
行政院國家科學委員會專題研究計畫 成果報告

子計畫二：對等式內容網路之搜尋與傳遞演算法及安全議題

研究(2/2)

計畫類別：整合型計畫

計畫編號： NSC93-2213-E-002-057-

執行期間： 93 年 08 月 01 日至 94 年 07 月 31 日

執行單位：國立臺灣大學電信工程學研究所

計畫主持人：林宗男

報告類型：完整報告

報告附件：出席國際會議研究心得報告及發表論文

處理方式：本計畫可公開查詢

中 華 民 國 94 年 9 月 28 日

行政院國家科學委員會補助專題研究計畫
■ 成 果 報 告
□期中進度報告

多媒體內容傳遞網路前瞻技術之研究-子計畫二：

對等式內容網路之搜尋與傳遞演算法及安全議題研究(2/2)

計畫類別：□ 個別型計畫 ■ 整合型計畫
計畫編號：NSC93－2213－E－002－057
執行期間：93年8月1日至94年7月31日

計畫主持人：林宗男教授
共同主持人：
計畫參與人員：

成果報告類型(依經費核定清單規定繳交)：□精簡報告 ■完整報告

本成果報告包括以下應繳交之附件：
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外，得立即公開查詢
 □涉及專利或其他智慧財產權，□一年□二年後可公開查詢

執行單位：國立台灣大學電信工程學研究所

中 華 民 國 九 十 四 年 九 月 二 十 七 日

 II

中文摘要

本研究計畫對於如何衡量搜尋網路效能的諸多重要議題做深入思考。現有的評量

標準可能會對於搜尋的效能做出偏頗的結論，或是對於演算法的設計提供錯誤的方

向。因此，我們定義一個統一的準則，稱之為「搜尋效能」(Search Efficiency, SE)，

以綜合廣泛的方式來處理搜尋效能的問題。SE的目標在於更充分的描述搜尋網路效能

的特性，並對未來的設計提供方向。我們首先在一個理想的網路拓墣，strictly binary

tree，藉由分析SE在兩種典型的搜尋方法，包括breadth first search以及random

walk，來驗證SE的正確性。另外，基於各種不同的網路狀況，我們進一步展現SE在

真實世界網路拓墣，power-law random graph，描述效能特性的能力。最後，基於SE

的分析，我們設計一個演算法，dynamic search。Dynamic search展現出的優異性能，

對於SE提供未來搜尋網路設計方向的能力做出絕佳示範。

關鍵詞

組合數學，圖形理論，決定型網路計算法。

 III

英文摘要

This project deliberates on various critical aspects in evaluating

searching networks. Existing metrics either draw biased conclusions regarding

search performance or provide wrong guidelines for algorithm design. We,

therefore, define a unified criterion, Search Efficiency (SE), to objectively

address search performance in a comprehensive manner. The goal of SE is to

better characterize performance of searching networks than existing metrics

do as well as to guide the design of future ones. We first validate the

correctness of SE in performance evaluation in an ideal graph, strictly binary

tree, by analyzing SE for two typical search methods, breadth first search and

random walk. We further show its strength in performance characterization in

the real-world topology, power-law random graph, under various network

conditions. We finally design an algorithm, dynamic search, based on SE

analysis. Its proved outstanding performance demonstrates the strength of SE

to provide guidance for the future design of searching networks.

Keywords

Combinatorics, Graph theory, Deterministic network calculus

 IV

目錄

中文摘要... II

英文摘要.. III

目錄.. IV

前言.. 1

研究目的.. 2

文獻探討.. 3

研究方法.. 4

結果與討論.. 12

結論與建議.. 16

參考文獻.. 17

附錄.. 18

 1

前言

Searching networks, including social networks and computer networks, play

an increasingly important role in human activity. A significant example is the

recently popular peer-to-peer (P2P) file-sharing systems, e.g. Gnutella and

KaZaA, where every peer collaboratively forms a searching network to locate

desired files by a real-time search. In the social context of searching networks,

people search their acquaintances for a particular item or expertise in a

specific domain. Their acquaintances in turn report whether they have the

desired item (expertise) or subsequently deliver this query to their next-step

acquaintances. In this fashion, a social searching network or so called human

acquaintanceship graph [8] is formed. Thus, a searching network is a system

where each participant contributes to the network and collaborates to help

others search targeted resources.

In a searching network, one of the critical issues is to maximize search

performance by choosing or designing algorithms used to perform the search

process. Novel algorithms [5, 6, 7] have been proposed to address different

search aspects, such as success rate, search cost, coverage, or number of hits,

but an objective and comprehensive evaluation metric is missing. As a result,

these algorithms tend to be designed with biased considerations and evaluated

in limited dimensions.

 2

研究目的

In summary, our objectives are stated as follows:

n We propose a unified and objective metric, Search Efficiency, for

evaluating searching networks and characterizing search algorithms.

n We mathematically analyze critical performance metrics—search

coverage, cost, success rate, number of hits, and SE—in searching

networks.

n We analytically evaluate various algorithms, including BFS, M-BFS, RW,

and a novel search, in SBT and PLRG, under uniform and non-uniform

object distributions.

n We devise a new search algorithm, dynamic search, based on the

knowledge from temporal SE analysis. It is shown to outperform other

existing ones, thus SE proved to provide solid guidance for algorithm

design.

 3

文獻探討

Breadth-first search (BFS) and random walk (RW) [5] are two basic and

typical search methods in searching networks. BFS inherently maximizes the

search speed and coverage but risks generating search queries in an

uncontrolled (exponential) manner. RW, on the other hand, minimizes search cost

but generates limited search coverage and results. As a result, one might draw

distinct conclusions about algorithm performance, if different metrics are

concerned. For example, Gkantsidis et al. [12] claimed RW performs better than

BFS in terms of number of hits and failure probability give the same search

cost for BFS and RW, but implicitly assumed an infinite search time for RW,

which is clearly unfair. Jiang et al. [9] evaluated their proposed search scheme

only by search coverage and message cost, leaving search speed and success rate

unchecked. Lv et al. [5] provided a spectrum of aspects on evaluation, but

analyzed them individually and still lacked an overall consideration.

Our work, therefore, deals with these one-sided perspectives and

synthesizes a unified search criterion, Search Efficiency (Section II), which

is critical particularly in P2P endeavors, to objectively evaluate search

algorithms and provide overall guidance for the design of searching networks.

With the unified metric SE, we first validate its correctness by deriving

its mathematic formulas for BFS and RW in a simple topology, strictly binary

tree (SBT), and analyzing whether the performance indicated by SE is reasonable.

Furthermore, we extend the results of Newman [1] and Adamic [2] and further

consider “redundancy” to analytically approximate SE for BFS, M-BFS [14],

and RW in a power-law random graph (PLRG), which is shown to be the real topology

of current searching networks. We thus validate SE in comparison with previous

simulation works [5, 9, 11], deliver the unique performance characterization

of SE, and provide in-depth analysis.

Throughout the analysis in this project, we compare various existing

metrics with SE to address their limitation and strength. We show that no matter

in SBT or PLRG, existing metrics draw biased conclusions regarding search

performance; they either provide one-sided considerations or deliver wrong

guidelines for algorithm design. Moreover, they fail to characterize

performance variance under distinct network conditions, such as object

replication ratios (Section III) and object distributions (Section VI).

In the final analysis, we propose a new algorithm, dynamic search, based

on the results of SE analysis. We prove this algorithm outperforms existing

ones and SE effectively provides guidance for algorithm design.

 4

研究方法

SEARCH EFFICIENCY

We argue that to best characterize the efficiency of any system is to measure its ability to transfer its

input to generate meaningful output, which is applicable in the evaluation of search methods performed in

any network. In a social network, the input of a search largely involves the cost required for querying

process including costs of phone calls, transportation, and even consulting. As for output, it should be

measured by searchers’ satisfaction in terms of the chance of success, the response speed, and quality of

responsive results. To clarify the definitions of and relations between these inputs and outputs in the

context of searching networks, we start a series of discussions about Search Efficiency with Query

Efficiency (QE).

A. Query Efficiency

In general, the most critical aspects of search performance involve the extent of search coverage (output)

[2] and the cost required to cover the network (input) [5]. By search coverage, denoted as Coverage or C,

we mean the number of distinct or effective peers visited by search queries, i.e. we do not count the

repeatedly visited ones. In addition, by cost, denoted by QueryMsg, we mean the number of queries

incurred, for it is a representative factor to which other cost factors (e.g. computer processing power or

costs for phone calls and transportation) tend to be proportional. Thus it is trivial to say a search which

uses S query messages to traverse distinct S nodes is perfectly or 100% efficient in terms of query

generation. Additionally, we can define a sort of efficiency as Coverage / QueryMsg. However, the end

goal of searching is not to cover as many nodes in the network as possible. Rather, its ultimate goal is to

search out the desired targets or objects, in which covering is only one of the adequate conditions (e.g.

cache or previous experience) for that end. This is true when the searching network is well-designed, e.g.

Chord [13], such that large search coverage is not necessary, or when object distribution is not uniform in

which directed search is preferred. We will show performance difference between Coverage and

QueryHits under non-uniform object distribution in Section VI.

Thus, we define QueryHits(t) as the number of desired objects found “at” search time t, which is

measured by the number of hops or depths, to quantify the yields of a search. We introduce the factor

search time t for the purpose of future discussion. Again, we might define the efficiency of queries as

? tQueryHits(t)/QueryMsg. However, this definition is sensitive to the population of desired objects, which

is irrelevant to the performance of search algorithms themselves and should be factored out. For this

purpose, we introduce the notion of object replication ratio R defined as the ratio of the number of targeted

objects to the network size (N). To cancel the population factor out, we normalize it with respect to R and

thus formulate Query Efficiency (QE) as

1 () 100%
(%) ,

TTL
t QueryHits t

Query Efficiency
QueryMsg R

== ×
∑ (1)

where TTL refers to the termination condition of searches, measured in hops. To exemplify, we suppose

a search consuming 100 messages to find 1 targeted object in a network with R of 1%, which reveals that

1% of nodes have the desired object. By (1), QE = 100% and we thus call it a perfectly query-efficient

search. Furthermore, if the objects are uniformly distributed in the network, we can reasonably claim that

 5

the search effectively covers 100 nodes (from 1/1% = 100) and this provides a clear view of the perfect

efficiency.

B. Responsiveness

One of the goals of searching, as addressed previously, is to find out possible objects while the other is

to find them as soon as possible. We define search response time, denoted by t, measured by discrete

numbers of hops, to evaluate the speed of searching objects, or responsiveness of a search. If a search

finds Q desired objects in its hth step or in its hth-nearest acquaintances, we denote it as QueryHits(t=h)=Q.

We argue that a search getting hits in a faster fashion delivers better users’ experience and should be

gauged as higher reputation. More specifically, responsiveness of a search should be inversely

proportional to the response time t. To consider this factor for SE, we may simply divide QE by the

weighted response time, which is computed by ? t[t·QueryHits(t)] / ? tQueryHits(t). However, this method

would generate unjust results. For example, we assume a search that uses 1000 messages to get 99 hits at t

= 1 and 1 hit at t = 100 with R = 10%, resulting in a weighted response time of (1·99+100·1)/100 or 1.99.

