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OOTranscription factor Six1a plays important roles in morphogenesis, organogenesis, and cell differentiation.
However, the role of Six1a during zebrafish cranial muscle development is still unclear. Here, we
demonstrated that Six1a was required for sternohyoideus, medial rectus, inferior rectus, and all pharyngeal
arch muscle development. Although Six1a was also necessary for myod and myogenin expression in head
muscles, it did not affect myf5 expression in cranial muscles that originate from head mesoderm.
Overexpression of myod enabled embryos to rescue all the defects in cranial muscles induced by injection of
six1a-morpholino (MO), suggesting that myod is directly downstream of six1a in controlling craniofacial
myogenesis. However, overexpression of six1a was unable to rescue arch muscle defects in the tbx1- and
myf5-morphants, suggesting that six1a is only involved in myogenic maintenance, not its initiation, during
arch muscle myogenesis. Although the craniofacial muscle defects caused by pax3-MO phenocopied those
induced by six1a-MO, injection of six1a, myod or myf5 mRNA did not rescue the cranial muscle defects in
pax3 morphants, suggesting that six1a and pax3 do not function in the same regulatory network. Therefore,
we proposed four putative regulatory pathways to understand how six1a distinctly interacts with either
myf5 or myod during zebrafish craniofacial muscle development.
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ECDuring embryogenesis, the trunk and limb muscles originate from

somites, which are epithelial structures in the mesoderm flanking the
neural tube, whereas head muscles mostly originate from cranial
mesoderm (Noden and Francis-West, 2006). Three groups contribute
to the craniofacial skeletal muscles: (1) branchial archmuscles, which
are derived from the unsegmented head mesoderm and operate the
jaw, facial expression, pharyngeal, laryngeal and gill function; (2)
most extraocular muscles, which develop from the prechordal
mesoderm and control eye movement; and (3) those muscles derived
from progenitor cells in the occipital somites of trunk, which move
into the head and give rise to muscles of the tongue and neck (Noden
and Francis-West, 2006; Chai and Maxson, 2006; Shih et al., 2007).

Despite the varied origins of these muscles, all of them are
controlled by myogenic regulatory factors (MRFs) (Buckingham,
2006). Proliferative myoblasts, which have undergone initial myo-
genic commitment, are marked by the expressions of Myf5 andMyoD,
while later myogenic differentiation is marked by Myogenin and
MRF4. However, because of the different origins of these muscle cells,
MRFs are regulated differently in the head and trunk. For example,
mice lacking Myf5 and Pax3 do not develop skeletal muscle in the
trunk and limb, whereas they do develop normal head muscles
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(Tajbakhsh et al., 1997). Taking another example, Lbx1/Pax7/Paraxis
in chick are necessary for trunk myogenesis, but they are not
necessary for head myogenesis (Mootoosamy and Dietrich, 2002). In
fact, the Wnt signals, which promote trunk myogenesis, have been
proven to block head myogenesis in chick (Tzahor et al., 2003). In
zebrafish, we have clearly defined the distinct functions of Myf5 and
Myod that regulate head muscle development, and we have demon-
strated that they exhibit their own regulatory pathways (Lin et al.,
2006). Although myogenic progression is similar in all developing
muscle groups, it seems, therefore, that the specification of cells just
before myoblast differs significantly between head and trunk (Rawls
and Olson, 1997; Mootoosamy and Dietrich, 2002).

Only a few factors have been reported to play roles in head
myogenesis, and we enumerate them here. Mice lacking Capsulin and
myoR fail to express myf5 in the first arch and lose a subset of
mandibular arch-derived muscle (Lu et al., 2002). It has been found
that tbx1, which is expressed in the premyoblast mesoderm in the first
and second branch arch, is required for the development of some head
muscles (Kelly et al., 2004; Dastjerdi et al., 2007). Although bmp4
promotes cardiac differentiation, it also inhibits head skeletal muscle
differentiation (Tirosh-Finkel et al., 2006). Similarly, fgf8 is shown to
promote branchiomeric muscle development, but it inhibits extrao-
cular muscle development (von Scheven et al., 2006). Finally, pitx2 is a
paired-related homeobox gene, which is required for the expression of
the premyoblast specification markers tbx1, tcf21 (Capsulin), and msc
(MyoR) to set up the premyoblast in the first branch arch (Dong et al.;
ays an essential role in the craniofacial myogenesis of zebrafish, Dev.
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2006; Shih et al., 2007; L'Honore et al., 2007). However, it remains
unclear what additional factors may be involved in head myogenesis.

The six gene is a vertebrate homolog of the Drosophila homeobox
gene sine oculis (so) and plays important roles in morphogenesis,
organogenesis, and cell differentiation (Kawakami et al., 2000). Six
protein is a transcription factor that contains two conserved domains,
the Six domain (SD) and the homeodomain (HD). Both domains are
required for specification through binding DNA and cooperative
interaction with cofactors (Kawakami et al., 1996; Chen et al., 1997;
Pignoni et al., 1997). For example, Drosophila so is required for eye
formation through binding the synergistic regulatory network, such as
eyeless (Pax), eyes absent (Eya) and dachshund (Dach) (Chen et al.,
1997; Pignoni et al., 1997).

In vertebrates, Six protein displays a similar regulatory network
during myogenesis and development of the metanephric kidney and
inner ear (Heanue et al., 1999; Xu et al., 1999; Xu et al., 2003; Li et al.,
2003). Moreover, Six protein is reported to directly control the
expressions of myf5 and myogenin through binding at the MEF3 in
their promoters (Spitz et al., 1998; Giordani et al., 2007). There are six
Six genes (Six1 to Six6) in mouse and human genomes (Kawakami
et al., 2000). Six1 is expressed from E8 stage and throughout skeletal
muscle development in mouse embryos (Grifone et al., 2004). Six1
and Six4 are expressed as overlapping in muscle territories, such as
dermomyotome, myotome, limb bud and migrating muscle precursors
(Ozaki et al., 2001; Laclef et al., 2003). Six1-knockout fetuses suffer
from muscle hypoplasia (Laclef et al., 2003), whereas Six1 and Six4
double knockout embryos appear to have more severe muscle defects,
especially in leg muscles (Grifone et al., 2005), suggesting that Six4
shares a common function with Six1 during myogenesis. Furthermore,
in both Six1−/−Six4−/− and Eya1−/−Eya2−/− double mutants, pax3
fails to express in the hypaxial dermomyotome, which then causes cell
death and reduces muscle progenitor cells in the limbs (Grifone et al.,
2005; Grifone et al., 2007). In zebrafish, six members of the six gene
have been defined: six1a–1b, six2–2.1, six3a–3b, six4.1–4.3, six7 and
six9 (Kobayashi et al., 1998, 2000, 2001; Drivenes et al., 2000;
Wargelius et al., 2003; Bessarab et al., 2004, 2008). Both six1a and
six4.2 are expressed in the presomitic mesoderm, somites and pectoral
fin bud. Moreover, Bessarab et al. (2004) reported that six1a
expression is regulated by the Notch pathway during trunk muscle
differentiation. Knockdown of six1a causes myogenin expression to be
reduced in somites, resulting in abnormal differentiation of trunk fast
muscles (Bessarab et al., 2008). They also demonstrated that the six1a
transcript is expressed in craniofacial muscle. More importantly, it has
been reported that the six1a gene is involved in branchio-oto-renal
syndrome (Ruf et al., 2004). Therefore, detailed knowledge about the
mechanisms controlling molecular interaction among genes involved
in head muscle development should not only give insight into
craniofacial morphogenesis but also help in the development of
therapies designed to treat clinical syndromes affecting head and facial
development. However, the function that Six1a plays in head muscle
development is still unknown.

