above
paragraph—SE is consistently increasing.

Note that, however, if wetake TTL asinfinity in (7),
it gives zero seemingly contradicting our notion. In
reality, however, TTL cannot be infinity but is
generaly 7~10, in which SE dill generates a fixed
level of performance reflecting the characteristics of
SBT.

Coverage

(a) Search Efficiency

18
—B—k=2
B ks
14 |=k=20
3 —o— k=50
< 12 [« BFS o
o)
g 10
& 8 //(‘
=
3] /‘//0(/./
§ s
4
’ 7,%/
0 : ‘ ‘
1 2 3 4 5 6 7 8 9 10
Depth
(c) Coverage
10000
- k=2
k=5
- k=20
1000 | _g— k=50
BFS
100

10

Depth

QueryMsg

(b) Success Rate
100 5 |
—;—- k=2
k=5

—— k=20

—— k=50
= BFS
S
[V
ko]
E 10
o
@

1
1 2 3 4 5 6 7 8 9 10
Depth
(d) QueryMsg
10000
—— k=2
k=5
—#— k=20
1000 | _g— k=50
BFS —o—o—°

100 =

10

Depth

Fig. 3. Performance comparison by various metrics—(a) Search Efficiency, (b) SuccessRate, (c) Coverage, and (d) QueryMsg—for RW of various number of
walkersk and for BFSin astrictly binary tree with R= 1%

Metrics Analysis: We compare two metrics, SE and
Coverage in this scenario. The results of Coverage of
BFS can be referred to in Fig. 3(c). If we take only
Coverage (C) into consideration, it produces the same
performance in spite of different extents of object
replication (different values of R) since C by (5) is
independent of R. Hence, Coverage fails to
characterize the performance variance in searching
networks with different replication ratios. On top of
this, if the design goal is to maximize C, then one may
conclude that the choice of termination condition TTL
is the larger the better—an impractical conclusion. On
the other hand, if we only inspect QueryMsg, we will
get entirely opposite conclusions. Therefore, Coverage
and QueryMsg draw contradictory conclusions and fall
to provide comprehensive guidance.

In fact, by the indication of SE in Fig. 2, TTL should
be small when Rislarge in order to avoid unnecessary
message propagation when R is large and to generate
satisfactory results when R is small. In sum, SE better
characterizes performance and provides a better
guideline of TTL design than Coverage and QueryMsg.

B. Multiple RandomWalks in Srictly Binary Tree
When it comes to RW search, we use multiple
“walkers’ to traverse the network and the number of

walkers is denoted by k. Each walker independently
searches the network and randomly chooses one of the
next-hop neighbors to continue its journey to the limit
of TTL hops.

Analytic Derivation: To begin with, we consider
Coverage to derive SE. We know each vertex at depth t
is visited by a random walker with equal probability,
1/2. Moreover, each random walker independently
makes its own decisions to traverse the topology. Thus,
the probability that all k walkers don't visit a certain
vertex is (1- 1/2)*. As aresult, at depth t, the average
number of nodes visited (Coverage per Depth) by k
random walkersis given by the expectation

_ot € kU
E(X)=2'g- yzt) i)

By (3), QueryHits(t) = R-E(X),. Moreover, the query
messages of random walk are generated per hop for
each walker until terminated by the TTL limit, hence

QueryMsg = k-TTL. (10)
Asaresult, QE of k-random walk is
oFl. . = 8 REX) AL EX gy
Rw=k KXTTL R KTl

Furthermore, from (4), we obtain
SuccessRate =1- (1- R)C =1- (1- R)AFTEX) (12)
Therefore, Search Efficiency for k-random walksis

2 TTL
_ A= EX) /L, 6 &THE(X), U
Fwa =G ¢GRI @
where E(X), is determined by (9).

Search Efficiency Analysiss Assuming R = 1%, we
generate a series of performance results of SE in terms
of various numbers of walkers k. We thus plot these
results of SE (13), SuccessRate (12), Coverage (9), and
QueryMsg (10) for RW and BFSin Fig. 3.

In Fig. 3(a), we observe that all SEs of RW
consistently increase with respect to the depth or
search time. Nevertheless, they all are smaller than that
of BFS due to too many (redundant) query messagesin
the local search, and the slow covering and low
SuccessRate in the long-term search. Therefore, they
fail to utilize the regular structure of SBT. As for the
number of walkers k, atoo large (e.g. 50) or too small
(e.g. 2) vaue of k gives degraded performance, thus
resulting in strong sensitivity in the choice of k.