According to QE in (1), if we don’t count the hit at t = 100, the search is 99% query efficient, but it

dramatically reduces to 50.25% efficiency due to dividing by response time 1.99 when that hit is

calculated. This method unreasonably emphasizes the slow search hit. We argue that any query hits

contribute positively to the search itself despite long response time. We thus aggregate these responsive

hits rather than divide by the averaged response time to give efficiency as

1 () / 100%TTL
t QueryHits t t

QueryMsg R
= ×

∑
.

The efficiency of this example becomes 99.01% rather than 50.25%, where the last found hit contributes

0.01% to efficiency, rather than severely reducing it.

C. Reliability

The last concern is reliability, which is measured by SuccessRate in our design of SE. We introduce it so

as to further consider the satisfaction of user experience. Consider two searches (A and B), each

performing two runs, as shown in Table I. We assume all objects are found at the same response time. The

success rate of Search A is 50% while B is 100%.

TABLE I

SEARCH DATA FOR ILLUSTRATING SUCCESSRATE

 Search A Search B

 QueryMsg QueryHits QueryMsg QueryHits

Run1 100 2 100 1

Run2 100 0 100 1

Note that if we compute efficiency without SuccessRate, we will gain the same result for Search A and

B. However, one of the runs in Search A (Run 2) fails and thereby we neglect to measure the penalty of

user experience in Run 2. By introducing the term SuccessRate, SE of Search B remains the same, but SE

of A is halved. In this manner, it successfully addresses the user satisfaction level while the two searches

get the same number of hits at the same message costs. In sum, the term SuccessRate is aimed to

successfully measure the satisfaction level from users’ perspective. Finally, we define the overall criterion

 6

for evaluating searching by

1 ()TTL
t QueryHits t t SuccessRate

Search Efficiency
QueryMsg R

== ×
∑

,(2)

where TTL stands for the limit of search covering.

D. Limitations of Search Efficiency

The design goal of SE is to capture a simple but representative view of search performance. As a result,

it is possible to consider more complex considerations for search evaluation. We list three possible aspects

that are not covered by SE:

1) In the context of computer searching networks, the implementation of caches or DHT would

significantly improve the search performance, which SE could reflect. However, SE doesn’t consider the

additional resources (processing power or memory) required by performance-boosted mechanisms, such

as hash functions or caches, thus potentially overestimating the efficiency of algorithms adopting these

additional mechanisms.

2) The costs of searching each computer or peer should not be equally weighted. Consulting an

institution for recommendations is clearly more costly than asking a close friend, although we only assume

they are equally costly.

3) We make a limited measure of responsiveness by the factor t. For instance, it would be more flexible

using ta, a > 0, to adjust the extent to which search responsiveness is concerned.

By means of Search Efficiency, we can objectively evaluate performance of algorithms in searching

networks. In the remaining of this report, therefore, we aim to characterize various existing search

algorithms in terms of SE and demonstrate the biased view of existing search metrics compared with SE.

In the following sections, we will mathematically derive the formulas for SE in the context of three basic

search approaches, BFS, RW and M-BFS, the variation of BFS, in two representative topologies, the

strictly binary tree (SBT) as well as the power-law random graph (PLRG), in order to demonstrate the

strength of SE.

STRICTLY BINARY TREE

We assume an N-vertex strictly binary tree whose depth is about log2N and that the requester is at the

root such that the response time (t) of a query hit is the same as the depth (d) where the target object is

located. This tree is shown in Fig. 1. Moreover, for simplicity of analysis, we assume objects are uniformly

distributed in the tree or graph until Section VI.

 7

Before analyzing specific algorithms, we first prepare two common factors for the derivation. Firstly,

the number of objects searched out (QueryHits) is proportional to the search coverage C. Thus, we have

QueryHits R C= × . (3)

Secondly, the success rate of a search is also relevant to the search coverage. To begin with, we know

that each node owns the target object with a probability of R; that is, each node lacks the object with a

probability of 1- R. Suppose a search covers C vertices and thus the probability these C nodes share no

targeted object is (1- R)C. Inversely, the probability these C nodes share one or more objects, or

equivalently SuccessRate, is determined by

1 (1)CSuccessRate R= − − . (4)

A. Breadth First Search in Strictly Binary Tree (SBT)

Analytic Derivation: Breadth-first search (BFS) performs by broadcasting the received queries to all

neighbors except where the received query came from. Therefore, by the regular structure of a strictly

binary tree, the search coverage terminated at depth TTL is given by

1() 2tTTL
tCoverage C == ∑ (5)

Furthermore, the number of messages required to traverse the tree is the same as the quantity of its

search coverage due to the very nature of BFS. Thus, QueryMsg = C = ? t 2t. According to (1), (3), and (5),
we attain

1

1

2 100%
100%

2

tTTL
t

BFS tTTL
t

R
QueryEfficieny

R
=

=

⋅
= × =

∑
∑

 (6)

................................
Fig. 1. A strictly binary tree with the requester at the root

Depth 2

Depth 3

Depth 1

Requester

Search Efficiency for BFS

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10
Depth

Se
ar

ch
 E

ff
ic

ie
nc

y
(%

)

R=10%
R=5%
R=1%
R=0.5%
R=0.1%

 8

Fig. 2. Search Efficiency for BFS terminated by incremental TTLs (Depth)

in a strictly binary tree with various replication ratios R

Surprisingly, the formula of QEBFS yields a constant, 1 or 100%, regardless of the replication ratio R or

the termination depth TTL. By the definition of QE, this means that BFS is a perfectly query-efficient

search in the context of a binary tree; that is, BFS generates no redundant messages while traversing a

binary tree. The idea of redundancy will be further defined and discussed in the next section.
Finally, the general formula of SE defined in (2) for BFS in a binary tree is

() 1 21

1

2
1 1 .

2

tTTL
t

tTTL
t

BFS tTTL
t

t
SE R =∑=

=

 = × − −  
∑
∑

 (7)

The derived SEBFS is complex for one to gain insight of its properties due to the running variable t and

various possible values of R. To deliver a clearer understanding, we assume the replication ratio R << 1,

which is true in real searching networks, and approximate (7) as

()[] ∑
∑

∑
==

=

= ⋅=∑⋅−−×≅ TTL
t

tTTL
t

t
TTL
t

t

TTL
t

t

BFS tRR
t

SE 11
1

1 2211
2

2
.(8)

Search Efficiency Analysis: To exemplify SEBFS, we set R = 0.1% (far less than 1) and obtain by (8)
SETTL=1 = 0.2%, SETTL=2 = 0.4%, and SETTL=3 = 0.67%. Note SE is strictly increasing with respect to

TTL— SETTL=2 is exactly twice of SETTL=1 and SETTL=3 is more than three times of SETTL=1. The reasons are

two-fold. Firstly, as formula (6) shows, BFS in a binary tree is perfectly query-efficient, which means

every query positively contributes to its search coverage and in turn produces promising increase in SE.

Secondly, the speed at which query hits are returned is faster than the decay factor of response time t.

Furthermore, formula (8) tells that the benefits from BFS are increasingly proportionally to 2t while the

factor t is used to compensate the demerit of long search time, where the factor 2t tends to dominate. Thus

we conclude every query or every additional covered depth makes a positive contribution to the overall

performance despite the compensation of time, given that the replication ratio is much smaller than unity.

We present analytically-derived data of SEBFS, without approximation, by (7) with a spectrum of

parameters, Rs and TTLs, in Fig. 2. Firstly, we note that SEBFS for all Rs approaches some fixed level in the

long run. This fixed level, obtained by (7) for large t, is determined by the characteristic of the searched

topology— strictly binary tree— that is irrelevant to R. Second, the short-term increase of SE for high R

(10% or 5%) results from the perfect query efficiency and popularly distributed objects, while the

long-term decrease is due to the compensator of response time t. If we use the notion ta suggested in

Section II.D, where a is 0 or small for some application scenarios and responsiveness is of little concern,

SE in (7) will increasingly grow to some fixed level. Third, as for low R (0.1% or 0.5%), the results in Fig.

2 are reflective of the discussions in the above paragraph— SE is consistently increasing.

Note that, however, if we take TTL as infinity in (7), it gives zero seemingly contradicting our notion. In

reality, however, TTL cannot be infinity but is generally 7~10, in which SE still generates a fixed level of

performance reflecting the characteristics of SBT.

 9

Fig. 3. Performance comparison by various metrics— (a) Search Efficiency, (b) SuccessRate, (c) Coverage, and (d) QueryMsg— for RW of various number of

walkers k and for BFS in a strictly binary tree with R = 1%

Metrics Analysis: We compare two metrics, SE and Coverage in this scenario. The results of

Coverage of BFS can be referred to in Fig. 3(c). If we take only Coverage (C) into consideration, it

produces the same performance in spite of different extents of object replication (different values of R)

since C by (5) is independent of R. Hence, Coverage fails to characterize the performance variance in

searching networks with different replication ratios. On top of this, if the design goal is to maximize C,

then one may conclude that the choice of termination condition TTL is the larger the better— an

impractical conclusion. On the other hand, if we only inspect QueryMsg, we will get entirely opposite

conclusions. Therefore, Coverage and QueryMsg draw contradictory conclusions and fail to provide

comprehensive guidance.

In fact, by the indication of SE in Fig. 2, TTL should be small when R is large in order to avoid

unnecessary message propagation when R is large and to generate satisfactory results when R is small. In

sum, SE better characterizes performance and provides a better guideline of TTL design than Coverage

and QueryMsg.

B. Multiple Random Walks in Strictly Binary Tree

When it comes to RW search, we use multiple “walkers” to traverse the network and the number of

walkers is denoted by k. Each walker independently searches the network and randomly chooses one of

the next-hop neighbors to continue its journey to the limit of TTL hops.

(a) Search Efficiency

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Depth

Se
ar

ch
 E

ff
ic

ie
nc

y
(%

)
k=2
k=5
k=20
k=50
BFS

(b) Success Rate

1

10

100

1 2 3 4 5 6 7 8 9 10

Depth

Su
cc

es
s

R
at

e
(%

)

k=2
k=5
k=20
k=50
BFS

(c) Coverage

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Depth

C
ov

er
ag

e

k=2
k=5
k=20
k=50
BFS

(d) QueryMsg

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Depth

Q
ue

ry
M

sg

k=2
k=5
k=20
k=50
BFS

 10

Analytic Derivation: To begin with, we consider Coverage to derive SE. We know each vertex at

depth t is visited by a random walker with equal probability, 1/2t. Moreover, each random walker

independently makes its own decisions to traverse the topology. Thus, the probability that all k walkers

don’t visit a certain vertex is (1- 1/2t)k. As a result, at depth t, the average number of nodes visited

(Coverage per Depth) by k random walkers is given by the expectation

1() 2 1 (1)
2

t k
t tE X  = − −  

. (9)

By (3), QueryHits(t) = R·E(X)t. Moreover, the query messages of random walk are generated per hop for

each walker until terminated by the TTL limit, hence

QueryMsg = k·TTL. (10)

As a result, QE of k-random walk is

1 1() ()TTL TTL
t tt t

RW k

R E X E X
QE

k TTL R k TTL
= =

=

⋅
= =

⋅ ⋅ ⋅
∑ ∑ . (11)

Furthermore, from (4), we obtain

1 ()1 (1) 1 (1) .
TTL
t tE XCSuccessRate R R =∑= − − = − − (12)

Therefore, Search Efficiency for k-random walks is

() 1 ()1 () /
1 1 ,

TTL
t t

TTL
E Xtt

RW k

E X t
SE R

k TTL
=∑=

=
 = × − − ×  

∑ (13)

where E(X)t is determined by (9).