In this study, we focus on the role of Six1a in head myogenesis.
When Six1a is absent by injection of six1a-specific morpholino (MO),
we show that myf5 fails to express in the cranial muscles that
originate from trunk paraxial mesoderm, whereas myf5 continues to
be normally expressed in cranial muscles that originate from head
mesoderm. In contrast, myod is lost in the cranial muscles that
originate both from trunk and head mesoderm. We also demonstrate
that injection ofmyodmRNA can rescue the six1a-MO-induced defect,
but that injection of myf5 mRNA could only rescue the muscle defects
that originate from trunk paraxial mesoderm. We prove that the
function of Six1a is equivalent to Pax3 and that Six1a is not involved in
the Tbx1 pathway. Furthermore, we propose four putative regulatory
pathways to demonstrate that six1a interacts separately with either
myf5 or myod to modulate the development of craniofacial muscles
in zebrafish.
Please cite this article as: Lin, C.-Y., et al., The transcription factor Six1a pl
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1Materials and methods

1Fish embryos

1Thewild-type AB strain (University of Oregon, Eugene, OR) and the
1transgenic line Tg(α-actin:RFP) (Lin et al., 2006) of zebrafish (Danio
1rerio) were used. The culture condition, embryo stage, egg production
1and collection were described previously (Lin et al., 2006). Fluor-
1escent signal in embryos was observed under a fluorescent stereo-
1microscope (MZ FLIII, Leica) equipped with 583 nm (emission) filters.

1Whole-mount in situ hybridization

1Whole-mount in situ hybridization has been described previously
1(Lee et al., 2006), except that the following genes were used as probes:
1six1a (Bessarab et al., 2004); myf5, myod, myogenin, et1 (Miller et al.,
12000); fgf3, dlx2 (Akimenko et al., 1994); tbx1 (Piotrowski et al.,
12003); pax3 (Seo et al., 1998) and eya1 (Sahly et al., 1999) cDNAs
1(GenBank Accession Nos. NM207095, NM131576, NM131262,
1NM131006, AF281858, NM131291, U03875, NM183339, AF014366,
1and BC154187, respectively).

1MOs for blocking translation and mRNAs for rescue experiments

1MOs designed specifically as translational inhibitors of six1a were
1(1) six1a-MO (Nica et al., 2006), 5′-CGAAAGAAGGCAACATTGACAT-
1GAC-3′, which is complementary to nucleotides (nt) 142–166 of
1zebrafish six1a cDNA (GenBank Accession No. NM207095) and was
1injected at the concentration of 8, 6, 4, 2, or 1 ng per embryo; (2) UM-
1MO (Bessarab et al., 2008), 5′-TCTCCTCTGGATGCTA-CGAAGGAAG-3′,
1which is complementary to nt 93–117 of zebrafish six1a cDNA
1(GenBank Accession No. NM207095) and was injected at 8 ng per
1embryo; and (3) SM-MO (Bessarab et al., 2008), 5′-CGCTTAAT-
1TACCTTTCTTTCGCCTC-3′, which is complementary to nt 87073–87097
1(intron sequence is underlined) of the clone DKEY-225H23 (GenBank
1Accession No. BX649231), binding the splice donor site of six1a pre-
1mRNA, and was injected at 8 ng per embryo. Regarding MOs that were
1designed specifically as translational inhibitors of MRFs, they were (1)
1myf5-MO, 5′-TCTGGGATGTGGAGAATACGTCCAT-3′, which is comple-
1mentary to nt 44–68 of zebrafish myf5 cDNA (GenBank Accession No.
1NM131576) and was injected at 4 ng per embryo; and (2) myod-MO
1(Lin et al., 2006), 5′-ATATCCGAC-AACTCCATCTTTTTTG-3′, which is
1complementary to nt 172–196 of zebrafish myod cDNA (GenBank
1Accession No. NM131262) and was injected at 4 ng per embryo.
1Regarding MOs that were designed specifically as translational
1inhibitors of tbx1, pax3 and eya1, they were (1) tbx1-MO, 5′-
1GGGCTTGATATTGCTGAAA-TCATTC-3′, which is complementary to nt
1359–383 of zebrafish tbx1 cDNA (GenBank Accession No. NM183339)
1and was injected at 10 ng per embryo; (2) pax3-MO (Lee et al., 2006),
15′-ACGAAAAAAGGATGCACGAAGCACT-3′, which is complementary to
1nt 241–265 of zebrafish pax3 cDNA (GenBank Accession No.
1AF014366) and was injected at 3 ng per embryo; and (3) eya1-MO
2(Bricaud and Collazo, 2006), 5′-AGCTAGATCCTGCATTTCCATAGAC-3′,
2which is complementary to nt 274–298 of zebrafish eya1 cDNA
2(GenBank Accession No. AF014366) and was injected at 10 ng per
2embryo. All MOs were prepared at a stock concentration of 1 mM and
2were diluted to the desired concentrations for microinjection.
2In order to further prove the specific effectiveness of six1a-, myod-
2and myf5-MO, we designed the following synthetic mRNA: (1) six1a-
2egfp mRNA, in which the six1a cDNA, including six1a-MO target
2sequence, is fused in frame with egfp cDNA; (2) myod-egfp mRNA, in
2which themyod cDNA, includingmyod-MO target sequence, is fused in
2frame with egfp cDNA; and (3) myf5-MO-target-egfp mRNA, in which
2the myf5-MO target sequence is fused in frame with egfp cDNA.
2Regarding that the introduced six1a mRNA is not bound by six1a-MO
2during the rescue experiment, we designed (1) a wobble six1a mRNA,
ays an essential role in the craniofacial myogenesis of zebrafish, Dev.
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inwhich we changed the nt 145–166 of zebrafish six1a cDNA (GenBank
Accession NO. NM207095) from 5′-ATGTCAATGTTGCCTTCTTTCG-3′ to
5′-ATGAGTATGCTCCCGAGCTTCG-3′, but without altering the amino
acid residues; and (2) a wobble six1a-egfp mRNA, in which the wobble
six1a cDNA was fused in frame with egfp cDNA. Capped mRNA of
wobble six1a was synthesized according to the protocols of the
manufacturer (Epicentre). The mRNAs of myf5 and myod were also
synthesized. The generated mRNAs were diluted with distilled water to
110 ng/μl and 66 ng/μl for six1a mRNA, to 44 ng/μl and 22 ng/μl for
myf5 mRNA and to 22 ng/μl for myod mRNA (Lin et al., 2006). Each
time, approximately 2.3 nl of solution was injected into the one-cell
stage of zebrafish embryos.

Western blot analysis

The Western blot was performed after the total proteins were
analyzed on a 12% SDS-PAGE by following the procedures described
previously (Lee et al., 2007), except that the yolk was removed, and
the antibodies of anti-Six1a (abcan, ab22072) and anti-Glyceraldehyde
3-phosphate dehydrogenase (ABBIOTEC, 250504) were used at the
dilution of 1:1000.