Metrics Analysis. By merely inspecting Fig. 3(b) for
SuccessRate or (c) for Coverage, one may jump to a
conclusion that the number of walkers k is the larger
the better. This aspect disregards the fact that larger k
would generate larger search cost, shown in Fig. 3(d),
and potentially redundant query messages. In fact,
comparing RW of k = 50 and of k = 20, we find that
their values of SuccessRate or Coverage during depth t
= 1~4 are dmost the same while the former generates
2.5 times more search cost—the latter search uses less
search cost to produce similar search fruits. In
conseguence, in the short-term search, the latter one
should be gauged as better search. Thus the conclusion
larger k is better for RW would be fallacious. Therefore,
we argue that neither SuccessRate nor Coverage is a
good performance indicator.

Moreover, the long-term performance will inherent
the short-term so that SE in Fig. 3(a) well characterizes
the better performance for RW of k = 20. Besides, RW
of k = 2 would be the best search in Fig. 3 if wetry to
minimize QueryMsg and scalability is the most
concerned issue. Yet, this would be a specious
conjecture since it entirely flies in the face of the final
end of search—to find the results responsively.

C. Summary of Search Efficiency in SBT

By the discussion in this section, we validate SE by
showing 1) the 100% QEgrs indicates that BFS
perfectly utilizes the regular structure of SBT and
generates no redundant messages, 2) the sagging SEqw
reveals RW fails to take advantage of the structure of
SBT, and 3) the fixed level of SEges in long-term
search effectively reflects the characteristics of SBT.
The first two results can be confirmed by intuition and
thus verify the correctness of SE. The third observation
further demonstrates the superiority of SE in
characterizing search performance under specific
topologies.

Through metrics analysis, we have demonstrated that

existing metrics, Coverage, QueryMsg, and
SuccessRate, are one-sided and may lead to biased
conclusions. They cannot distinguish performance
variance in searching networks when replication
ratios are distinct, and cannot provide reasonable
guidance in the design of parameters TTL and k while
SE can.

V. Power-Law RanDoM GRAPH

In a random graph or a realistic network, its
topology is not structurally organized but formed in an
ad-hoc manner. Adamic’s work [3] demonstrated that
the current Internet follows a power-law degree
distribution where a few web pages or web sites are
extremely highly-connected while others are weakly
linked. In a power-low random graph (PLRG), the
probability a vertex has degree k is p proportional to
k' where t > 0. In this and the following sections, we
will use PLRG as the network topology to explore the
efficiency of various search algorithms.

A. Review of Generating functions

To mathematically describe a power-law random
graph, we use the generating function formalism
introduced by Newman et al. [1] with arbitrary degree
distributions. We first let Gy(X) be the generating
function for the distribution of the vertex degree kin a
random graph. Then

Sk
Go(X) = & pyX

(14)
k=0
where py is the probability that a randomly chosen
vertex on the graph has degree k.

For a graph with a power-law distribution with
exponent t, minimum degree k = 1 and an abrupt cutoff
at m = k., the generating function is then given by

m
Go(x)=cd k™t xK
k=1
with ¢ a normalization constant, depending on mand t
to satisfy the normalization requirement Gy(1) = 1.
The average degree of a randomly chosen vertex is given

by
m
z=<k>= Jkxp, = G'H(d

x=1
Another important quantity is the distribution of the
degree of the vertex which we arrive at by following a
randomly chosen edge. Such an edge arrives at a vertex
with probability proportional to the degree of that vertex,
and the vertex thus has a probability distribution of
degree proportional to kp,. By [1], the distribution of
outgoing edges (except the one we have come from) of
that vertex, one of the first or immediate neighbors, is

generated by the function

G0 _ L
G1(¥) a0 Go(X)

The generating function for probability distribution

(15

. Qriginator
@ First neighbors
(O second neighbors

Fig. 4. A random graph for illustrating “redundancy”

of the number of second-nearest neighbors of the
original vertex can be written as Gy(Gy(x)) in the limit
of large N (N is the network size). Hence, the average
number z of second neighborsis

_¢&d U _sac
2=¢g dXGo(Gl(X))HX:1 Go(D&Gi(D (16)

Furthermore, the work in [1] generalizes (16) so that
the average number z, of the h™ nearest neighborsis

<o hil
Z = G108 G- (17)
Besides, according to approximation in [2], we have
G'y(1) @tiz(l m?-t) (18)
and
1 it
Gl @——. 19
RCTCIRD o

assuming2<t < 3.