Search Efficiency Analysis: Assuming R = 1%, we generate a series of performance results of SE in

terms of various numbers of walkers k. We thus plot these results of SE (13), SuccessRate (12), Coverage

(9), and QueryMsg (10) for RW and BFS in Fig. 3.

In Fig. 3(a), we observe that all SEs of RW consistently increase with respect to the depth or search time.

Nevertheless, they all are smaller than that of BFS due to too many (redundant) query messages in the

local search, and the slow covering and low SuccessRate in the long-term search. Therefore, they fail to

utilize the regular structure of SBT. As for the number of walkers k, a too large (e.g. 50) or too small (e.g.

2) value of k gives degraded performance, thus resulting in strong sensitivity in the choice of k.

Metrics Analysis: By merely inspecting Fig. 3(b) for SuccessRate or (c) for Coverage, one may jump

to a conclusion that the number of walkers k is the larger the better. This aspect disregards the fact that

larger k would generate larger search cost, shown in Fig. 3(d), and potentially redundant query messages.

In fact, comparing RW of k = 50 and of k = 20, we find that their values of SuccessRate or Coverage

during depth t = 1~4 are almost the same while the former generates 2.5 times more search cost— the latter

search uses less search cost to produce similar search fruits. In consequence, in the short-term search, the

latter one should be gauged as better search. Thus the conclusion larger k is better for RW would be

fallacious. Therefore, we argue that neither SuccessRate nor Coverage is a good performance indicator.

Moreover, the long-term performance will inherent the short-term so that SE in Fig. 3(a) well

characterizes the better performance for RW of k = 20. Besides, RW of k = 2 would be the best search in

Fig. 3 if we try to minimize QueryMsg and scalability is the most concerned issue. Yet, this would be a

specious conjecture since it entirely flies in the face of the final end of search— to find the results

responsively.

 11

C. Summary of Search Efficiency in SBT

By the discussion in this section, we validate SE by showing 1) the 100% QEBFS indicates that BFS

perfectly utilizes the regular structure of SBT and generates no redundant messages, 2) the sagging SERW

reveals RW fails to take advantage of the structure of SBT, and 3) the fixed level of SEBFS in long-term

search effectively reflects the characteristics of SBT. The first two results can be confirmed by intuition

and thus verify the correctness of SE. The third observation further demonstrates the superiority of SE in

characterizing search performance under specific topologies.

Through metrics analysis, we have demonstrated that existing metrics, Coverage, QueryMsg, and

SuccessRate, are one-sided and may lead to biased conclusions. They cannot distinguish performance

variance in searching networks when replication ratios are distinct, and cannot provide reasonable

guidance in the design of parameters TTL and k while SE can.

 12

結果與討論

Evaluation metrics are critical in judging search performance. If Coverage is the only metric concerned,

one may conclude that BFS is the best search algorithm despite the overwhelming search cost. It

overlooks the system load and the aspect of operation efficiency. Moreover, if search cost is the most

important criterion of a searching network, RW would be the best appropriate algorithm for that system.

However, it fails to evaluate the ability to achieve the final end of searching networks— to search out

targeted results responsively. In consequence, biased metrics may draw biased conclusions and provide

wrong guidelines for system design. Thus, we endeavor to devise a new search based on the

comprehensive metric, SE, in order to demonstrate the strength of SE. In addition to its strength in

performance characterization and reasoning, we show the strength of SE to serve as the design guidance of

the invented algorithm— dynamic search.

We attempt to utilize the merits of the three analyzed algorithms from the viewpoint of SE for the new

search. Accordingly, on the basis of the conclusions drawn in Section IV.E, the new algorithm should

resemble BFS in short-term searches, mimic RW for long-term propagation, and be able to fine tune the

performance through certain parameters as used in M-BFS. Therefore, we separate the search process into

two phases. In the threshold phase (local space), the search is similar to BFS with some dynamic tuning

forwarding probabilities; in the ultimate phase (long-term space), it operates as the random walk search to

consistently retain the performance gained from the threshold phase. The detailed operations are described

in the following subsection.

A. Operation

Dynamic search starts as a probabilistic search with dynamic fraction parameter fh at different hops h

when h = n. For h > n, it switches to the random walk search. In the threshold phase, it operates as M-BFS

but with dynamic fh, for h = 1, 2, … , n. For example, for dynamic search with n = 2, f1 = 1, and f2 = 0.5,

the search agents at h = 1 perform BFS, perform M-BFS with f = 0.5 at h = 2 and operate as random walk

for h = 3. Moreover, in the random-walk phase, the number of walkers k is determined by the outstanding

query messages or the effective search agents covered at the hth hop, that is, Ch.

Hence, the behavior of dynamic search changes dynamically in terms of time (hop) to adapt to the

appropriate search properties in different phases. Hopefully, in terms of SE, it would outperform other

algorithms in each phase thanks to the fine-tuned design.

B. Performance Analysis

To analyze the characteristics of dynamic search, we use the knowledge we have learned in previous

sections where we mathematically formulate SE. In this section, we analyze only in the PLRG. The general

form of SE in (26) applies for dynamic search and Ch is given by (23), except eh=1 = f1·G'0(1), e2=h=n =

fh·G'1(1)· Ch-1, eh>n = Ch=n, and

 13

Fig. 9. Performance comparison by various metrics— (a) Search Efficiency, (b) Query Efficiency, (c) Coverage, and (d) QueryMsg— for RW of various number

of walkers k and for BFS in PLRG with R = 1% under uniform and non-uniform (NU) object distribution. Solid lines represent data of uniform distribution and

dashed-lines represent non-uniform distribution.

()
1

0

1

1

() ' (1), for 1

1 1 ' (1) , for 2

() 1 1 , for ,

h

h

i h h i
C

h i

k
i h r

P V f p G h

f p G h n

P R h n

−

= ⋅ ⋅ =

 − − ⋅ ⋅ ≤ ≤  
  

⋅ − − >  
 

 (14)

where rh is specified by (12).

As for the parameter design, we refer to the observation in Fig. 6, where BFS performs the best in the

first two hops and lower fs for M-BFS achieve more consistent performance in the long-term search. Thus,

we design two sets of parameters: the first one, Dynamic-1, performs BFS in the first two hops and

random walks in the following phase (n = 2); the second one, Dynamic-2, performs BFS in the first two

hops, M-BFS with f = 0.3 at the third hop, and then random walks (n = 3). The number of walkers k in RW

is dynamically determined by the number of outstanding query messages at hop n, i.e. Ch=n. The detailed

parameters are shown in Table II.

We generate SE of Dynamic-1 and -2 and make performance comparison with BFS, M-BFS (f = 0.3),

and RW (k = 100) in Fig. 8. We take M-BFS with f = 0.3 in order to compare with Dynamic-2, which uses

f3 = 0.3. And we use 100 as the number of walks for RW since it generates the best performance (in Fig.

7).

(a) Search Efficiency

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7

Hop

Se
ar

ch
 E

ff
ic

ie
nc

y
(%

)

k = 5
k = 10
k = 100
BFS
k = 5 (NU)
k = 10 (NU)
k = 100 (NU)
BFS (NU)

(b) Query Efficiency

0

50

100

150

200

250

1 2 3 4 5 6 7

Hop

Q
ue

rt
 E

ff
ic

ie
nc

y
(%

)

(c) Coverage

1

10

100

1000

10000

1 2 3 4 5 6 7

Hop

C
ov

er
ag

e

(d) Query Message

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7

Hop

Q
ue

ry
 M

es
sa

ge

k = 5
k = 10
k = 100
BFS
k = 5 (NU)
k = 10 (NU)
k = 100 (NU)
BFS (NU)

 14

In Fig. 8, we can observe that dynamic searches outperform other algorithms especially in the long-term

search. They resemble BFS within h=2 as expected and perform consistently as random walk does, thus

outperforming others in long-term search as we design. Note that Dynamic-2 trades its performance at h =

3 for its long-term efficiency by using a low probability f = 0.3, and vice versa for Dynamic-1.

NON-UNIFORM OBJECT DISTRIBUTION

Throughout our analysis, for simplicity we had assumed the object distribution as uniform. However,

this assumption leads to the conclusion that QueryHits equals to R·Coverage, which violates our argument

in Section II.A that Coverage is only one of the conditions to produce QueryHits. To support our argument

and justify our consideration of QueryHits in SE rather Coverage, we analyze SE under a non-uniform

object distribution as proposed in [11].

In this object distribution, the probability a search agent (vertex) owns certain object is proportional to

its degree d. Let O be the event that certain search agent owns the targeted object, then the probability

agent i has the object is determined by

1

() ,i
i i N

jj

R N d
P O d

d=

⋅ ⋅
∝ =

∑
 (15)

such that ? iPi(O) = R·N, the total number of objects distributed in the network, where di = m / i1/t [4].

Analytic Derivation: Since the object distribution is not uniform, we cannot simply use R·Coverage

to represent QueryHits, which in fact is formulated by

1
1

1 1

 ()

() (), for 1

1 () () () (), for 2,

N
i i h

i
hN

i i j i i h
i j

QueryHits h

P O P V h

P O P V P O P V h

=
−

= =


⋅ =

= 
  − ⋅ ≥ 


∑

∑ ∏

 (16)

where Pi(Vh) is given by (5) and Pi(O) by (15).

For SuccessRate, we generalize the form 1- (1- R)C in (4) for the uniform distribution to deliver the one

in non-uniform distribution:

1 1
1 1 () () .

N h

i i j
i j

SuccessRate P O P V
= =

 = − − ∏ ∏ (17)

Now, equations (16), (17), and (6) suffice to solve SE defined by (2) for BFS.

For RW, QueryHits(h) follows formula (16) derived in BFS and SuccessRate follows (17) in BFS, where

Pi(Vh) is given by (13) and Pi(O) by (15).

Search Efficiency Analysis: We plot analytic data in Fig. 9, where the dashed-lines represent the

data under non-uniform (NU) object distribution. We use the same colors to represent searches with

identical parameters. We find that SE in Fig. 9(a) is significantly increased under NU distribution for both

BFS and RW. The performance increase is around 75% ~ 250% for RW at h = 7 and 250% for BFS at h =

2. This can be explained by the graph property that vertices tend to connect to those with higher degrees [1,

2], which has been validated by simulations in [11].

Metrics Analysis: Fig. 9(c) indicates that every search in question generates

identical Coverage under different object distributions, and Fig. 9(d) draws the same

 15

conclusion for QueryMsg. Therefore, these two metrics totally fail to distinguish the

performance variance under NU distribution. Moreover, in Fig. 9(b), Query Efficiency,

defined by QueryHits/(QueryMsg?R), explains the performance increase by indicating

more QueryHits found given that same number of QueryMsg. In consequence, SE, in which

QE is a critical element, well characterizes the performance difference in the two

scenarios.