Results

Expression patterns of six1a, myf5 and myod in zebrafish head
muscle development

To study the roles of Six1a during cranial muscle development,
we first analyzed the spatiotemporal expression of six1 from 24 to
72 hpf and made a comparison with the expression patterns of
some MRFs, particularly myf5 and myod. At 24 hpf, six1a was
detected in the olfactory placode (olp), otic vesicle (ov), anterior
lateral line and vestibular ganglia (allg) (Fig. 1A), which was
consistent with what was reported by Bessarab et al. (2004). We
also noted that six1a was only expressed in the neural ectoderm,
but not in the cranial mesoderm, during 24 hpf. However, myf5, but
not myod, were detected in the cranial muscle precursors during
24 hpf (Figs. 1B, C). At 32 hpf, six1a initiated expression in
branchial arch and in extraocular muscle primordial of the medial
rectus (mr) and inferior rectus (ir) (Fig. 1D), while myf5 started to
gradually reduce its expression in the first branchial arch, but began
to express in the extraocular muscle primordial inferior oblique (io)
and superior oblique (so) (Fig. 1E). At the same time, myod
transcripts were initially detected in the head muscle primordia of
the mr, ir, lateral rectus (lr), and first branchial arch mesoderm core
(Fig. 1F), which was similar to the expression pattern of six1a. At
36 hpf, six1a was strongly expressed in the branchial arch (Fig. 1G),
while the myf5 transcripts were gradually decreased in the arch
region (Fig. 1H). However, myod was now detected in head muscles
derived from the first (masticatory plate, MP; intermandibularis,
IM) and the second arch mesoderm cores (constrictor hyoideus
dorsalis, CHD; constrictor hyoideus ventralis, CHV) (Fig. 1I). This
result was consistent with the report of Schilling and Kimmel
(1994). At 72 hpf, all cranial muscles were six1a- (Figs. 1J, L) and
myod-positive (Figs. 1K, M).

Comparing the expression patterns of six1a,myf5 andmyod during
the head muscle development of zebrafish, we concluded that six1a
was expressed in all cranial muscles. The expression stage of six1a in
hyoid (1st), mandibular (2nd), and branchial arch (3rd)was later than
that of myf5, but obviously earlier than that of myod. In extraocular
muscle, six1a started to express in mr and ir primordia and sustained
its expression to the later stage of 72 hpf, which was similar to myod,
but different from myf5, which was expressed in io and so primordia.
Thus, we can further conclude that the expression of myf5 is earlier
than that of six1a in the cranial mesoderm, whereas the expression of
six1a is earlier than that of myod in the arches.
Please cite this article as: Lin, C.-Y., et al., The transcription factor Six1a pl
Biol. (2009), doi:10.1016/j.ydbio.2009.04.029
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Six1a is involved in zebrafish cranial muscle development

To understand whether six1a plays roles in craniofacial muscle
development, we used a transgenic line, Tg(α-actin:RFP), in which the
RFP reporter is labeled in all craniofacial muscles (Figs. 2A, B), as
previously reported (Lin et al., 2006).When the embryos derived from
this line were injected with six1a-MO, we observed that the muscle
primordia of extraocular muscles mr and ir, all arch muscles and sh
were missing at 72 hpf (Figs. 2C, D), whereas the muscle primordial of
so, io, sr, and lr, and some remnants of arch muscle cells, were all
normal and presented as RFP-positive (Figs. 2A, B). Furthermore,
besides six1a-MO, we also designed two other types of morpholinos,
UM-MO and SM-MO, to specifically knockdown the translation of
six1a mRNA. The defective phenotype induced by injection of either
UM-MO or SM-MO was similar to that of injection of six1a-MO
(Supplemental Fig. S1). Western blot analysis proved that the Six1a
expression level was greatly reduced in the six1a-MO-injected
embryos (Supplemental Fig. S2). In addition, we co-injected a wobble
six1a-egfp mRNA with a six1a-MO, and the Six1a-GFP fusion protein
was detected in embryos (Supplemental Fig. S3), indicating that the
injected six1a-MO cannot inhibit the translation of the introduced
wobble six1a-egfp mRNA. Furthermore, co-injection of six1a-MO with
wobble six1a-mRNA, but not egfp mRNA, enabled embryos to rescue
the defective phenotypes induced by six1a-MO and resulted in the
normal development of all head muscles (Figs. 2E, F; and Table 2). We
also noticed that the degree of defective phenotype induced by six1a-
MO was dose-dependent (Table 1). Overall, evidence indicates that
the defects induced by six1a-MO are specific and we therefore
concluded that six1a is necessary for the development of extraocular
muscles mr and ir, all arch muscles and sh, which migrate from trunk
and contribute to head muscle.

Six1a functions with Myf5 and Myod in cranial muscle development, but
in different modulations

Lin et al. (2006) categorized all zebrafish cranial muscles into three
groups and defined three regulatory pathways involved in cranial
muscle development. Among them, the extraocular muscles so and io,
the dorsal pharyngeal arch muscles lap, do, am, ah and ao, and the
trunk migratory head muscle sh, are categorized as Group I, whose
primordial cells requireMyf5 to activate their downstreamMRFs, such
asmyod andmyogenin. In this study, we found thatmyf5was normally
expressed in pharyngeal arch muscle precursors of the six1a-MO-
injected embryos during 36–48 hpf (Figs. 2I vs. M and J vs. N). In
addition, compared to the wild-type embryos, the expressions of
myf5, myod and myogenin remained unchanged in the extraocular
muscles so and io of six1amorphants (Figs. 2J vs. N, K vs. O, and L vs. P).
However, the expressions of myod and myogenin were greatly reduced
in the pharyngeal arch muscle precursors, lap, do, am, ah, and ao, of
six1a-MO-injected embryos at 48 hpf (Figs. 2K vs. O and L vs. P),
suggesting that Six1a is required for the normal expressions of myod
and myogenin in the precursors of dorsal pharyngeal arch muscles. On
the other hand, the primordial muscle sh, which originates from trunk,
lost both myf5 and myod expression in the six1a morphants (Figs. 5B
vs. E and C vs. F), suggesting that Six1a is required for the expressions
of myf5 and myod in sh primordial muscle.

The extraocular muscle lr and the ventral pharyngeal arch muscles
ima, imp, ih and hh are categorized as Group II, whose primordial cells
aremyf5-expressed precursors and require myod to play a major role in
myogenesis. Both myf5 and myod are necessary for the development of
Group II precursors. Here, we revealed thatmyf5was normally expressed
in the precursor of pharyngeal arch muscles of six1a morphants at 36–
48 hpf, compared to the wild-type embryos. In addition, the myod and
myogenin expressions remained unchanged in the extraocular muscle lr
of six1a morphants at 48 hpf (Figs. 2K vs. O and L vs. P). However, the
myod and myogenin expressions were totally lost in the ventral
ays an essential role in the craniofacial myogenesis of zebrafish, Dev.
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Fig. 1. The temporal expressions of six1a, myf5 and myod during cranial muscle development of zebrafish. The temporal expressions of six1a (A, D, G, J, L), myf5 (B, E, H) and myod
(C, F, I, K, M) transcripts of zebrafish were analyzed by whole-mount in situ hybridization in embryos from lateral view (A–K) and ventral view (L–M). The transcript of six1a in the
olp, ov, and allg at 24 hpf (A); in the mr, ir, 1st, 2nd, and 3rd arches at 32 and 36 hpf (D, G); and in all the cranial muscles at 72 hpf (J, L). The myf5 transcript was detected in the
craniofacial region at 24 hpf (B, arrow); in the so, io, 2nd and 3rd arches at 32 hpf (E); and in the so, io, and 3rd arches at 36 hpf (H). Although the myod was not expressed in the
craniofacial muscles at 24 hpf (C), it was detected in the mr/ir, lr, and 1st arch at 32 hpf (F); in the mr, ir, sr, lr, MP, IM, CHD, and CHV at 36 hpf (I); and in all the cranial muscles at
72 hpf (K, M). The schematic diagram illustrates the expression of six1a in the cranial muscles during 32–72 hpf (N). ah, adductor hyoideus; allg, anterior lateral line and vestibular
ganglia; am, adductor mandibulae; ao, adductor operculi; do, dilator operculi; dpw1–5, dorsal pharyngeal wall 1–5; hh, hyohyoideus; ih, interhyoideus; ima, intermandibularis
anterior; imp, intermandibularis posterior; io, inferior oblique; ir, inferior rectus; lap, levator arcus palatini; lr, lateral rectus; mr, medial rectus; olp, olfactory placode; ov, otic vesicle;
sh, sternohyoideus; so, superior oblique; sr, superior rectus and tv 1–5, transversus ventralis 1–5. CHD: the constrictor hyoideus dorsalis, which differentiates to ah and ao; CHV: the
constrictor hyoideus ventralis, which differentiates to ih and hh; IM: the intermandibularis, which differentiates to ima and imp;MP: themasticatory plate, which differentiates to CD
and am. CD: the constrictor dorsalis, which differentiates to lap and do.
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UNpharyngeal arch muscles ima, imp, ih and hh in the six1a morphants at
48 hpf (Figs. 2K vs. O and L vs. P), suggesting that Six1a affects myod
expression in the ventral pharyngeal arch muscle of zebrafish.