B. Redundancy in Power-law Random Graph

Equation (17) equivalently tells us that the average
number of the h™ neighbors is strictly the product of
the average degree of each vertex, G'y(1), and the
average outgoing degree of vertices arrived by a
randomly chosen edge, G'4(1), to the (h-1)™ power,
given the graph size N is infinity. However, in
reality—when N is not infinite—it is ssimply not the
case specified in (17) where the number of h"
neighbors is geometrically increasing. In other words,
Z, should not be geometrically increasing due to the
“redundancy” in random graphs. By redundancy we
mean edges of any vertex that leads to repeatedly
visited vertices, resulting in a fewer effective number
of vertices reached by edges than the number of
traversed edges. Thus, to express in the terms of search
networks, we use adefinition similar to [10]:

“ A search network N has ‘redundancy’ if there exists
a link (edge) in N that can be removed without
reducing any vertex's search coverage, which is
generated by certain search algorithm.”

To quantify the redundancy of a graph by certain
search algorithm, we define “ redundancy” as
No. of Vertices Effectively Reached

No. of Edges Ever Traversed

Note that redundancy may actualy be useful to
improve the fault tolerance of the system, since if one
peer fails, another can perform its processing.

Redundancy =1- (20)

Moreover, redundancy may be useful to reduce
response time if a peer stands at a redundant edge
closer to the searcher. Thus, fault tolerance and search
latency tradeoff with efficiency when redundancy is
concerned.

We illustrate this notion of redundancy by Fig. 4, in
which we draw a graph with 13 vertices and 15 edges
where the black node is the search originator, gray
nodes are the first neighbors of the originator, and the
white nodes are the second neighbors. Arrows show
the directions and paths of message forwarding by BFS.
Inspecting this graph, we have the number of first
neighbors of the black node, G'o(1) = 3, and the degree
of outgoing edges of each first neighbor, G'4(1) = 4.
Nevertheless, the effective number of second neighbors
is 9, not smply the product of G'y(1) and G'4(1), 12, as
specified by (16). Thus, we obtain the redundancy by
(20) as 1 —(3+9) / (3+12), or 1/5, which means in this
case one-fifth (20%) of the edges are redundant by a
BFS search.

C. Breadth First Search in Power-law Random Graph

Analytic Derivation: To analytically quantify the
redundancy of a random graph, we first derive the
number of second neighbors z, covered by BFS, which
it isideally G'o(1)G'y(1) by (16). However, according
to the discussion in Section V.B, z will be lower than
the ideal value when N is not infinite due to the graph
redundancy. To derive z, it is largely equivalent to
solve the problem that what the number of balls
(vertices) ever chosen (or inversely left not chosen) is
when choosing G'1(1) balls out of N balls and put them
back, and repeat this procedure G'y(1) times, with G'4(1)
< N. For simplicity, we first assume the probability
each ball (vertex) to be chosen is uniform. Thus the
probability that each ball isun-selected is1 - [G'1(1)/N]
after one time of this procedure. After G'o(1) times of
the procedure, the probability each ball selected
becomes

1-[1- G, @/N]*?.

Hence, if we assume al balls are chosen uniformly and
the expectation of the effective humber of chosen balls
(second neighbors) is

31- [1- G/ N]®oW = N{ 1- [1- G4 @)/ N]G'oa)} |
i=1

when neglecting the chance to repeatedly reach the
first neighbors.

However, vertices are arrived at by edges with
probabilities proportional to their degrees [1], rather
than uniformly, as previously stated (Section V.A).
Suppose the probability each vertex to be reached by
cetainedgeisp fori=1,2, ..., Nand p; + p, +...+ py
= 1. In a power-law random graph, the probability p; of
vertex i is proportional to its degree and equivalently
given by

Performance Resultsin PLRG

—— QEinPLRW

—sa— SuccessRate

70 / \
60 \ —4—SEinPLRW |

SE in binary tree—

Performance (%)
5 8
\,\\
/0’