 16

結論與建議

In this project we define a unified metric, Search Efficiency (SE),

addressing performance in searching networks in terms of Query Efficiency,

responsiveness, and reliability. Mathematical formulas and approximations of

SE and other existing metrics are derived to characterize performance and

provide in-depth analysis for various search algorithms. We justify the

correctness of SE in performance evaluation by analyzing it in an ideal topology,

strictly binary tree. We further demonstrate its ability to characterize search

performance in a large-scale PLRG, the real-world network topology.

We conclude that existing metrics either leads to biased conclusions

regarding performance or fail to reflect performance variance when network

conditions change. Moreover, they tend to provide wrong guidelines for the

design of various algorithm parameters (e.g. TTL, k, and f). The proposed metric,

SE, effectively characterizes the performance variance under different network

conditions and delivers objective and in-depth performance analysis.

In the final analysis, the outstanding performance of dynamic search, the

new algorithm devised based on the guidance of SE, manifests the efficacy of

SE to conduct design of search algorithms. Therefore, our proposal of SE

contributes to providing guidance for the future design of searching networks.

 17

參考文獻

[1] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree
distribution and their applications. Phys. Rev. E, 64:026118, 2001.

[2] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman. Search in power-law
networks. Phys. Rev. E, 64:046135, 2001.

[3] L. A. Adamic. The small world web. Proceedings of the 3rd European Conf. on Digital
Libraries, volume 1696 of Lecture notes in Computer Science, pages 443-452. Springer,
1999.

[4] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. Proceedings of
the thirty-second annual ACM symposium on Theory of Computing, pages 171-180, 2000.

[5] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker. Search and replication in unstructured
peer-to-peer networks. ICS, June 2002.

[6] B. Yang and H. Garcia-Molina. Improving Search in Peer-to-Peer Networks. ICDCS, July
2002.

[7] D. Tsoumakos and N. Roussopoulos. Adaptive Probabilistic Search (APS) for Peer-to-Peer
Networks. Technical Report CS-TR-4451, Un. of Maryland, 2003.

[8] S. Milgram, The small-world problem. Psychology Today, 1:62-67, 1967.
[9] S. Jiang, L. Guo and X. Zhang. LightFlood: an Efficient Flooding Scheme for File Search in

Unstructured Peer-to-Peer Systems. ICPP, Oct. 2003.
[10] B. F. Cooper and H. Garcia-Molina. SIL: Modeling and measuring scalable peer-to-peer

search networks. International Workshop on Databases, Information Systems and
Peer-to-Peer Computing, Berlin, 2003.

[11] T. Lin, H. Wang, and J. Wang. Search Performance Analysis and Robust Search Algorithm in
Unstructured Peer-to-Peer Networks. CCGrid, April 2004.

[12] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer networks. Infocom,
March 2004.

[13] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. SIGCOMM, 2001.

[14] V. Kalogeraki, D. Gunopulos and D. Zeinalipour-Yazti, A Local Search Mechanism for
Peer-to-Peer Networks, CIKM, Nov. 2002.

 18

附錄

Hsinping Wand and Tsungnan Lin, “On Efficiency in Searching Networks,”

Infocom 2005.

On Efficiency in Searching Networks
Hsinping Wang and Tsungnan Lin

Graduate Institute of Communication Engineering
National Taiwan University

Taipei, 10617 Taiwan
{hpwang, tsungnan}@ntu.edu.tw

Abstract-This paper deliberates on various critical aspects
in evaluating searching networks. Existing metrics either draw
biased conclusions regarding search performance or provide
wrong guidelines for algorithm design. We, therefore, define a
unified criterion, Search Efficiency (SE), to objectively address
search performance in a comprehensive manner. The goal of
SE is to better characterize performance of searching networks
than existing metrics do as well as to guide the design of future
ones. We first validate the correctness of SE in performance
evaluation in an ideal graph, strictly binary tree, by analyzing
SE for two typical search methods, breadth first search and
random walk. We further show its strength in performance
characterization in the real-world topology, power-law random
graph, under various network conditions. We finally design an
algorithm, dynamic search, based on SE analysis. Its proved
outstanding performance demonstrates the strength of SE to
provide guidance for the future design of searching networks.

Index terms— Combinatorics, Graph theory, Deterministic

network calculus

I. INTRODUCTION

Searching networks, including social networks and

computer networks, play an increasingly important role in
human activity. A significant example is the recently popular
peer-to-peer (P2P) file-sharing systems, e.g. Gnutella and
KaZaA, where every peer collaboratively forms a searching
network to locate desired files by a real-time search. In the
social context of searching networks, people search their
acquaintances for a particular item or expertise in a specific
domain. Their acquaintances in turn report whether they
have the desired item (expertise) or subsequently deliver this
query to their next-step acquaintances. In this fashion, a
social searching network or so called human
acquaintanceship graph [8] is formed. Thus, a searching
network is a system where each participant contributes to the
network and collaborates to help others search targeted
resources.

In a searching network, one of the critical issues is to
maximize search performance by choosing or designing
algorithms used to perform the search process. Novel
algorithms [5, 6, 7] have been proposed to address different
search aspects, such as success rate, search cost, coverage,
or number of hits, but an objective and comprehensive
evaluation metric is missing. As a result, these algorithms
tend to be designed with biased considerations and evaluated
in limited dimensions.

Breadth-first search (BFS) and random walk (RW) [5] are

two basic and typical search methods in searching networks.
BFS inherently maximizes the search speed and coverage
but risks generating search queries in an uncontrolled
(exponential) manner. RW, on the other hand, minimizes
search cost but generates limited search coverage and results.
As a result, one might draw distinct conclusions about
algorithm performance, if different metrics are concerned.
For example, Gkantsidis et al. [12] claimed RW performs
better than BFS in terms of number of hits and failure
probability give the same search cost for BFS and RW, but
implicitly assumed an infinite search time for RW, which is
clearly unfair. Jiang et al. [9] evaluated their proposed search
scheme only by search coverage and message cost, leaving
search speed and success rate unchecked. Lv et al. [5]
provided a spectrum of aspects on evaluation, but analyzed
them individually and still lacked an overall consideration.

Our work, therefore, deals with these one-sided
perspectives and synthesizes a unified search criterion,
Search Efficiency (Section II), which is critical particularly
in P2P endeavors, to objectively evaluate search algorithms
and provide overall guidance for the design of searching
networks.

With the unified metric SE, we first validate its
correctness by deriving its mathematic formulas for BFS and
RW in a simple topology, strictly binary tree (SBT), and
analyzing whether the performance indicated by SE is
reasonable. Furthermore, we extend the results of Newman
[1] and Adamic [2] and further consider “redundancy” to
analytically approximate SE for BFS, M-BFS [14], and RW
in a power-law random graph (PLRG), which is shown to be
the real topology of current searching networks. We thus
validate SE in comparison with previous simulation works [5,
9, 11], deliver the unique performance characterization of SE,
and provide in-depth analysis.

Throughout the analysis in this paper, we compare various
existing metrics with SE to address their limitation and
strength. We show that no matter in SBT or PLRG, existing
metrics draw biased conclusions regarding search
performance; they either provide one-sided considerations or
deliver wrong guidelines for algorithm design. Moreover,
they fail to characterize performance variance under distinct
network conditions, such as object replication ratios (Section
III) and object distributions (Section VI).

In the final analysis, we propose a new algorithm,
dynamic search, based on the results of SE analysis. We
prove this algorithm outperforms existing ones and SE
effectively provides guidance for algorithm design.

This work was supported in part by National Science Council under grant
93-2213-E-002-057, and by Quanta Computer Inc. under grant 092E0048.

2

In summary, our contributions are stated as follows:
‧ We propose a unified and objective metric, Search

Efficiency, for evaluating searching networks and
characterizing search algorithms.
‧ We mathematically analyze critical performance

metrics— search coverage, cost, success rate, number
of hits, and SE— in searching networks.
‧ We analytically evaluate various algorithms, including

BFS, M-BFS, RW, and a novel search, in SBT and
PLRG, under uniform and non-uniform object
distributions.
‧ We devise a new search algorithm, dynamic search,

based on the knowledge from temporal SE analysis. It
is shown to outperform other existing ones, thus SE
proved to provide solid guidance for algorithm design.

This rest of this paper first follows with the definition and
explanation of Search Efficiency in Section II. We then
analytically derive the general form of SE and provide
in-depth discussion on the performance of BFS and RW in
SBT in Section III and PLRG in Section IV. Section V
presents the novel algorithm, dynamic search. We analyze
algorithms under non-uniform object distribution in Section
VI, then finally conclude in Section VII.

II. SEARCH EFFICIENCY

We argue that to best characterize the efficiency of

any system is to measure its ability to transfer its input
to generate meaningful output, which is applicable in
the evaluation of search methods performed in any
network. In a social network, the input of a search
largely involves the cost required for querying process
including costs of phone calls, transportation, and even
consulting. As for output, it should be measured by
searchers’ satisfaction in terms of the chance of success,
the response speed, and quality of responsive results.
To clarify the definitions of and relations between
these inputs and outputs in the context of searching
networks, we start a series of discussions about Search
Efficiency with Query Efficiency (QE).

A. Query Efficiency

In general, the most critical aspects of search
performance involve the extent of search coverage
(output) [2] and the cost required to cover the network
(input) [5]. By search coverage, denoted as Coverage
or C, we mean the number of distinct or effective peers
visited by search queries, i.e. we do not count the
repeatedly visited ones. In addition, by cost, denoted
by QueryMsg, we mean the number of queries incurred,
for it is a representative factor to which other cost
factors (e.g. computer processing power or costs for
phone calls and transportation) tend to be proportional.
Thus it is trivial to say a search which uses S query
messages to traverse distinct S nodes is perfectly or
100% efficient in terms of query generation.
Additionally, we can define a sort of efficiency as
Coverage / QueryMsg. However, the end goal of
searching is not to cover as many nodes in the network
as possible. Rather, its ultimate goal is to search out the

desired targets or objects, in which covering is only
one of the adequate conditions (e.g. cache or previous
experience) for that end. This is true when the
searching network is well-designed, e.g. Chord [13],
such that large search coverage is not necessary, or
when object distribution is not uniform in which
directed search is preferred. We will show performance
difference between Coverage and QueryHits under
non-uniform object distribution in Section VI.

Thus, we define QueryHits(t) as the number of
desired objects found “at” search time t, which is
measured by the number of hops or depths, to quantify
the yields of a search. We introduce the factor search
time t for the purpose of future discussion. Again, we
might define the efficiency of queries as
? tQueryHits(t)/QueryMsg. However, this definition is
sensitive to the population of desired objects, which is
irrelevant to the performance of search algorithms
themselves and should be factored out. For this
purpose, we introduce the notion of object replication
ratio R defined as the ratio of the number of targeted
objects to the network size (N). To cancel the
population factor out, we normalize it with respect to R
and thus formulate Query Efficiency (QE) as

1 () 100%
(%) ,

TTL
t QueryHits t

Query Efficiency
QueryMsg R

== ×
∑ (1)

where TTL refers to the termination condition of
searches, measured in hops. To exemplify, we suppose
a search consuming 100 messages to find 1 targeted
object in a network with R of 1%, which reveals that
1% of nodes have the desired object. By (1), QE =
100% and we thus call it a perfectly query-efficient
search. Furthermore, if the objects are uniformly
distributed in the network, we can reasonably claim
that the search effectively covers 100 nodes (from
1/1% = 100) and this provides a clear view of the
perfect efficiency.