The extraocular muscles sr, mr and ir belong to Group III, whose
primordial cells require myod, but not myf5, as a major factor in
muscle development. The expressions of myod and myogenin in the
extraocular muscle sr of the six1a-MO-injected embryos appeared the
same as the extraocular muscle sr of the wild-type embryos (Figs. 2K
vs. O and L vs. P). However, the extraocular muscles mr and ir of the
six1a-MO-injected embryos were completely lost when observed at
48 hpf (Figs. 2K vs. O and L vs. P). This evidence suggests that Six1a
modulates myod expression in extraocular muscles mr and ir.
Please cite this article as: Lin, C.-Y., et al., The transcription factor Six1a pl
Biol. (2009), doi:10.1016/j.ydbio.2009.04.029
3Taken together, during craniofacial muscle development of zebra-
3fish, we conclude that Six1a is required for (1) myf5 expression in
3trunk migratory head muscle sh and (2) myod expression in the
3extraocular muscles mr and ir in all pharyngeal arch muscles and the
3trunk migratory head muscle sh.

3The defective pharyngeal arch muscles are induced specifically by loss
3of Six1a

3Pharyngeal arch is developed from three germ layers: the
3mesoderm core, the endoderm pharyngeal pouch and the ectoderm
3neural crest cells (Graham and Smith, 2001). It was necessary to
ays an essential role in the craniofacial myogenesis of zebrafish, Dev.
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Fig. 2. Six1a is required for the development of mr, ir, sh and all pharyngeal muscles. Embryos derived from the transgenic line Tg(α-actin:RFP) (A–H), all of whose skeletal muscles
appear as red fluorescent protein (RFP), were injected with 8 ng of six1a-morpholino oligonucleotide (MO) to specifically inhibit six1a mRNA translation. RFP signal was detected
only in the so, io, sr, lr, and remnant dorsal branchial arch muscle (white star) primordia in the six1a-MO-injected embryos (A vs. C and B vs. D). When embryos were injected with
8 ng of six1-MO together with 150 pg of six1amRNA, results showed that the defective muscle primordia induced by six1a-MOwere rescued and appeared as RFP-labeledmuscles (E,
F; the rescued muscles are marked in green typeface). In contrast, the rescue experiment failed when embryos were injected with 8 ng of six1a-MO with 200 pg of gfpmRNA (G, H),
suggesting that the defects of six1amorphants were specific. The expressions of myf5 (I, J, M, N),myod (K, O), and myogenin (L, P) were also observed at the stages indicated. When
wild-type embryos were injected with six1a-MO,myf5was expressed normally in the six1amorphants, both at 36- (I vs. M) and at 48-hpf (J vs. N), except sh. On the other hand, the
expressions ofmyod (K vs. O) andmyogenin (L vs. P) were decreased in the extraocular io, so, sr and lr in the six1morphants at 48 hpf. Weak signals ofmyod andmyogeninwere also
noticed in the remnant dorsal branchial muscles (black stars) of six1amorphants. The schematic diagram illustrates the cranial muscle defects in six1amorphants and compares the
expressions of myf5, myod and myogenin betweenwild-type (upper row, Q) and six1a morphants (lower row, Q). Lateral view: A, C, E, G and I–P; and ventral view: B, D, F and H. ah,
adductor hyoideus; am, adductormandibulae; ao, adductor operculi; do, dilator operculi; hh, hyohyoideus; ih, interhyoideus; ima, intermandibularis anterior; imp, intermandibularis
posterior; io, inferior oblique; ir, inferior rectus; lap, levator arcus palatini; lr, lateral rectus; mr, medial rectus; sh, sternohyoideus; so, superior oblique and sr, superior rectus.
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confirm whether the defects in pharyngeal muscles in the six1a
morphants were exclusively the result of Six1a loss or the result of
defective mesoderm core, defective endoderm pharyngeal pouch, or
Please cite this article as: Lin, C.-Y., et al., The transcription factor Six1a pl
Biol. (2009), doi:10.1016/j.ydbio.2009.04.029
neural crest cells. To accomplish this, we detected the expressions of
et1, fgf3 and dlx2, which are the genemarkers of the ventral mesoderm
core (Miller et al., 2000), the endoderm pouch (David et al., 2002) and
ays an essential role in the craniofacial myogenesis of zebrafish, Dev.
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Table 1t1:1

Six1 is required for the developments of medial rectus (mr), inferior rectus (ir),
sternohyoideus (sh) and all arch muscles.

t1:2
t1:3 six1-MO-injected

concentration
Defect (%)

t1:4 Absent-muscle Reduced-muscle Wild-type like

t1:5 Uninjected 0 (0/107) 0 (0/107) 100 (107/107)
t1:6 1 ng 3.1 (3/98) 91.8 (90/98) 5.1 (5/98)
t1:7 2 ng 19.0 (20/105) 76.2 (80/105) 4.8 (5/108)
t1:8 4 ng 42.1 (48/114) 55.2 (63/114) 2.7 (3/114)
t1:9 6 ng 65.1 (58/89) 34.9 (31/89) 0 (0/89)
t1:10 8 ng 81.8 (54/66) 18.2 (12/66) 0 (0/66)

The morphological defects were observed at 72 hpf. Absent-muscle defect indicated
thatmr, ir, sh and ventral archmuscles were completely lost but remnants of dorsal arch
muscles still remained. Reduced-muscle defect indicated that mr, ir, sh and all arch
muscles were partially lost. Wild-type like phenotype indicated that the head muscles
were not lost.t1:11
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neural crest cells (Akimenko et al., 1994), respectively. Results showed
that both et1 (Figs. 3A vs. B), fgf3 (Figs. 3C vs. D) and dlx2 (Figs. 3E
vs. F) were normally expressed in the six1a-MO-injected embryos at
36 hpf, indicating that mesoderm core, endoderm pouch and neural
crest cells develop normally. The loss of pharyngeal arch muscle in
six1a morphants does not arise from the lost structures of mesoderm
core, pharyngeal pouch and neural crest cells. Therefore, we proposed
that Six1a is directly involved in pharyngeal arch myogenesis.

six1a links with either myf5 or myod to modulate the development of
craniofacial muscles

Based on the expression patterns and the muscle defects which
occurred in the six1amorphants, we hypothesized the plausibility of a
UN
CO