Hop

Fig. 5. Performance results in percentage of QE, SuccessRate, and SE in
PLRG and SE in astrictly binary tree for BFSwith R= 1%

m iy
PH e = ,\%t ' (21)
! a izl%/t
such that ?; p; = 1, where m, the maximum degree, is
set by NY [4].
If ignoring the chance to revisit the first neighbors,

we could approximate the effective number of second
neighbors as

Qo=

{ 1-g- p >G'1(1)QG'°(1)},

1

where we assume p; << 1 as G'4(1) << N, which is true
in general cases. Note that the term p;-G'y(1)
approximately represents the expectation of vertex i to
be visited with G'y(1) independent selections, each of
which only selects one vertex among the N ones (with
returning back). This term is surely not the exact
expectation of second neighbors (the actua value
should be alittle smaller), but an approximation, which
holds when p; -G'1(1) is much smaller than unity.

To generdize it, the effective number of vertices
arrived at the h™ depth or hop (Coverage per Depth or
Cy) for h = 2 could be approximated by

\ 2
Cr=2 =241 g peu0f")
1=

Nonetheless, this formula doesn't consider the
possibility the search revisits previousy reached
vertices, which is significant when the search is in the
deeper depth. To eliminate this problem, we first let V;,
be the event that a vertex is visited at the h™ depth or
hop, then the probability vertex i is visited at the h™
hopis

5 i PG, forh=1

G} i1- @- p oGO, forhs 2.
Therefore, the average number of non-repeatedly
visited vertices at the h™ hop by BFSin PLRG is

(22)

Search Efficiency for M-BFSin PLRG
35

o ——f=10(BFS)
30 A f=07 -
\ *f=05
25 e --f=03 L
-&-f=02

AN SVAVN

Search Efficiency (%)

\\
™~
>
?

Hop

Fig. 6. Search Efficiency for M-BFS of various fraction parametersfin a
power-law random graph with R= 1%

i N
i & R(Vy), forh=1
C. = _li=1
h =2 =N i (23)
18 O &- R(V))PRV,) forhs 2
1i=1j=1

where P,(V}) isgiven by (22). Intuitively, Coverage or
Cisgivenby ?C;.

To derive the redundancy, we let the number of
edges traversed or equivalently the number of queries
generated a the h™ hop (depth) be e, That is,
QueryMsg is given by

_1G9(@®, forh=1

=i, (29
1G"1(D) *z,.1, forhs 2.

Thus, the redundancy of BFSterminated at h=TTL is

determined by

&%z

&

Note that QEgrs is equivaent to 1- Redundancy.
Furthermore, according to (2), (3), (4), and (25), we
obtain

Redundancy| ;¢ =1- (25)

o TTL
A ey S0 /N A,
Elges = é“in [1- (- R®™7]" 100% ,(26)
h=1

where Cy, is specified by (23) and e, by (24).

A variation of BFS is Modified-BFS (M-BFS) [14],
which adopts a fraction parameter f to serve as the
probability that each search agent uses to forward the
query message to its neighbors. For example, if f = 0.5
and certain search agent has 10 neighbors, then it will
forward the received query message to 0.5-10 or 5 of
its neighbors (randomly). Since its operation is similar
to BFS, the formula of SE specified by (26) still holds
for M-BFS, where C, isgiven by (23), except

R(Vie2) =1- @- FpG1@g™, (27)
R (Vh=) = f 20 >G'o(D, (28)
and en=; = f-G'3(1)- Cra and €=y = F-G'o(1).

Performance Analysiss We use the following

parameters throughout this paper for the power-law
network: N = 10,000, exponentt = 2.1, R=1%, and m=

Search Efficiency in PLRG

&

——k=5
A k=10 | |
2 =¥k =100
—o—k =200
§25 // \ —+BFS ||
& / w
S
il /) F\

'\

Hop

Fig. 7. Search Efficiency for RW of various number of walkers k and for
BFSin a power-law random graph with R = 1%

N ~ 80. These parameters are similar to those used in
[2]. By (18) and (19), G'o(1) = 3.55 and G'4(1) = 16.21.
Therefore, we present the performance results, through
aseriesof calculations of (21), (23), (25), and (26), in
Fig. 5.