B. Responsiveness

One of the goals of searching, as addressed
previously, is to find out possible objects while the
other is to find them as soon as possible. We define
search response time, denoted by t, measured by
discrete numbers of hops, to evaluate the speed of
searching objects, or responsiveness of a search. If a
search finds Q desired objects in its hth step or in its
hth-nearest acquaintances, we denote it as
QueryHits(t=h)=Q.

We argue that a search getting hits in a faster fashion
delivers better users’ experience and should be gauged
as higher reputation. More specifically, responsiveness
of a search should be inversely proportional to the
response time t. To consider this factor for SE, we may
simply divide QE by the weighted response time,
which is computed by ? t[t·QueryHits(t)] /
? tQueryHits(t). However, this method would generate
unjust results. For example, we assume a search that

uses 1000 messages to get 99 hits at t = 1 and 1 hit at t
= 100 with R = 10%, resulting in a weighted response
time of (1·99+100·1)/100 or 1.99. According to QE in
(1), if we don’t count the hit at t = 100, the search is
99% query efficient, but it dramatically reduces to
50.25% efficiency due to dividing by response time
1.99 when that hit is calculated. This method
unreasonably emphasizes the slow search hit. We argue
that any query hits contribute positively to the search
itself despite long response time. We thus aggregate
these responsive hits rather than divide by the averaged
response time to give efficiency as

 1 () / 100%TTL
t QueryHits t t

QueryMsg R
= ×

∑
.

The efficiency of this example becomes 99.01% rather
than 50.25%, where the last found hit contributes
0.01% to efficiency, rather than severely reducing it.

C. Reliability

The last concern is reliability, which is measured by
SuccessRate in our design of SE. We introduce it so as
to further consider the satisfaction of user experience.
Consider two searches (A and B), each performing two
runs, as shown in Table I. We assume all objects are
found at the same response time. The success rate of
Search A is 50% while B is 100%.

TABLE I
SEARCH DATA FOR ILLUSTRATING SUCCESSRATE

 Search A Search B
 QueryMsg QueryHits QueryMsg QueryHits
Run1 100 2 100 1
Run2 100 0 100 1

Note that if we compute efficiency without
SuccessRate, we will gain the same result for Search A
and B. However, one of the runs in Search A (Run 2)
fails and thereby we neglect to measure the penalty of
user experience in Run 2. By introducing the term
SuccessRate, SE of Search B remains the same, but SE
of A is halved. In this manner, it successfully addresses
the user satisfaction level while the two searches get
the same number of hits at the same message costs. In
sum, the term SuccessRate is aimed to successfully
measure the satisfaction level from users’ perspective.
Finally, we define the overall criterion for evaluating
searching by

 1 ()TTL
t QueryHits t t SuccessRate

Search Efficiency
QueryMsg R

== ×
∑

,(2)

where TTL stands for the limit of search covering.

D. Limitations of Search Efficiency

The design goal of SE is to capture a simple but
representative view of search performance. As a result,
it is possible to consider more complex considerations
for search evaluation. We list three possible aspects
that are not covered by SE:

1) In the context of computer searching networks,
the implementation of caches or DHT would
significantly improve the search performance, which
SE could reflect. However, SE doesn’t consider the
additional resources (processing power or memory)
required by performance-boosted mechanisms, such as
hash functions or caches, thus potentially
overestimating the efficiency of algorithms adopting
these additional mechanisms.

2) The costs of searching each computer or peer
should not be equally weighted. Consulting an
institution for recommendations is clearly more costly
than asking a close friend, although we only assume
they are equally costly.

3) We make a limited measure of responsiveness by
the factor t. For instance, it would be more flexible
using ta, a > 0, to adjust the extent to which search
responsiveness is concerned.

By means of Search Efficiency, we can objectively

evaluate performance of algorithms in searching
networks. In the remaining of this paper, therefore, we
aim to characterize various existing search algorithms
in terms of SE and demonstrate the biased view of
existing search metrics compared with SE. In the
following sections, we will mathematically derive the
formulas for SE in the context of three basic search
approaches, BFS, RW and M-BFS, the variation of
BFS, in two representative topologies, the strictly
binary tree (SBT) as well as the power-law random
graph (PLRG), in order to demonstrate the strength of
SE.

IV. STRICTLY BINARY TREE

We assume an N-vertex strictly binary tree whose

depth is about log2N and that the requester is at the root
such that the response time (t) of a query hit is the
same as the depth (d) where the target object is located.
This tree is shown in Fig. 1. Moreover, for simplicity
of analysis, we assume objects are uniformly
distributed in the tree or graph until Section VI.

Before analyzing specific algorithms, we first
prepare two common factors for the derivation. Firstly,
the number of objects searched out (QueryHits) is
proportional to the search coverage C. Thus, we have

QueryHits R C= × . (3)

................................

Fig. 1. A strictly binary tree with the requester at the root

Depth 2

Depth 3

Depth 1

Requester

4

Fig. 2. Search Efficiency for BFS terminated by incremental TTLs (Depth)
in a strictly binary tree with various replication ratios R

Secondly, the success rate of a search is also relevant
to the search coverage. To begin with, we know that
each node owns the target object with a probability of
R; that is, each node lacks the object with a probability
of 1- R. Suppose a search covers C vertices and thus
the probability these C nodes share no targeted object
is (1- R)C. Inversely, the probability these C nodes
share one or more objects, or equivalently SuccessRate,
is determined by
 1 (1)CSuccessRate R= − − . (4)

A. Breadth First Search in Strictly Binary Tree (SBT)

Analytic Derivation: Breadth-first search (BFS)

performs by broadcasting the received queries to all
neighbors except where the received query came from.
Therefore, by the regular structure of a strictly binary
tree, the search coverage terminated at depth TTL is
given by
 1() 2tTTL

tCoverage C == ∑ (5)

Furthermore, the number of messages required to
traverse the tree is the same as the quantity of its
search coverage due to the very nature of BFS. Thus,
QueryMsg = C = ? t 2t. According to (1), (3), and (5),
we attain

 1

1

2 100%
100%

2

tTTL
t

BFS tTTL
t

R
QueryEfficieny

R
=

=

⋅
= × =

∑
∑

 (6)

Surprisingly, the formula of QEBFS yields a constant,
1 or 100%, regardless of the replication ratio R or the
termination depth TTL. By the definition of QE, this
means that BFS is a perfectly query-efficient search in
the context of a binary tree; that is, BFS generates no
redundant messages while traversing a binary tree. The
idea of redundancy will be further defined and
discussed in the next section.

Finally, the general formula of SE defined in (2) for
BFS in a binary tree is

 () 1 21

1

2
1 1 .

2

tTTL
t

tTTL
t

BFS tTTL
t

t
SE R =∑=

=

 = × − −  
∑
∑

 (7)

The derived SEBFS is complex for one to gain insight
of its properties due to the running variable t and
various possible values of R. To deliver a clearer
understanding, we assume the replication ratio R << 1,
which is true in real searching networks, and
approximate (7) as

()[] ∑
∑

∑
==

=

= ⋅=∑⋅−−×≅ TTL
t

tTTL
t

t
TTL
t

t

TTL
t

t

BFS tRR
t

SE 11
1

1 2211
2

2
.(8)

Search Efficiency Analysis: To exemplify SEBFS, we
set R = 0.1% (far less than 1) and obtain by (8) SETTL=1
= 0.2%, SETTL=2 = 0.4%, and SETTL=3 = 0.67%. Note SE
is strictly increasing with respect to TTL— SETTL=2 is
exactly twice of SETTL=1 and SETTL=3 is more than three
times of SETTL=1. The reasons are two-fold. Firstly, as
formula (6) shows, BFS in a binary tree is perfectly
query-efficient, which means every query positively
contributes to its search coverage and in turn produces
promising increase in SE. Secondly, the speed at which
query hits are returned is faster than the decay factor of
response time t. Furthermore, formula (8) tells that the
benefits from BFS are increasingly proportionally to 2t
while the factor t is used to compensate the demerit of
long search time, where the factor 2t tends to dominate.
Thus we conclude every query or every additional
covered depth makes a positive contribution to the
overall performance despite the compensation of time,
given that the replication ratio is much smaller than
unity.

We present analytically-derived data of SEBFS,
without approximation, by (7) with a spectrum of
parameters, Rs and TTLs, in Fig. 2. Firstly, we note that
SEBFS for all Rs approaches some fixed level in the
long run. This fixed level, obtained by (7) for large t, is
determined by the characteristic of the searched
topology— strictly binary tree— that is irrelevant to R.
Second, the short-term increase of SE for high R (10%
or 5%) results from the perfect query efficiency and
popularly distributed objects, while the long-term
decrease is due to the compensator of response time t.
If we use the notion ta suggested in Section II.D, where
a is 0 or small for some application scenarios and
responsiveness is of little concern, SE in (7) will
increasingly grow to some fixed level. Third, as for
low R (0.1% or 0.5%), the results in Fig. 2 are
reflective of the discussions in the above
paragraph— SE is consistently increasing.

Note that, however, if we take TTL as infinity in (7),
it gives zero seemingly contradicting our notion. In
reality, however, TTL cannot be infinity but is
generally 7~10, in which SE still generates a fixed
level of performance reflecting the characteristics of
SBT.

Search Efficiency for BFS

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10
Depth

Se
ar

ch
 E

ff
ic

ie
nc

y
(%

)

R=10%
R=5%
R=1%
R=0.5%
R=0.1%

Fig. 3. Performance comparison by various metrics— (a) Search Efficiency, (b) SuccessRate, (c) Coverage, and (d) QueryMsg— for RW of various number of
walkers k and for BFS in a strictly binary tree with R = 1%

Metrics Analysis: We compare two metrics, SE and
Coverage in this scenario. The results of Coverage of
BFS can be referred to in Fig. 3(c). If we take only
Coverage (C) into consideration, it produces the same
performance in spite of different extents of object
replication (different values of R) since C by (5) is
independent of R. Hence, Coverage fails to
characterize the performance variance in searching
networks with different replication ratios. On top of
this, if the design goal is to maximize C, then one may
conclude that the choice of termination condition TTL
is the larger the better— an impractical conclusion. On
the other hand, if we only inspect QueryMsg, we will
get entirely opposite conclusions. Therefore, Coverage
and QueryMsg draw contradictory conclusions and fail
to provide comprehensive guidance.

In fact, by the indication of SE in Fig. 2, TTL should
be small when R is large in order to avoid unnecessary
message propagation when R is large and to generate
satisfactory results when R is small. In sum, SE better
characterizes performance and provides a better
guideline of TTL design than Coverage and QueryMsg.