RR
EC

Fig. 3. Loss of Six1a function does not impede the normal development of mesoderm core an
wild-type and in the six1a-MO-injected embryos at 36 hpf. Results showed that the transcri
pharyngeal pouches (C vs. D, arrows), and neural crest cells (E vs. F, six arches), respective

Please cite this article as: Lin, C.-Y., et al., The transcription factor Six1a pl
Biol. (2009), doi:10.1016/j.ydbio.2009.04.029
PR
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F

3myf5-six1a-myod regulatory pathway in craniofacial muscle develop-
3ment. After we confirmed the specific activities of myf5-MO and
3myod-MO (Supplemental Fig. S3), we microinjected either myf5-MO
3or myod-MO together with six1a mRNA to determine which embryo
3would be rescued by six1a mRNA from MO-induced defect. Results
3showed that bothmyf5- (Figs. 4E–H) andmyod-morphants (Figs. 4I–K)
3failed to be rescued from their muscle defects through the addition of
3exogenous six1a mRNA (Wild type control, Figs. 4A, B). Therefore, we
3next microinjected six1a-MO with either myf5 mRNA or myod mRNA
3to determine which mRNA enabled rescue of the embryos from the
3defects induced by six1a-MO (six1a-MO phenotype control, Figs. 4C,
3D). By co-injection of six1a-MO with myf5 mRNA, results showed that,
3while the loss of mr, ir and the remnants of pharyngeal arch muscle
3were observed, muscle sh had been rescued (Figs. 4M, N; and Table 2).
3This evidence suggests that myf5 may not be an upstream modulator
3of six1a. Instead, myf5 and six1a may independently regulate the
3craniofacial muscles derived from the head paraxial mesoderm, mr, ir
3and the pharyngeal arch muscles. In contrast, co-injection of myod
3mRNA enabled embryos to rescue all head muscle defects induced by
3six1a-MO, suggesting that six1a was the upstream regulatory gene of
3myod (Figs. 4O, P; and Table 2).
3It is noteworthy that the muscle sh, which originates from the
4trunk, could be rescued by myf5 mRNA in the six1a morphants. Based
4on this evidence, we hypothesized that Six1a plays roles in different
4regulatory pathways between cranial and trunk myogenesis. To
4demonstrate this hypothesis, we analyzed the development of the
4sh, fin bud (fb) and posterior hypoaxial muscle (phm) that come from
4the dermomyotome in the anterior somites. Using whole-mount in
4situ hybridization, we observed that six1a, myf5 and myod were all
4expressed in the muscle primordia of wild-type at 36 hpf (Figs. 5B, C;
TE
D

d pharyngeal pouch. The expression patterns of et1, fgf3 and dlx2 were examined in the
pts of et1, fgf3 and dlx2 exhibited similarly in ventral mesoderm cores (A vs. B, arrows),
ly, between wild-type embryos and six1a morphants.

ays an essential role in the craniofacial myogenesis of zebrafish, Dev.
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Fig. 4. Injection ofmyodmRNA enables embryos to rescue the defective muscle derived from cranial mesoderm in the six1amorphants. Embryos derived from Tg (α-actin:RFP) (A, B
as non-treated) were injected with 8 ng of six1a-MO (C, D) and either 4 ng of myf5-MO (E, F) or myod-MO (I, J) to serve as control groups. Embryos injected with 4 ng of myf5-MO
and 150 pg of six1a mRNA (G, H), 4 ng of myod-MO and 150 pg of six1a mRNA (K, L), 8 ng of six1a-MO and 100 pg of myf5 mRNA (M, N), and 8 ng of six1a-MO and 50 pg of myod
mRNA (O, P) were used to examine the appearance of RFP-labeled muscles. Results showed that only sr and mr/ir muscles exhibited in the myf5-MO-injected embryos and in the
myf5-MO-six1a-mRNA-injected embryos (E vs. G and F vs. H). In contrast, only so, io, lap/do, ah, ao, and sh muscles exhibited in the myod-MO-injected embryos and in the myod-
MO-six1a-mRNA-injected embryos (I vs. K and J vs. L). Similar to six1amorphants, embryos co-injected with six1a-MO andmyf5mRNA exhibited the so, io, sr, lr and remnant dorsal
branchial arch muscles. However, injection of myf5 mRNA enabled embryos to rescue only sh primordia muscle among defects induced by six1a-MO (M, N), while injection ofmyod
mRNA enabled embryos to rescue all the defective muscle primordia induced by six1a-MO (O, P). The rescued muscles are marked in green typeface. Lateral view: A, C, E, G, I, K, M
and O; Ventral view: B, D, F, H, J, L, N and P. ah, adductor hyoideus; am, adductor mandibulae; ao, adductor operculi; do, dilator operculi; hh, hyohyoideus; ih, interhyoideus; ima,
intermandibularis anterior; imp, intermandibularis posterior; io, inferior oblique; ir, inferior rectus; lap, levator arcus palatini; lr, lateral rectus; mr, medial rectus; sh, sternohyoideus;
so, superior oblique and sr, superior rectus.

t2:1

t2:2
t2:3

t2:4

t2:5

t2:6

t2:7

t2:8

t2:9

t2:10

t2:11t2:12

7C.-Y. Lin et al. / Developmental Biology xxx (2009) xxx–xxx

ARTICLE IN PRESS
RRand Supplemental Fig. S4). However, we also observed that the sh, fb
and phmwere absent in the six1a-MO-injected embryos derived from
the transgenic line Tg (α-actin:RFP) at 72 hpf (Fig. 5D). In addition,
myf5 and myod lost their expressions in these muscles at 36 hpf (Figs.
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Table 2
The loss of mr, ir and arch muscles, which originate from cranial mesoderm, in the six1-
morphants was rescued by myod mRNA, but not myf5 mRNA.

six1-MO-injected
concentration

Defecta (%)

Absent-muscle Reduced-muscle Wild-type like

8 ng 85.7 (66/77) 13.0 (10/77) 1.3 (1/77)
8 ng+150 pg six1 mRNA 20.5 (14/68) 44.1 (30/68) 35.4 (24/68)
8 ng+250 pg six1 mRNA 23.4 (11/47) 36.2 (17/47) 40.4 (19/47)
8 ng+50 pg myf5 mRNA 86.0 (49/57) 14.0 (8/57) 0 (0/57)
8 ng+100 pg myf5 mRNA 84.1 (53/63) 14.3 (9/63) 1.6 (1/63)
8 ng+50 pg myod mRNA 21.3 (16/75) 42.7 (32/75) 36.0 (27/75)

The morphological defects were observed at 72 hpf. Absent-muscle defect indicated
that mr, ir and ventral arch muscles were completely lost but the remnants of dorsal
arch muscles still remained. Reduced-muscle defect indicated that mr, ir and all arch
muscles were partially lost. Wild-type like phenotype indicated that the head muscles
were not lost.

a The sh muscle was not included because it originates from the trunk.