Note that QE in Fig. 5 is not as perfect as that in a
binary tree, but decays dramatically during h = 3~5,
where the redundancy comes from the exponentially
generated messages, which approves the results in [5]
and [9]. Furthermore, SE in PLRG is significantly high
compared with that in a strictly binary tree with the
same R in the short-term search, while SE in the tree is
superior to that in PLRG in the long term. In sum, BFS
performs better in the local and inefficiently in the
global, when deployed in the power-law random graph.
Similar conclusion is drawn in the work [11] by its
simulation results.

For M-BFS, we generate the data of SE of various
fraction parameters with the same settings used for
BFS (N = 10,000 and t = 2.1) and plot them in Fig. 6.
We find that the fraction parameter controls the extent
to which performance increases in the loca or
decreases in the global—the larger the parameter f is
the more greatly the performance changes. Hence, if
the search is aimed to gain great performance increase
in the short term, we should take larger f; on the other
hand, smaler fs give relatively consistent SE hy
compromising the fast performance increase in the
short-term search. Therefore, the choice of the fraction
parameter depends on whether the short-term
satisfaction or long-term efficiency is more concerned.

D. Multiple RandomWalksin PLRG

The property of random wak is dramatically
different from BFS. The former traverses a graph in a
random and unpredictable fashion while the latter
operates rather regularly. In particular, the concept of
depth used in BFSis not applicable in random walk in
that the walkers may go “back and forth” in the graph
so that we could only describe them with respect to
hop rather than depth. Therefore, we represent search
coverage in terms of Coverage per Hop (Cy).

Analytic Derivation: To derive the analytic formulas
of performance metrics, we first obtain the number of
“candidates’ that RW might traverse at the h hop,
which is conceptually similar to the number of h"
neighbors of BFS, z, except RW doesn't have the
concept of “depth.” We denote that for RW as r;. Let
R, be the event a vertex is the candidate of RW at hop
h (in the ™ neighbors of RW), then the probability
vertex i isthe candidate of RW at hop his

5 i P G'g(D), forh=1

() i1- @- p oGy, forhe 2.
Then, the average number of candidates of RW at hop
his

(29)

=8 4R (R, (30)
where Pi(R,) isgiven by (29).

Since random walkers have the behavior similar to
those in the binary tree if the forwarding candidates are
known, we apply the line of reasoning in the binary
tree for PLRG. Hence, the probability vertex i isvisited
athophfor RWis

R (Vi) = R (Y C Ry) = R(Ry) "R (Vi| Ry)

_ R(Rf1)>i§]-' (1_ %h)kg_ (31)

To deal with the phenomenon vertices may be revisited,
we apply the line of reasoning in BFS in PLRG
Therefore, the formulaof Cy,in (23) till holds for RwW
except using P;(V}) of RW (31). Thus, SE for random
walk with k walkersis given by

_ANG,. 1- (1- RAMS

Kk XTTL R
where C,, specified is by (23), in which Pi(V,) is
formulated by (31).

Search Efficiency Analysis: By the same conditions
for BFS, we plot SE for RW of various numbers of
walkers k and re-plot SE for BFS for comparison in Fig.
7. This figure shows RW generates consistently
increasing performance in most cases of k, which can
be answered by its controlled fashion of message
generation and granular coverage that have been
suggested in [5]. In addition, the curve of k = 2,000
reasonably explains the redundancy generated by too
many walkers despite its fine properties in PLRG
Inspecting the curve of BFS, it outperforms RW in the
local search but inversely in the global (h=5), which
confirm the simulation resultsin [11].

In sum, SE well characterizes the delayed
performance increase of RW and its consistent
long-term performance.

=

E. Summary of Search Efficiency in PLRG

Based on the unified metric SE and its temporal
analysis, we better characterize that, in PLRG BFS
gains its excellent performance in the loca search
space but decays rapidly in the long-term search,
M-BFS controls its performance increase or decrease

by the fraction parameter f, and RW peforms
consistently in the global search space while its
performance increase in relatively slow in the
short-term search. Furthermore, by the analysis of SE
and QE, we can explain the causes behind the
ostensive phenomena: the great short-term
performance of BFS stems from its aggressive search
to deliver responsive results while keeping little
redundancy in the local and the long-term performance
suffers from the overwhelming search cost generated
while it still retrieves satisfactory results in the global.
On the other hand, the delayed performance increase of
RW is due to its conservative search and redundancy in
the local while its conservatism trades for relatively
little redundancy and thus consistent performance in
the global.