B. Multiple Random Walks in Strictly Binary Tree

When it comes to RW search, we use multiple
“walkers” to traverse the network and the number of

walkers is denoted by k. Each walker independently
searches the network and randomly chooses one of the
next-hop neighbors to continue its journey to the limit
of TTL hops.

Analytic Derivation: To begin with, we consider
Coverage to derive SE. We know each vertex at depth t
is visited by a random walker with equal probability,
1/2t. Moreover, each random walker independently
makes its own decisions to traverse the topology. Thus,
the probability that all k walkers don’t visit a certain
vertex is (1- 1/2t)k. As a result, at depth t, the average
number of nodes visited (Coverage per Depth) by k
random walkers is given by the expectation

1() 2 1 (1)
2

t k
t tE X  = − −  

. (9)

By (3), QueryHits(t) = R·E(X)t. Moreover, the query
messages of random walk are generated per hop for
each walker until terminated by the TTL limit, hence

QueryMsg = k·TTL. (10)
As a result, QE of k-random walk is

1 1() ()TTL TTL
t tt t

RW k

R E X E X
QE

k TTL R k TTL
= =

=

⋅
= =

⋅ ⋅ ⋅
∑ ∑ . (11)

Furthermore, from (4), we obtain
1 ()1 (1) 1 (1) .

TTL
t tE XCSuccessRate R R =∑= − − = − − (12)

Therefore, Search Efficiency for k-random walks is

(a) Search Efficiency

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Depth

Se
ar

ch
 E

ff
ic

ie
nc

y
(%

)

k=2
k=5
k=20
k=50
BFS

(b) Success Rate

1

10

100

1 2 3 4 5 6 7 8 9 10

Depth

Su
cc

es
s

R
at

e
(%

)

k=2
k=5
k=20
k=50
BFS

(c) Coverage

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Depth

C
ov

er
ag

e

k=2
k=5
k=20
k=50
BFS

(d) QueryMsg

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10

Depth

Q
ue

ry
M

sg

k=2
k=5
k=20
k=50
BFS

6

() 1 ()1 () /
1 1 ,

TTL
t t

TTL
E Xtt

RW k

E X t
SE R

k TTL
=∑=

=
 = × − − ×  

∑ (13)

where E(X)t is determined by (9).
Search Efficiency Analysis: Assuming R = 1%, we

generate a series of performance results of SE in terms
of various numbers of walkers k. We thus plot these
results of SE (13), SuccessRate (12), Coverage (9), and
QueryMsg (10) for RW and BFS in Fig. 3.

In Fig. 3(a), we observe that all SEs of RW
consistently increase with respect to the depth or
search time. Nevertheless, they all are smaller than that
of BFS due to too many (redundant) query messages in
the local search, and the slow covering and low
SuccessRate in the long-term search. Therefore, they
fail to utilize the regular structure of SBT. As for the
number of walkers k, a too large (e.g. 50) or too small
(e.g. 2) value of k gives degraded performance, thus
resulting in strong sensitivity in the choice of k.

Metrics Analysis: By merely inspecting Fig. 3(b) for
SuccessRate or (c) for Coverage, one may jump to a
conclusion that the number of walkers k is the larger
the better. This aspect disregards the fact that larger k
would generate larger search cost, shown in Fig. 3(d),
and potentially redundant query messages. In fact,
comparing RW of k = 50 and of k = 20, we find that
their values of SuccessRate or Coverage during depth t
= 1~4 are almost the same while the former generates
2.5 times more search cost— the latter search uses less
search cost to produce similar search fruits. In
consequence, in the short-term search, the latter one
should be gauged as better search. Thus the conclusion
larger k is better for RW would be fallacious. Therefore,
we argue that neither SuccessRate nor Coverage is a
good performance indicator.

Moreover, the long-term performance will inherent
the short-term so that SE in Fig. 3(a) well characterizes
the better performance for RW of k = 20. Besides, RW
of k = 2 would be the best search in Fig. 3 if we try to
minimize QueryMsg and scalability is the most
concerned issue. Yet, this would be a specious
conjecture since it entirely flies in the face of the final
end of search— to find the results responsively.

C. Summary of Search Efficiency in SBT

By the discussion in this section, we validate SE by
showing 1) the 100% QEBFS indicates that BFS
perfectly utilizes the regular structure of SBT and
generates no redundant messages, 2) the sagging SERW
reveals RW fails to take advantage of the structure of
SBT, and 3) the fixed level of SEBFS in long-term
search effectively reflects the characteristics of SBT.
The first two results can be confirmed by intuition and
thus verify the correctness of SE. The third observation
further demonstrates the superiority of SE in
characterizing search performance under specific
topologies.

Through metrics analysis, we have demonstrated that

existing metrics, Coverage, QueryMsg, and
SuccessRate, are one-sided and may lead to biased
conclusions. They cannot distinguish performance
variance in searching networks when replication
ratios are distinct, and cannot provide reasonable
guidance in the design of parameters TTL and k while
SE can.

IV. POWER-LAW RANDOM GRAPH

In a random graph or a realistic network, its
topology is not structurally organized but formed in an
ad-hoc manner. Adamic’s work [3] demonstrated that
the current Internet follows a power-law degree
distribution where a few web pages or web sites are
extremely highly-connected while others are weakly
linked. In a power-low random graph (PLRG), the
probability a vertex has degree k is pk proportional to
k-t where t > 0. In this and the following sections, we
will use PLRG as the network topology to explore the
efficiency of various search algorithms.

A. Review of Generating functions

To mathematically describe a power-law random
graph, we use the generating function formalism
introduced by Newman et al. [1] with arbitrary degree
distributions. We first let G0(x) be the generating
function for the distribution of the vertex degree k in a
random graph. Then

 0
0

() k
k

k
G x p x

∞

=
= ∑ (14)

where pk is the probability that a randomly chosen
vertex on the graph has degree k.

For a graph with a power-law distribution with
exponent t , minimum degree k = 1 and an abrupt cutoff
at m = kmax, the generating function is then given by

∑
=

−=
m

k

kxkcxG
1

0)(τ

with c a normalization constant, depending on m and t
to satisfy the normalization requirement G0(1) = 1.

The average degree of a randomly chosen vertex is given
by

z1 = < k > = ∑
=

⋅
m

x
kpk

1
 = 0' (1)G (15)

Another important quantity is the distribution of the
degree of the vertex which we arrive at by following a
randomly chosen edge. Such an edge arrives at a vertex
with probability proportional to the degree of that vertex,
and the vertex thus has a probability distribution of
degree proportional to kpk. By [1], the distribution of
outgoing edges (except the one we have come from) of
that vertex, one of the first or immediate neighbors, is
generated by the function

'
0

1 0'
10

'() 1
() ().

(1)

G x
G x G x

zG
= =

The generating function for probability distribution

of the number of second-nearest neighbors of the
original vertex can be written as G0(G1(x)) in the limit
of large N (N is the network size). Hence, the average
number z2 of second neighbors is

)1()1())(('
1

'
0

1
102 GGxGG

dx
d

z
x

=



=

=
 (16)

Furthermore, the work in [1] generalizes (16) so that
the average number zh of the hth nearest neighbors is

-1' '
1 0(1) (1) =  

h
hz G G . (17)

Besides, according to approximation in [2], we have

 ()2
0

1
' (1) 1

2
G m τ

τ
−≅ −

−
, (18)

and
3

1
0

1
' (1) .

' (1) (3)
m

G
G

τ

τ

−
≅

−
 (19)

assuming 2 < t < 3.

B. Redundancy in Power-law Random Graph
Equation (17) equivalently tells us that the average

number of the hth neighbors is strictly the product of
the average degree of each vertex, G'0(1), and the
average outgoing degree of vertices arrived by a
randomly chosen edge, G'1(1), to the (h-1)th power,
given the graph size N is infinity. However, in
reality— when N is not infinite— it is simply not the
case specified in (17) where the number of hth
neighbors is geometrically increasing. In other words,
zh should not be geometrically increasing due to the
“redundancy” in random graphs. By redundancy we
mean edges of any vertex that leads to repeatedly
visited vertices, resulting in a fewer effective number
of vertices reached by edges than the number of
traversed edges. Thus, to express in the terms of search
networks, we use a definition similar to [10]:

“A search network N has ‘redundancy’ if there exists
a link (edge) in N that can be removed without
reducing any vertex’s search coverage, which is
generated by certain search algorithm.”

To quantify the redundancy of a graph by certain
search algorithm, we define “redundancy” as

.
1

.
No of Vertices Effectively Reached

Redundancy
No of Edges Ever Traversed

= − (20)

Note that redundancy may actually be useful to
improve the fault tolerance of the system, since if one
peer fails, another can perform its processing.

Moreover, redundancy may be useful to reduce
response time if a peer stands at a redundant edge
closer to the searcher. Thus, fault tolerance and search
latency tradeoff with efficiency when redundancy is
concerned.

We illustrate this notion of redundancy by Fig. 4, in
which we draw a graph with 13 vertices and 15 edges
where the black node is the search originator, gray
nodes are the first neighbors of the originator, and the
white nodes are the second neighbors. Arrows show
the directions and paths of message forwarding by BFS.
Inspecting this graph, we have the number of first
neighbors of the black node, G'0(1) = 3, and the degree
of outgoing edges of each first neighbor, G'1(1) = 4.
Nevertheless, the effective number of second neighbors
is 9, not simply the product of G'0(1) and G'1(1), 12, as
specified by (16). Thus, we obtain the redundancy by
(20) as 1 – (3+9) / (3+12), or 1/5, which means in this
case one-fifth (20%) of the edges are redundant by a
BFS search.

C. Breadth First Search in Power-law Random Graph

Analytic Derivation: To analytically quantify the

redundancy of a random graph, we first derive the
number of second neighbors z2 covered by BFS, which
it is ideally G'0(1)G'1(1) by (16). However, according
to the discussion in Section V.B, z2 will be lower than
the ideal value when N is not infinite due to the graph
redundancy. To derive z2, it is largely equivalent to
solve the problem that what the number of balls
(vertices) ever chosen (or inversely left not chosen) is
when choosing G'1(1) balls out of N balls and put them
back, and repeat this procedure G'0(1) times, with G'1(1)
< N. For simplicity, we first assume the probability
each ball (vertex) to be chosen is uniform. Thus the
probability that each ball is un-selected is 1 - [G'1(1)/N]
after one time of this procedure. After G'0(1) times of
the procedure, the probability each ball selected
becomes

[] 0' (1)

11 1 ' (1) /
G

G N− − .
Hence, if we assume all balls are chosen uniformly and
the expectation of the effective number of chosen balls
(second neighbors) is

[] []{ }0 0' (1) ' (1)
1 1

1
1 1 ' (1) / 1 1 ' (1) /

N G G

i
G N N G N

=
− − = − −∑ ,

when neglecting the chance to repeatedly reach the
first neighbors.

However, vertices are arrived at by edges with
probabilities proportional to their degrees [1], rather
than uniformly, as previously stated (Section V.A).
Suppose the probability each vertex to be reached by
certain edge is pi for i = 1, 2, ..., N and p1 + p2 +… + pN
= 1. In a power-law random graph, the probability pi of
vertex i is proportional to its degree and equivalently
given by

Fig. 4. A random graph for illustrating “redundancy”

Originator
First neighbors
Second neighbors

8

1

1
1

1

m
i

i N m
i i

m
p

i

τ

τ
τ

=

∝ =
∑

, (21)

such that ? i pi = 1, where m, the maximum degree, is
set by N1/t [4].