Please cite this article as: Lin, C.-Y., et al., The transcription factor Six1a pl
Biol. (2009), doi:10.1016/j.ydbio.2009.04.029
5E, F). Thus, we reasoned that Six1a is required for the trunk
migratory muscles. When six1a-MO was co-injected with six1amRNA
into embryos, the sh, fb and phm primordia appeared normally at
72 hpf (Fig. 5G). Furthermore, both myf5 and myod were detected at
48 hpf (Figs. 5 H, I). Interestingly, co-injection of either myf5 or myod
mRNA could rescue the defective development of sh, fb and phm
primordia induced by six1-MO at 72 hpf (Figs. 5J, M). The expressions
of myod and myogenin were partially restored in the embryos co-
injected with myf5 mRNA and six1a-MO when observed at 48 hpf
(Figs. 5K, L). Similarly, the expressions of myf5 and myogenin were
also partially rescued in the embryos co-injected with myod mRNA
and six1a-MO (Figs. 5N, O). Thus, we concluded that six1a is required
for the expressions ofmyf5 andmyod in sh and trunk myogenesis, but
six1a activates myf5 and myod through the six1a-myf5 pathway and
six1a-myod pathway, respectively.

Regulatory pathways that control six1a expression

Six1a plays important roles in pharyngeal arch muscle, mr and ir
development. It has been reported that mouse T-box gene, tbx1, is an
early cranial mesoderm inducer which regulates arch muscle
ays an essential role in the craniofacial myogenesis of zebrafish, Dev.

http://dx.doi.org/10.1016/j.ydbio.2009.04.029


OR
RE

CT
ED

PR
OO

F

431

432

433

434

435

436

437

438

439

440

441

442

443

44

45

46

47

48

49

50

51

52

53

54

55

56

Fig. 5. Injection of six1a-, myf5-and myod mRNA enables embryos to rescue trunk migratory head muscle sternohyoideus (sh) defect in six1a morphants. Dorsal views of embryos
derived either from the transgenic line Tg(α-actin:RFP) (A, D, G, J, M) or from the wild-type (B, C, E, F, H, I, K, L). The RFP expression in the embryos derived from the transgenic line at
72 hpf (A) and the detection ofmyf5 andmyod bywhole-mount in situ hybridization at 36 hpf (B, C) served as control groups. Injection of embryos with either 8 ng of six1a-MO alone
(D–F) or co-injectionwith 8 ng of six1a-MO and 150 pg of six1amRNA (G–I), 100 pg ofmyf5mRNA (J–L) or 50 pg ofmyodmRNA (M–O) were examined. RFP,myf5 andmyodwere not
detected in sh, fb, or phm primordia in the six1amorphants (D–F); however, co-injection of six1amRNA enabled embryos to rescue the defective expressions of RFP,myf5 andmyod
in sh, fb and phm primordia induced by six1a-MO at 48 hpf (H, I) and at 72 hpf (G). Meanwhile, injection ofmyf5mRNA enabled embryos to rescue the defective expressions of RFP,
myod andmyogenin in sh, fb and phm primordia induced by six1a-MO at 48 hpf (K, L) and at 72 hpf (J). Injection ofmyodmRNA enabled embryos to rescue the defective expressions
of RFP,myf5 andmyogenin in sh, fb and phm primordia induced by six1a-MO at 48 hpf (N, O) and at 72 hpf (M). fb, fin bud; phm, posterior hypoaxial muscle; and sh, sternohyoideus.
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development (Grifone and Kelly, 2007; Kelly et al., 2004; Piotrowski
et al., 2003). To understand whether tbx1 is upstream of six1a, we
detected the expression of tbx1 and found that tbx1 was expressed in
zebrafish pharyngeal arch region at 36 hpf (Fig. 6A). In tbx1-MO-
injected embryos derived from the transgenic line Tg(alpha-actin-
RFP), all the pharyngeal arch muscles were lost when observed at
72 hpf under fluorescent microscopy. However, the six extraocular
muscles were normally developed (Fig. 6E). We also detected six1a,
myf5 and myod expressions in the tbx1-MO-injected embryos.
Results showed that the expressions of six1a, myf5 and myod were
lost in pharyngeal arch muscles, but not the extraocular muscles
(Figs. 6B–D), suggesting that tbx1 is required for the expressions of
six1a, myf5 and myod in pharyngeal arch muscle. Interestingly, when
Please cite this article as: Lin, C.-Y., et al., The transcription factor Six1a pl
Biol. (2009), doi:10.1016/j.ydbio.2009.04.029
4six1a-, myf5- or myod mRNA was co-injected with tbx1-MO, we
4found that myf5-mRNA (Fig. 6G), but not six1a-mRNA or myod
4mRNA, enabled rescue of embryos from the defects induced by tbx1-
4MO (Figs. 6F, H). This evidence strongly suggests that tbx1 is an
4upstream modulator of myf5, regulating the specification of cranial
4muscle development through myf5; however, the findings also
4indicate that tbx1 is not a direct upstream regulator of six1a.
4Next, we studied whether the EYA-DACH-SIX-PAX pathway, which
4plays a critical function in the trunk muscle development of mouse, is
4also involved in the head muscle development of zebrafish. When we
4detected the myf5 and myod expressions in the eya1-knockdown
4morphants, we found that both myf5 (Figs. 7A vs. C) and myod
4(Figs. 7D vs. F) were normally expressed in the eya1-MO-injected
ays an essential role in the craniofacial myogenesis of zebrafish, Dev.
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Fig. 6. The function of Six1a in branchial muscle development requires Tbx1 and Myf5 to play a specification role on arch muscle cell fate. Embryos derived from the wild-type strain
(A–D) and from the transgenic line Tg(α-actin:RFP) (E–H) were examined at lateral view. Whole-mount in situ hybridization was used to detect the tbx1 expression in arch muscle
and cranial mesoderm in wild-type embryos at 36 hpf (A). Compared to the above control embryos, the expressions of six1a (B), myf5 (C) and myod (D) in the 10 ng group of tbx1-
MO-injected embryos were lost in archmuscles, but retained in extraocular muscles. We also observed that all the pharyngeal arch muscles were lost, but that 6 extraocular muscles
developed normally in the 10 ng group of tbx1-MO-injected embryos derived from Tg(α-actin:RFP) at 72 hpf (E). With co-injection of 10 ng of tbx1-MO and either 150 pg of six1a
mRNA (F),100 pg ofmyf5mRNA (G) or 50 pg ofmyodmRNA (H) in embryos, we found that onlymyf5mRNA enabled embryos to rescue the RFP expression in lap, do, ah, ao, am, ima/
imp and ih/hh (marked in green typeface of G). The heart defect induced by injection of tbx1-MO is labeled with a white star. ah, adductor hyoideus; am, adductor mandibulae; ao,
adductor operculi; do, dilator operculi; hh, hyohyoideus; ih, interhyoideus; ima, intermandibularis anterior; imp, intermandibularis posterior; io, inferior oblique; ir, inferior rectus;
lap, levator arcus palatini; lr, lateral rectus; mr, medial rectus; sh, sternohyoideus; so, superior oblique and sr, superior rectus. Embryos were all lateral views.
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COembryos. In addition, we injected eya1-MO into the embryos