In particular, our work for PLRG strongly reflects
previous works (simulations) in various respects and in
turn is validated for its ability of characterizing,
especialy in terms of temporal analysis. Besides, SE
analysis indicates the choice of the fraction parameter
depends on whether the short-term satisfaction or
long-term efficiency is more concerned.

Thus far, we have shown the potency of SE in
performance characterizing and reasoning. We will
further demonstrate its strength in guiding the design
of search algorithms by inventing a new search based
on SE and validate the performance improvement of
the new search, in the following section.

V. DYNAMIC SEARCH: AN ALGORITHM DESIGNED BASED ON
SeEARCH EFFICIECY

Evauation metrics are critical in judging search
performance. If Coverageis the only metric concerned,
one may conclude that BFS is the best search
algorithm despite the overwhelming search cost. It
overlooks the system load and the aspect of operation
efficiency. Moreover, if search cost is the most
important criterion of a searching network, RW would
be the best appropriate algorithm for that system.
However, it fails to evaluate the ability to achieve the
final end of searching networks—to search out targeted
results responsively. In consequence, biased metrics
may draw biased conclusions and provide wrong
guidelines for system design. Thus, we endeavor to
devise a new search based on the comprehensive
metric, SE, in order to demonstrate the strength of SE.
In addition to its strength in performance
characterization and reasoning, we show the strength
of SE to serve as the design guidance of the invented
algorithm—dynamic search.

We attempt to utilize the merits of the three analyzed
algorithms from the viewpoint of SE for the new
search. Accordingly, on the basis of the conclusions
drawn in Section IV.E, the new algorithm should
resemble BFS in short-term searches, mimic RW for
long-term propagation, and be able to fine tune the

an

Search Efficiency Comparisonin PLRG

A
A
[\ R
[X T
LN
7
L

1 2 3 4 5 6 7
Hop

35
—e—BFS

M-BFS (f=0.3)
—¥— Dynamic-1
—@— Dynamic-2

25

Search Efficiency (%)

Fig. 8. Search Efficiency comparison for various agorithms: BFS, M-BFS
(f=0.3), RW (k=100), and the dynamic search in PLRG with R = 1%.

TABLE Il
PARAMETER DESIGN FOR DYNAMIC SEARCH IN FIG. 8
n| f, | fs
Dynamic-1 | 2 | 1.0 [1.0 | N/A
Dynamic-2 | 3 | 1.0 [1.0 | 03

performance through certain parameters as used in
M-BFS. Therefore, we separate the search process into
two phases. In the threshold phase (local space), the
search is similar to BFS with some dynamic tuning
forwarding probabilities; in the ultimate phase
(long-term space), it operates as the random walk
search to consistently retain the performance gained
from the threshold phase. The detailed operations are
described in the following subsection.

A. Operation

Dynamic search starts as a probabilistic search with
dynamic fraction parameter f;, at different hops h when
h =n. For h > n, it switches to the random walk search.
In the threshold phase, it operates as M-BFS but with
dynamic f,, for h = 1, 2, ..., n. For example, for
dynamic search with n =2, f; = 1, and f, = 0.5, the
search agents at h = 1 perform BFS, perform M-BFS
with f = 0.5 at h = 2 and operate as random walk for h
= 3. Moreover, in the random-walk phase, the number
of walkers k is determined by the outstanding query
messages or the effective search agents covered at the
h™" hop, that is, C.

Hence, the behavior of dynamic search changes
dynamically in terms of time (hop) to adapt to the
appropriate search properties in different phases.
Hopefully, in terms of SE, it would outperform other
agorithms in each phase thanks to the fine-tuned
design.

B. Performance Analysis

To anayze the characteristics of dynamic search, we
use the knowledge we have learned in previous
sections where we mathematically formulate SE. In
this section, we analyze only in the PLRG. The general
form of SE in (26) applies for dynamic search and C;, is
given by (23), except e-1= f1-G'o(1), €x=p=n = f-G'1(1)-
Ch1, 85n = Chen, @nd

(a) Search Efficiency

©
o

——k=5
80 —&—k=10 |
—=— k=100
70 BFS |
= —e—k=5(NU)
S 60 —A—k=10(NU)
e —8— k=100 (NU)
& 50 BFS(NU) [
o
o 40 S —
5 l——:.'!""—"——..__
§ 30 o —————=——¢
S ——
o~ ,— -
et -
10 /f/ /./ A
e
0 L L L L
1 2 3 4 5 6 7