If ignoring the chance to revisit the first neighbors,
we could approximate the effective number of second
neighbors as

{ }0' (1)
1

1
1 1 ' (1) ,

N G
i

i
p G

=
− − ⋅  ∑

where we assume pi << 1 as G'1(1) << N, which is true
in general cases. Note that the term pi·G'1(1)
approximately represents the expectation of vertex i to
be visited with G'1(1) independent selections, each of
which only selects one vertex among the N ones (with
returning back). This term is surely not the exact
expectation of second neighbors (the actual value
should be a little smaller), but an approximation, which
holds when pi ·G'1(1) is much smaller than unity.

To generalize it, the effective number of vertices
arrived at the hth depth or hop (Coverage per Depth or
Ch) for h = 2 could be approximated by

{ }1
1

1
1 1 ' (1) .h

N z
h h i

i
C z p G −

=
= = − − ⋅  ∑

Nonetheless, this formula doesn’t consider the
possibility the search revisits previously reached
vertices, which is significant when the search is in the
deeper depth. To eliminate this problem, we first let Vh
be the event that a vertex is visited at the hth depth or
hop, then the probability vertex i is visited at the hth
hop is

1

0

1

' (1), for 1
()

1 1 ' (1) , for 2.h

i
i h C

i

p G h
P V

p G h−

⋅ == 
− − ⋅ ≥   

 (22)

Therefore, the average number of non-repeatedly
visited vertices at the hth hop by BFS in PLRG is

1
1

1 1

(), for 1

1 () () for 2,

N
i h

i
h h hN

i j i h
i j

P V h

C z
P V P V h

=
−

= =


=

= = 
  − ⋅ ≥ 


∑

∑ ∏
 (23)

where Pi(Vh) is given by (22). Intuitively, Coverage or
C is given by ? hCh.

To derive the redundancy, we let the number of
edges traversed or equivalently the number of queries
generated at the hth hop (depth) be eh. That is,
QueryMsg is given by

 0

1 1

' (1), for 1

' (1) , for 2.h
h

G h
e

G z h−

=
=  ⋅ ≥

 (24)

Thus, the redundancy of BFS terminated at h = TTL is
determined by

1

1

1
TTL

hh
BFS TTL

hh

z
Redundancy

e
=

=

= −
∑
∑

. (25)

Note that QEBFS is equivalent to 1- Redundancy.
Furthermore, according to (2), (3), (4), and (25), we
obtain

11

1

/
[1 (1)] 100%

TTL
hh

TTL
Chh

TTLBFS
hh

C h
SE R

e
==

=

∑= × − − ×∑
∑

,(26)

where Ch is specified by (23) and eh by (24).
A variation of BFS is Modified-BFS (M-BFS) [14],

which adopts a fraction parameter f to serve as the
probability that each search agent uses to forward the
query message to its neighbors. For example, if f = 0.5
and certain search agent has 10 neighbors, then it will
forward the received query message to 0.5·10 or 5 of
its neighbors (randomly). Since its operation is similar
to BFS, the formula of SE specified by (26) still holds
for M-BFS, where Ch is given by (23), except

1
2 1() 1 1 ' (1) ,hC

i h iP V f p G −
≥ = − − ⋅ ⋅   (27)

 1 0() ' (1),i h iP V f p G= = ⋅ ⋅ (28)
and eh=2 = f·G'1(1)· Ch-1 and eh=1 = f·G'0(1).

Performance Analysis: We use the following
parameters throughout this paper for the power-law
network: N = 10,000, exponent t = 2.1, R = 1%, and m =

Fig. 6. Search Efficiency for M-BFS of various fraction parameters f in a
power-law random graph with R = 1%

Fig. 5. Performance results in percentage of QE, SuccessRate, and SE in
PLRG and SE in a strictly binary tree for BFS with R = 1%

Performance Results in PLRG

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

Hop

Pe
rf

or
m

an
ce

 (%
)

QE in PLRW

SuccessRate

SE in PLRW

SE in binary tree

Search Efficiency for M-BFS in PLRG

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

Hop

Se
ar

ch
 E

ff
ic

ie
nc

y
(%

)

f = 1.0 (BFS)
f = 0.7
f = 0.5
f = 0.3
f = 0.2

N1/t ~ 80. These parameters are similar to those used in
[2]. By (18) and (19), G'0(1) = 3.55 and G'1(1) = 16.21.
Therefore, we present the performance results, through
a series of calculations of (21), (23), (25), and (26), in
Fig. 5.

Note that QE in Fig. 5 is not as perfect as that in a
binary tree, but decays dramatically during h = 3~5,
where the redundancy comes from the exponentially
generated messages, which approves the results in [5]
and [9]. Furthermore, SE in PLRG is significantly high
compared with that in a strictly binary tree with the
same R in the short-term search, while SE in the tree is
superior to that in PLRG in the long term. In sum, BFS
performs better in the local and inefficiently in the
global, when deployed in the power-law random graph.
Similar conclusion is drawn in the work [11] by its
simulation results.

For M-BFS, we generate the data of SE of various
fraction parameters with the same settings used for
BFS (N = 10,000 and t = 2.1) and plot them in Fig. 6.
We find that the fraction parameter controls the extent
to which performance increases in the local or
decreases in the global— the larger the parameter f is
the more greatly the performance changes. Hence, if
the search is aimed to gain great performance increase
in the short term, we should take larger f; on the other
hand, smaller fs give relatively consistent SE by
compromising the fast performance increase in the
short-term search. Therefore, the choice of the fraction
parameter depends on whether the short-term
satisfaction or long-term efficiency is more concerned.

D. Multiple Random Walks in PLRG

The property of random walk is dramatically
different from BFS. The former traverses a graph in a
random and unpredictable fashion while the latter
operates rather regularly. In particular, the concept of
depth used in BFS is not applicable in random walk in
that the walkers may go “back and forth” in the graph
so that we could only describe them with respect to
hop rather than depth. Therefore, we represent search
coverage in terms of Coverage per Hop (Ch).

Analytic Derivation: To derive the analytic formulas
of performance metrics, we first obtain the number of
“candidates” that RW might traverse at the h hop,
which is conceptually similar to the number of hth
neighbors of BFS, zh, except RW doesn’t have the
concept of “depth.” We denote that for RW as rh. Let
Rh be the event a vertex is the candidate of RW at hop
h (in the hth neighbors of RW), then the probability
vertex i is the candidate of RW at hop h is

1

0

1

' (1), for 1
()

1 1 ' (1) , for 2.h

i
i h C

i

p G h
P R

p G h−

⋅ == 
− − ⋅ ≥   

 (29)

Then, the average number of candidates of RW at hop
h is

1

(),
N

h i hi
r P R

=
= ∑ (30)

where Pi(Rh) is given by (29).
Since random walkers have the behavior similar to

those in the binary tree if the forwarding candidates are
known, we apply the line of reasoning in the binary
tree for PLRG. Hence, the probability vertex i is visited
at hop h for RW is

()1

() () () ()

() 1 1 .
h

i h i h h i h i h h

k
i h r

P V P V R P R P V R

P R

= ∩ = ⋅

 
= ⋅ − − 

 

 (31)

To deal with the phenomenon vertices may be revisited,
we apply the line of reasoning in BFS in PLRG.
Therefore, the formula of Ch in (23) still holds for RW
except using Pi(Vh) of RW (31). Thus, SE for random
walk with k walkers is given by

() 1
1 1 1

TTL
h hCTTL

hh
RW k

RC
SE

k TTL R

=∑
=

=

− −
= ×

⋅
∑ ,

where Ch specified is by (23), in which Pi(Vh) is
formulated by (31).

Search Efficiency Analysis: By the same conditions
for BFS, we plot SE for RW of various numbers of
walkers k and re-plot SE for BFS for comparison in Fig.
7. This figure shows RW generates consistently
increasing performance in most cases of k, which can
be answered by its controlled fashion of message
generation and granular coverage that have been
suggested in [5]. In addition, the curve of k = 2,000
reasonably explains the redundancy generated by too
many walkers despite its fine properties in PLRG.
Inspecting the curve of BFS, it outperforms RW in the
local search but inversely in the global (h=5), which
confirm the simulation results in [11].

In sum, SE well characterizes the delayed
performance increase of RW and its consistent
long-term performance.

E. Summary of Search Efficiency in PLRG

Based on the unified metric SE and its temporal
analysis, we better characterize that, in PLRG, BFS
gains its excellent performance in the local search
space but decays rapidly in the long-term search,
M-BFS controls its performance increase or decrease

Fig. 7. Search Efficiency for RW of various number of walkers k and for
BFS in a power-law random graph with R = 1%

Search Efficiency in PLRG

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

Hop

Se
ar

ch
 E

ff
ic

ie
nc

y
(%

)

k = 5
k = 10
k = 100
k = 200
BFS

10

by the fraction parameter f, and RW performs
consistently in the global search space while its
performance increase in relatively slow in the
short-term search. Furthermore, by the analysis of SE
and QE, we can explain the causes behind the
ostensive phenomena: the great short-term
performance of BFS stems from its aggressive search
to deliver responsive results while keeping little
redundancy in the local and the long-term performance
suffers from the overwhelming search cost generated
while it still retrieves satisfactory results in the global.
On the other hand, the delayed performance increase of
RW is due to its conservative search and redundancy in
the local while its conservatism trades for relatively
little redundancy and thus consistent performance in
the global.

In particular, our work for PLRG strongly reflects
previous works (simulations) in various respects and in
turn is validated for its ability of characterizing,
especially in terms of temporal analysis. Besides, SE
analysis indicates the choice of the fraction parameter
depends on whether the short-term satisfaction or
long-term efficiency is more concerned.

Thus far, we have shown the potency of SE in
performance characterizing and reasoning. We will
further demonstrate its strength in guiding the design
of search algorithms by inventing a new search based
on SE and validate the performance improvement of
the new search, in the following section.

V. DYNAMIC SEARCH: AN ALGORITHM DESIGNED BASED ON

SEARCH EFFICIECY

Evaluation metrics are critical in judging search
performance. If Coverage is the only metric concerned,
one may conclude that BFS is the best search
algorithm despite the overwhelming search cost. It
overlooks the system load and the aspect of operation
efficiency. Moreover, if search cost is the most
important criterion of a searching network, RW would
be the best appropriate algorithm for that system.
However, it fails to evaluate the ability to achieve the
final end of searching networks— to search out targeted
results responsively. In consequence, biased metrics
may draw biased conclusions and provide wrong
guidelines for system design. Thus, we endeavor to
devise a new search based on the comprehensive
metric, SE, in order to demonstrate the strength of SE.
In addition to its strength in performance
characterization and reasoning, we show the strength
of SE to serve as the design guidance of the invented
algorithm— dynamic search.