derived from transgenic line Tg(α-actin:RFP) and found that the
head muscles were still developed normally in the eya1 morphants
(Figs. 7I, L), even though the eya1 morphant suffered from reduced
size of the inner ear (Supplemental Fig. S5), a phenotype similar to
that of the eya1 mutant described by Kozlowskia et al. (2005). In
contrast, when we detected the myf5 and myod expressions in the
pax3-knockdown morphants, we found that myf5 was detected in
the head muscles that originated from the mesoderm (Figs. 7A vs.
B), and myod was detected only in so, io, sr and lr muscle primordia
in the pax3-MO-injected embryos (Figs. 7D vs. E), suggesting that
pax3 is necessary for the development of mr and ir, all arch muscles
and sh. Moreover, when we injected pax3-MO into the Tg(α-actin:
RFP) embryos, we found that only the so, io, sr and lr muscles
remained unchanged, which was similar to that of six1a-MO
Please cite this article as: Lin, C.-Y., et al., The transcription factor Six1a pl
Biol. (2009), doi:10.1016/j.ydbio.2009.04.029
morphants (Figs. 7G, H, J, K). When we co-injected six1a mRNA
with pax3-MO, it was observed that the head muscle defects
induced by pax3-MO could not be rescued (Figs. 7M, P). Similarly,
neither myf5 nor myod mRNA was able to rescue the pax3-morphant
defects (Figs. 7N, O, Q, R). To better understand the role pax3 plays
in craniofacial muscle development, we analyzed the expression
pattern of pax3 by whole-mount in situ hybridization during late
embryogenesis. Results showed that pax3 was not detected in the
cranial muscles, with the exception of sh (Supplemental Fig. S6).
However, the absence of Pax3 function caused a severe defect in the
head muscles. Based on this evidence, we suggest that the
modulation of pax3 on the cranial muscle development from head
mesoderm is indirect in manner. It is also clear that six1a and pax3
do not function in the same regulatory network during cranial
muscle development.
ays an essential role in the craniofacial myogenesis of zebrafish, Dev.
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Fig. 7. Similar to Six1a, Pax3 is required for the development of mr, ir and all arch muscles. Embryos derived from the wild-type strain (A–F) and from the transgenic line Tg(α-actin:
RFP) (G–R) were examined. Whole-mount in situ hybridization was used to detect the expressions of myf5 and myod at 48 hpf in the wild-type embryos, which served as a control
group (A, D). Compared to the control group, embryos injected with 3 ng of pax3-MO exhibited a normal expression of myf5 in head muscle primordia at 48 hpf (B), but these
embryos expressedmyod only in so/sr, lr, io, and some remnant branchial muscles (E). Embryos injected with 10 ng of eya1-MO expressed myf5 andmyod normally in head muscle
primordia at 48 hpf (C, F). We also noticed that the RFP expression of embryos injected with six1a-MOwas similar to that of control group at 72 hpf (G vs. J). The RFP signal appeared
in the so, io, sr, lr and some remnant branchial muscles in pax3-MO-injected embryos, which was similar to that of the six1amorphants at 72 hpf (G vs. H and J vs. K). The RFP signal
appeared in all cranial muscles of the eya1-MO-injected embryos at 72 hpf (I and L). By co-injection of 10 ng of pax3-MO with 150 pg of six1a mRNA (M, P), 100 pg of myf5 mRNA
(N, Q) or 50 pg of myod mRNA (O, R), we found that the defective expressions of six1a, myf5 and myod could not be rescued in the pax3 morphants.
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Discussion

Myf5 and Myod play crucial functions in modulating the expres-
sion of genes encoding the muscle structural proteins and, finally,
permitting the assembly of myofibers (Molkentin and Olson, 1996;
Buckingham, 2001). In previous studies, we demonstrated that the
role of myogenic regulatory factor myf5 is markedly different from
that of myod during craniofacial muscle development in zebrafish
through three pathways (Lin et al., 2006). However, it remained
unclear whether other factors might be involved in the regulation of
myf5 and myod expression in craniofacial muscle development.
Here, we study the roles that transcriptional factors six1a, tbx1 and
pax3 play in regulating myf5 and myod expressions in craniofacial
muscle development. Based on expression patterns and knockdown
phenotypes, we, therefore, proposed four putative regulatory path-
ways along which these myogenic regulatory factors function with
particular focus on Myf5 and Myod (Fig. 8).

Regulatory networks of Tbx1, Six1a, Pax3, Myf5 and Myod during
cranial myogenesis

During zebrafish cranial muscle development, the arch I and II
mesoderm cores are subdivided into dorsal and ventral mesoderm
UN
CO

RR
EC

Fig. 8. Regulatory network model for tbx1, six1a, pax3, myf5 and myod, which are involved
presented in this study, we propose that the development of all cranial muscles of zebrafish is
al. (2006). To summarize, Pathway I (marked in green): for dorsal arch muscles, lap, do, ah, ao
consequence, the basal level of myf5 triggers myod expression to further myogenic processe
pax3, maintains and enhances a high level of myogenesis. Pathway II (marked in yellow): f
activates myf5 expression to determine the myogenic cell fate. After subdivision, the major
which is directly controlled by six1a, but indirectly controlled by pax3, maintains and enhan
and ir. The myogenic regulatory factor myod initiates myogenesis, and its expression is con
Pathway IV (marked in blue): for trunk migratory head muscle, sh. The MRF six1a direct
redundant function.

Please cite this article as: Lin, C.-Y., et al., The transcription factor Six1a pl
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cores. The dorsal mesoderm cores are the precursors of lap, do, am, ah,
and ao, whereas the ventral mesoderm cores are the precursors of
ima, imp, ih, and hh. We previously found that both myf5 and myod
are expressed in the dorsal mesoderm cores, but only myod is
expressed in the ventral mesoderm (Lin et al., 2006). Nathan et al.
(2008) also showed that chick myf5 expresses in the dorsal region of
arch I mesoderm core at an early stage and functions synergistically
with Isl1 to commit cell fates to be different from those in ventral arch
I mesoderm core.

Pathway I is involved in dorsal arch muscle development. In this
study, we demonstrate that the expressions of myf5, six1a and myod
are not detected in the dorsal arch region of embryos treated with
tbx1-MO. However, only injection of myf5 mRNA can enable rescue
of the embryos from the defects induced by tbx1-MO (Fig. 6). We
therefore propose that tbx1 determines cell fates to myogenic lineage
through the modulation of myf5. Once myf5 is expressed, myod
expression starts to increase. On the other hand, we found that myf5
was expressed normally in the embryos injected with either six1a- or
pax3-MO (Figs. 2, 7), whereas myod (Figs. 2, 7) and myogenin (Fig. 2)
transcripts were severely reduced in the dorsal arch of six1a-and
pax3-morphants. In addition, injection of myod mRNA enables rescue
of embryos from the defects induced only by six1a-MO (Figs. 3, 7).
Taken together, we conclude that six1a and pax3 are not involved in
TE
D
PR

O

in the craniofacial muscle development of zebrafish embryos. Based on the evidence
through four regulatory pathways, which is a modification of model presented by Lin et
and am. Themyogenic regulatory factor tbx1 activatesmyf5 to initiate myogenesis. As a
s. Subsequently, myod, which is directly controlled by six1, but indirectly controlled by
or the precursors of ventral arch muscles, ima, imp, ih and hh. Before subdivision, tbx1
role of myod is to trigger the continuation of myogenic processes. Subsequently, myod,
ces a high level of myogenesis. Pathway III (marked in red): for extraocular muscles, mr
trolled by six1a directly, and by pax3 indirectly, to maintain and enhance myogenesis.
ly controls both myf5 and myod in the myogenesis process, but myf5 and myod have

ays an essential role in the craniofacial myogenesis of zebrafish, Dev.
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myogenesis initiation. Rather, they are required for maintaining a high
level ofmyod transcripts so that myogenesis can be processed.We also
notice that myod mRNA enables rescue of embryos from the defects
induced by six1a-MO, but not by pax3-MO, suggesting that, while the
expression of myod in the dorsal arch is directly controlled by six1a, it
is only indirectly controlled by pax3, perhaps through the interaction
of still unknown regulatory modules.