(c) Coverage
10000

1000

100 /

10 /

Coverage

Hop

(b) Query Efficiency

250
200 S —
= /,/0—" __‘_____‘.__-—-A
S AT T
g 150 > =~
Ve
© o 7 J——
5 , e —m—
£ 100 — —
g 7 A et
I e
d
50 ~
e
s
0
1 2 3 4 5 6 7
Hop
(d) Query Message
1000000
——k=5
——k=10
100000 ———®—k=100
BFS
—e—k=5(NU)
o 10000 ———A—k=10(NU)
§ —8— k=100 (NU)
BFS (NU)
% 1000
g ’r—-—“"’._—_.—’—.
o /
100
. M
1
1 2 3 4 5 6 7

Hop

Fig. 9. Performance comparison by various metrics—(a) Search Efficiency, (b) Query Efficiency, (c) Coverage, and (d) QueryMsg—for RW of various number
of walkersk and for BFS in PLRG with R = 1% under uniform and non-uniform (NU) object distribution. Solid lines represent data of uniform distribution and
dashed-lines represent non-uniform distribution.

R(Vh) =1 fxp >G'o(®), forh=1

| (32)
i1- g frx G4 (Mgt for2£hEn

N A I
% (Rh)%l(%h)H orh>n

wherer is specified by (30).

As for the parameter design, we refer to the
observation in Fig. 6, where BFS performs the best in
the first two hops and lower fs for M-BFS achieve
more consistent performance in the long-term search.
Thus, we design two sets of parameters: the first one,
Dynamic-1, performs BFS in the first two hops and
random walks in the following phase (n = 2); the
second one, Dynamic-2, performs BFS in the first two
hops, M-BFS with f = 0.3 at the third hop, and then
random walks (n = 3). The number of walkers kin RW
is dynamically determined by the number of
outstanding query messages at hop n, i.e. Cy=n. The
detailed parameters are shown in Table 1.

We generate SE of Dynamic-1 and -2 and make
performance comparison with BFS, M-BFS (f = 0.3),
and RW (k = 100) in Fig. 8. We teke M-BFS with f =
0.3 in order to compare with Dynamic-2, which uses f;
= 0.3. And we use 100 as the number of walks for RW
since it generates the best performance (in Fig. 7).

In Fig. 8, we can observe that dynamic searches
outperform other algorithms especially in the
long-term search. They resemble BFS within h=2 as
expected and perform consistently as random walk
does, thus outperforming others in long-term search as
we design. Note that Dynamic-2 trades its performance
at h = 3 for its long-term efficiency by using a low
probability f = 0.3, and vice versafor Dynamic-1.

V1. NoN-UNIForM OBJECT DISTRIBUTION

Throughout our analysis, for simplicity we had
assumed the object distribution as uniform. However,
this assumption leads to the conclusion that QueryHits
equals to R-Coverage, which violates our argument in
Section II.LA that Coverage is only one of the
conditions to produce QueryHits. To support our
argument and justify our consideration of QueryHitsin
SE rather Coverage, we anadyze SE under a
non-uniform object distribution as proposed in [11].

In this object distribution, the probability a search
agent (vertex) owns certain object is proportional to its
degree d. Let O be the event that certain search agent
owns the targeted object, then the probability agent i
has the object is determined by

_ szhlxx
& jnd;
such that ?;P,(O) = RN, the total humber of objects

distributed in the network, where d; = m/i** [4].
Analytic Derivation: Since the object distribution is
not uniform, we cannot simply use R-Coverage to
represent QueryHits, which in fact is formulated by
QueryHits(h)

RO)u d (33)

R(0)>R Vi), forh=1

1
=

|
= (39
13 0 g RORV)PROR V), forh? 2
1i=lj=1

where P,(V,) isgiven by (22) and P;(O) by (33).

For SuccessRate, we generalize the form 1- (1- R)©
in (4) for the uniform distribution to deliver the onein
non-uniform distribution:

N h
SuccessRate=1- O O &- RO)R (V)i
i=1j=1
Now, equations (34), (35), and (24) suffice to solve SE
defined by (2) for BFS.

For RW, QueryHits(h) follows formula (34) derived
in BFS and QuccessRate follows (35) in BFS, where
Pi(Vy) isgiven by (31) and P,(O) by (33).