We attempt to utilize the merits of the three analyzed
algorithms from the viewpoint of SE for the new
search. Accordingly, on the basis of the conclusions
drawn in Section IV.E, the new algorithm should
resemble BFS in short-term searches, mimic RW for
long-term propagation, and be able to fine tune the

performance through certain parameters as used in
M-BFS. Therefore, we separate the search process into
two phases. In the threshold phase (local space), the
search is similar to BFS with some dynamic tuning
forwarding probabilities; in the ultimate phase
(long-term space), it operates as the random walk
search to consistently retain the performance gained
from the threshold phase. The detailed operations are
described in the following subsection.

A. Operation

Dynamic search starts as a probabilistic search with
dynamic fraction parameter fh at different hops h when
h = n. For h > n, it switches to the random walk search.
In the threshold phase, it operates as M-BFS but with
dynamic fh, for h = 1, 2, … , n. For example, for
dynamic search with n = 2, f1 = 1, and f2 = 0.5, the
search agents at h = 1 perform BFS, perform M-BFS
with f = 0.5 at h = 2 and operate as random walk for h
= 3. Moreover, in the random-walk phase, the number
of walkers k is determined by the outstanding query
messages or the effective search agents covered at the
hth hop, that is, Ch.

Hence, the behavior of dynamic search changes
dynamically in terms of time (hop) to adapt to the
appropriate search properties in different phases.
Hopefully, in terms of SE, it would outperform other
algorithms in each phase thanks to the fine-tuned
design.

B. Performance Analysis

To analyze the characteristics of dynamic search, we
use the knowledge we have learned in previous
sections where we mathematically formulate SE. In
this section, we analyze only in the PLRG. The general
form of SE in (26) applies for dynamic search and Ch is
given by (23), except eh=1 = f1·G'0(1), e2=h=n = fh·G'1(1)·
Ch-1, eh>n = Ch=n, and

Fig. 8. Search Efficiency comparison for various algorithms: BFS, M-BFS
(f=0.3), RW (k=100), and the dynamic search in PLRG with R = 1%.

TABLE II

PARAMETER DESIGN FOR DYNAMIC SEARCH IN FIG. 8
 n f1 f2 f3
Dynamic-1 2 1.0 1.0 N/A
Dynamic-2 3 1.0 1.0 0.3

Search Efficiency Comparison in PLRG

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7
Hop

Se
ar

ch
 E

ff
ic

ie
nc

y
(%

)

BFS

M-BFS (f=0.3)

Dynamic-1

Dynamic-2

RW (k=100)

Fig. 9. Performance comparison by various metrics— (a) Search Efficiency, (b) Query Efficiency, (c) Coverage, and (d) QueryMsg— for RW of various number
of walkers k and for BFS in PLRG with R = 1% under uniform and non-uniform (NU) object distribution. Solid lines represent data of uniform distribution and

dashed-lines represent non-uniform distribution.

()
1

0

1

1

() ' (1), for 1

1 1 ' (1) , for 2

() 1 1 , for ,

h

h

i h h i
C

h i

k
i h r

P V f p G h

f p G h n

P R h n

−

= ⋅ ⋅ =

 − − ⋅ ⋅ ≤ ≤  
  

⋅ − − >  
 

 (32)

where rh is specified by (30).
As for the parameter design, we refer to the

observation in Fig. 6, where BFS performs the best in
the first two hops and lower fs for M-BFS achieve
more consistent performance in the long-term search.
Thus, we design two sets of parameters: the first one,
Dynamic-1, performs BFS in the first two hops and
random walks in the following phase (n = 2); the
second one, Dynamic-2, performs BFS in the first two
hops, M-BFS with f = 0.3 at the third hop, and then
random walks (n = 3). The number of walkers k in RW
is dynamically determined by the number of
outstanding query messages at hop n, i.e. Ch=n. The
detailed parameters are shown in Table II.

We generate SE of Dynamic-1 and -2 and make
performance comparison with BFS, M-BFS (f = 0.3),
and RW (k = 100) in Fig. 8. We take M-BFS with f =
0.3 in order to compare with Dynamic-2, which uses f3
= 0.3. And we use 100 as the number of walks for RW
since it generates the best performance (in Fig. 7).

In Fig. 8, we can observe that dynamic searches
outperform other algorithms especially in the
long-term search. They resemble BFS within h=2 as
expected and perform consistently as random walk
does, thus outperforming others in long-term search as
we design. Note that Dynamic-2 trades its performance
at h = 3 for its long-term efficiency by using a low
probability f = 0.3, and vice versa for Dynamic-1.

VI. NON-UNIFORM OBJECT DISTRIBUTION

Throughout our analysis, for simplicity we had

assumed the object distribution as uniform. However,
this assumption leads to the conclusion that QueryHits
equals to R·Coverage, which violates our argument in
Section II.A that Coverage is only one of the
conditions to produce QueryHits. To support our
argument and justify our consideration of QueryHits in
SE rather Coverage, we analyze SE under a
non-uniform object distribution as proposed in [11].

In this object distribution, the probability a search
agent (vertex) owns certain object is proportional to its
degree d. Let O be the event that certain search agent
owns the targeted object, then the probability agent i
has the object is determined by

(a) Search Efficiency

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7

Hop

Se
ar

ch
 E

ff
ic

ie
nc

y
(%

)

k = 5
k = 10
k = 100
BFS
k = 5 (NU)
k = 10 (NU)
k = 100 (NU)
BFS (NU)

(b) Query Efficiency

0

50

100

150

200

250

1 2 3 4 5 6 7

Hop

Q
ue

rt
 E

ff
ic

ie
nc

y
(%

)

(c) Coverage

1

10

100

1000

10000

1 2 3 4 5 6 7

Hop

C
ov

er
ag

e

(d) Query Message

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7

Hop

Q
ue

ry
 M

es
sa

ge

k = 5
k = 10
k = 100
BFS
k = 5 (NU)
k = 10 (NU)
k = 100 (NU)
BFS (NU)

12

1

() ,i
i i N

jj

R N d
P O d

d=

⋅ ⋅
∝ =

∑
 (33)

such that ? iPi(O) = R·N, the total number of objects
distributed in the network, where di = m / i1/t [4].

Analytic Derivation: Since the object distribution is
not uniform, we cannot simply use R·Coverage to
represent QueryHits, which in fact is formulated by

1
1

1 1

 ()

() (), for 1

1 () () () (), for 2,

N
i i h

i
hN

i i j i i h
i j

QueryHits h

P O P V h

P O P V P O P V h

=
−

= =


⋅ =

= 
  − ⋅ ≥ 


∑

∑ ∏

 (34)

where Pi(Vh) is given by (22) and Pi(O) by (33).
For SuccessRate, we generalize the form 1- (1- R)C

in (4) for the uniform distribution to deliver the one in
non-uniform distribution:

1 1

1 1 () () .
N h

i i j
i j

SuccessRate P O P V
= =

 = − − ∏ ∏ (35)

Now, equations (34), (35), and (24) suffice to solve SE
defined by (2) for BFS.

For RW, QueryHits(h) follows formula (34) derived
in BFS and SuccessRate follows (35) in BFS, where
Pi(Vh) is given by (31) and Pi(O) by (33).

Search Efficiency Analysis: We plot analytic data in
Fig. 9, where the dashed-lines represent the data under
non-uniform (NU) object distribution. We use the same
colors to represent searches with identical parameters.
We find that SE in Fig. 9(a) is significantly increased
under NU distribution for both BFS and RW. The
performance increase is around 75% ~ 250% for RW at
h = 7 and 250% for BFS at h = 2. This can be
explained by the graph property that vertices tend to
connect to those with higher degrees [1, 2], which has
been validated by simulations in [11].

Metrics Analysis: Fig. 9(c) indicates that every search
in question generates identical Coverage under
different object distributions, and Fig. 9(d) draws the
same conclusion for QueryMsg. Therefore, these two
metrics totally fail to distinguish the performance
variance under NU distribution. Moreover, in Fig. 9(b),
Query Efficiency, defined by QueryHits/(QueryMsg·R),
explains the performance increase by indicating more
QueryHits found given that same number of QueryMsg.
In consequence, SE, in which QE is a critical element,
well characterizes the performance difference in the
two scenarios.

VII. CONCLUSION

This paper defines a unified metric, Search
Efficiency (SE), addressing performance in searching
networks in terms of Query Efficiency, responsiveness,
and reliability. Mathematical formulas and
approximations of SE and other existing metrics are
derived to characterize performance and provide

in-depth analysis for various search algorithms. We
justify the correctness of SE in performance evaluation
by analyzing it in an ideal topology, strictly binary tree.
We further demonstrate its ability to characterize
search performance in a large-scale PLRG, the
real-world network topology.

We conclude that existing metrics either leads to
biased conclusions regarding performance or fail to
reflect performance variance when network conditions
change. Moreover, they tend to provide wrong
guidelines for the design of various algorithm
parameters (e.g. TTL, k, and f). The proposed metric,
SE, effectively characterizes the performance variance
under different network conditions and delivers
objective and in-depth performance analysis.

In the final analysis, the outstanding performance of
dynamic search, the new algorithm devised based on
the guidance of SE, manifests the efficacy of SE to
conduct design of search algorithms. Therefore, our
proposal of SE contributes to providing guidance for
the future design of searching networks.

REFERENCES
[1] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random

graphs with arbitrary degree distribution and their
applications. Phys. Rev. E, 64:026118, 2001.

[2] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A.
Huberman. Search in power-law networks. Phys. Rev. E,
64:046135, 2001.

[3] L. A. Adamic. The small world web. Proceedings of the 3rd
European Conf. on Digital Libraries, volume 1696 of Lecture
notes in Computer Science, pages 443-452. Springer, 1999.

[4] W. Aiello, F. Chung, and L. Lu. A random graph model for
massive graphs. Proceedings of the thirty-second annual
ACM symposium on Theory of Computing, pages 171-180,
2000.

[5] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker. Search and
replication in unstructured peer-to-peer networks. ICS, June
2002.

[6] B. Yang and H. Garcia-Molina. Improving Search in
Peer-to-Peer Networks. ICDCS, July 2002.

[7] D. Tsoumakos and N. Roussopoulos. Adaptive Probabilistic
Search (APS) for Peer-to-Peer Networks. Technical Report
CS-TR-4451, Un. of Maryland, 2003.

[8] S. Milgram, The small-world problem. Psychology Today,
1:62-67, 1967.

[9] S. Jiang, L. Guo and X. Zhang. LightFlood: an Efficient
Flooding Scheme for File Search in Unstructured
Peer-to-Peer Systems. ICPP, Oct. 2003.

[10] B. F. Cooper and H. Garcia-Molina. SIL: Modeling and
measuring scalable peer-to-peer search networks.
International Workshop on Databases, Information Systems
and Peer-to-Peer Computing, Berlin, 2003.

[11] T. Lin, H. Wang, and J. Wang. Search Performance Analysis
and Robust Search Algorithm in Unstructured Peer-to-Peer
Networks. CCGrid, April 2004.

[12] C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in
peer-to-peer networks. Infocom, March 2004.

[13] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.
Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. SIGCOMM, 2001.

[14] V. Kalogeraki, D. Gunopulos and D. Zeinalipour-Yazti, A
Local Search Mechanism for Peer-to-Peer Networks, CIKM,
Nov. 2002.