Search Efficiency Analysis. We plot analytic data in
Fig. 9, where the dashed-lines represent the data under
non-uniform (NU) object distribution. We use the same
colors to represent searches with identical parameters.
We find that SE in Fig. 9(a) is significantly increased
under NU distribution for both BFS and RW. The
performance increase is around 75% ~ 250% for RW a
h = 7 and 250% for BFS a h = 2. This can be
explained by the graph property that vertices tend to
connect to those with higher degrees [1, 2], which has
been validated by simulationsin [11].

Metrics Analysis: Fig. 9(c) indicates that every search
in question generates identicd Coverage under
different object distributions, and Fig. 9(d) draws the
same conclusion for QueryMsg. Therefore, these two
metrics totally fail to distinguish the performance
variance under NU distribution. Moreover, in Fig. 9(b),
Query Efficiency, defined by QueryHits/(QueryMsg-R),
explains the performance increase by indicating more

(35)

QueryHits found given that same number of QueryMsg.

In consequence, SE, in which QE is a critical el ement,
well characterizes the performance difference in the
two scenarios.

VII. ConcLusION

This paper defines a unified metric, Search
Efficiency (SE), addressing performance in searching
networks in terms of Query Efficiency, responsiveness,
and rdiability. ~Mathematica formulas and
approximations of SE and other existing metrics are
derived to characterize performance and provide

19

in-depth analysis for various search algorithms. We
justify the correctness of SE in performance evaluation
by analyzing it in an ideal topology, strictly binary tree.
We further demonstrate its ability to characterize
search performance in a large-scde PLRG the
real-world network topology.

We conclude that existing metrics either leads to
biased conclusions regarding performance or fail to
reflect performance variance when network conditions
change. Moreover, they tend to provide wrong
guidelines for the design of various agorithm
parameters (e.g. TTL, k, and f). The proposed metric,
SE, effectively characterizes the performance variance
under different network conditions and delivers
objective and in-depth performance analysis.

In the final analysis, the outstanding performance of
dynamic search, the new agorithm devised based on
the guidance of SE, manifests the efficacy of SE to
conduct design of search agorithms. Therefore, our
proposal of SE contributes to providing guidance for
the future design of searching networks.

REFERENCES
M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random
graphs with arbitrary degree distribution and their
applications. Phys. Rev. E, 64:026118, 2001.
L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A.
Huberman. Search in power-law networks. Phys. Rev. E,
64:046135, 2001.
L. A. Adamic. The small world web. Proceedings of the 3
European Conf. on Digital Libraries, volume 1696 of Lecture
notes in Computer Science, pages 443-452. Springer, 1999.
W. Aidllo, F. Chung, and L. Lu. A random graph model for
massive graphs. Proceedings of the thirty-second annual
ACM symposium on Theory of Computing, pages 171-180,
2000.
Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker. Search and
replication in unstructured peer-to-peer networks. ICS, June
2002.
B. Yang and H. GarciaMolina. Improving Search in
Peer-to-Peer Networks. ICDCS, July 2002.
D. Tsoumakos and N. Roussopoulos. Adaptive Probabilistic
Search (APS) for Peer-to-Peer Networks. Technical Report
CS-TR-4451, Un. of Maryland, 2003.
S. Milgram, The small-world problem. Psychology Today,
1:62-67, 1967.
S. Jiang, L. Guo and X. Zhang. LightFlood: an Efficient
Flooding Scheme for File Search in Unstructured
Peer-to-Peer Systems. ICPP, Oct. 2003.
B. F. Cooper and H. GarciasMolina. SIL: Modeling and
measuring scalable peer-to-peer search networks.
International Workshop on Databases, Information Systems
and Peer-to-Peer Computing, Berlin, 2003.
T. Lin, H. Wang, and J. Wang. Search Performance Analysis
and Robust Search Algorithm in Unstructured Peer-to-Peer
Networks. CCGrid, April 2004.
C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in
peer-to-peer networks. Infocom, March 2004.
[13] |. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.
Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. SIGCOMM, 2001.
V. Kaogeraki, D. Gunopulos and D. Zeinalipour-Yazti, A
Local Search Mechanism for Peer-to-Peer Networks, CIKM,
Nov. 2002.

(1

(2]

(3]

(4]

(9]

(6]
(7]

(8]
(9]

(10]

(11]

(12]

(14]