Pathway II is involved in ventral arch muscle development.
Ventral mesodermal core primordia originate from the myf5-positive
core and require Tbx1 and Myf5 to initiate myogenic lineage. In this
study, we found that the expressions of six1a and myod are lost in
the ventral arch region of tbx1 morphants, but that this defect can be
rescued by overexpression of myf5 mRNA (Fig. 6). Therefore, we
propose the involvement of two steps in the development of ventral
arch muscle: tbx1 initiates myf5 expression in the beginning, and,
subsequently, six1a enhances and maintains myod expression.
Furthermore, similar to Pathway I in dorsal arch, we also found
that the expressions of myod (Figs. 2, 7) and myogenin (Fig. 2) are
severely reduced in ventral arch when embryos are injected with
both six1a-and pax3-MO. Thus, we conclude that six1a and pax3 are
required to maintain myod expression in the ventral mesodermal
core cells. Again, as in Pathway I, we found that overexpression of
myod mRNA enables rescue of embryos from the defects induced
only by six1a-MO, but not pax3-MO, suggesting that the regulation
of myod in the ventral arch is directly controlled by six1a, but
indirectly controlled by pax3.

PathwayШ is involved in the development of extraocular muscles,
mr and ir. We found that six1a and myod transcripts are detected, but
not myf5 transcript, in mr and ir (Fig. 1). Meanwhile, the expressions
of myod (Figs. 2, 7>) and myogenin (Fig. 2) were lost in the mr and ir
of six1a- and pax3-morphants. Injection of myod mRNA enables
rescue of embryos from the defects induced by six1a-MO, but not
induced by pax3-MO (Figs. 3, 7). Therefore, myod is required for the
development of mr and ir, and myod is directly regulated by six1a.
Interestingly, although six1a and myod transcripts are expressed in all
extraocular muscles, the so, io, sr and lr are still observed in the six1a
morphants, suggesting that other factors may be involved in
controlling the development of so, io, sr and lr.

Pathway IV is involved in the development of sh primordia, which
originates from anterior trunk somites. We found that the transcript
of sh was lost in the six1a morphants, but injection of either myf5
mRNA ormyodmRNA enables embryos to be rescued from this defect
(Fig. 5). Since sh muscle is derived from anterior trunk somites, the
regulatory mechanisms controlling the muscle development between
head and trunk paraxial mesoderm are different. This evidence
suggests that six1a is governed by a head-specific regulatory cascade
in cranial myogenesis, which is fundamentally distinct from that
which is governed by a trunk-specific regulatory cascade. Taken
together, we conclude that six1a performs its function in head muscle
development, but it does so separately and by two distinct pathways,
one where muscle development originates from head mesoderm and
one where muscle development originates from the trunk.

Networks supporting modulation of Sixla and MRFs are dependent on
mesoderm origin

The branchiomeric muscles originate from cranial paraxial meso-
derm. Knockdown of Six1a function results in greatly decreased
expressions of myod and myogenin, while myf5 is expressed normally.
Because of the existence of myf5 in these muscles, the remaining arch
muscles in Six1a knockdown embryos are observed. Nevertheless,
myod transcripts are reduced, with the result that these muscles
eventually lose their function (Fig. 3). Like branchiomeric muscles, the
extraocular muscles originate from cranial paraxial mesoderm. Both
six1a and myod transcripts are expressed in mr and sr muscles at
32 hpf, whereas myf5 is not expressed (Fig. 2). Thus, when six1a is
Please cite this article as: Lin, C.-Y., et al., The transcription factor Six1a pl
Biol. (2009), doi:10.1016/j.ydbio.2009.04.029
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5knocked down, the myod transcripts are lost, with the result that
5muscle primordia of mr and ir are not developed (Fig. 3). On the other
5hand, unlike branchiomeric muscles and extraocular muscles, the
5cranial muscle sh originates from trunk paraxial mesoderm, which is
5named dermomyotome. During sh muscle development, Six1a is
5required for both myf5 and myod expressions (Fig. 5). This result is
6consistent with what we observe in fb and phmwhich originate from
6anterior trunk mesoderm in zebrafish. Therefore, both myf5 mRNA
6andmyodmRNAwere injected in the attempt to rescuemuscle defects
6of six1a morphants. While injection of myf5 mRNA could rescue only
6the defective sh muscle in six1a morphants, injection of myod mRNA
6enabled rescue of embryos from all defective cranial muscles (Fig. 4).
6Based on these findings, it seems clear that the modulatory network
6between Six1a and these two MRFs in cranial paraxial mesoderm is
6quite different from that which is observed in trunk (sh) paraxial
6mesoderm. This conclusion is similar to, and supported by, the
6findings of Grifone et al. (2005) in mice. They described how six1 and
6six4 genes control mrf4 expression and that six1−/−six4−/− embryos
6display reduced and delayed expressions of myod and myogenin,
6whereas the early activation of myf5 transcripts in the epaxial somite
6is unaffected. However, in the limb muscles, the Six1/4 are shown to
6be involved inmyf5 transcription through binding theMEF3 site in the
6145-bp regulatory sequence located at −57.5 kb of myf5 gene
6(Giordani et al., 2007).
6The six genes constitute a large family of genes that are highly
6conserved within the animal kingdom. In mammals, six members of
6the Six family have so far been identified, and these can be divided
6into three subclasses designated as Six1/2, Six3/6 and Six4/5
6subfamilies (Laclef et al., 2003; Seo et al., 1999). Moreover, it has
6been subsequently demonstrated that Six1, Six2, Six4 and Six5 have a
6similar binding specificity to the ARE/MEF3 site possessing a
6consensus sequence TCAGGTTTC (Ohto et al., 1999; Spitz et al.,
61998). In mice, the defects of muscle hypoplasia in six1−/−six4−/−

6embryos are more severe than those seen in six1−/− embryos
6(Grifone et al., 2005; Laclef et al., 2003). Similarly, the reduced
6expression of myf5 in the hind limb of six1−/−six4+/− mice is more
6severe than that observed in six1−/− embryos. These lines of evidence
6suggest that Six4 in myogenic progenitor cells displays a redundant
6functionwith Six1. Meanwhile, in zebrafish, three isoforms, six4.1–4.3,
6and their expression patterns have been defined, and six4.2 is
6expressed in the presomitic mesoderm, somites and pectoral fin bud
6(Kobayashi et al., 2000). In addition, Bessarab et al. (2008) reported
6that the fast muscles differentiate abnormally in the trunk muscles of
6six1a morphants in contrast to the slow muscles which develop
6normally. The expression of myogenin is reduced in all somites in the
6six1a morphants at the 9-somite stage. However, myogenin increases
6its expression at the 10-somite stage and finally reaches its normal
6expression level at the 13-somite stage. In our case, we also noticed
6that the cranial muscles in six1a morphants are partially developed.
6Thus, we speculate that zebrafish six4.2may have redundant function
6with six1 during muscle development of zebrafish. The zebrafish
6Six4.2, like mouse Six4, might partially compensate for the absence of
6Six1 to activate MRFs in the trunk muscle cells. According to this
6hypothesis, the selective muscle hypoplasia described in six1
6morphants could result from either insufficient levels of Six4.2 to
6compensate for Six1 in the affected myogenic precursor cells or from
6the existence of specific Six1 target genes.

6Comparison of Six1a, Pax3 and Eya1 functions in head muscle
6development between zebrafish and other model animals

6Genetic studies in Drosophila have identified that the eyeless (pax)
6is synergistic with DNA binding homeodomain factors, such as sine
6oculis (so/six), and nuclear cofactors, such as eyes absent (eya) and
6dachshund (dach) (Cheyette et al., 1994; Bonini et al., 1993; Mardon
6et al., 1994). Mutation of any gene encoding for these proteins leads
ays an essential role in the craniofacial myogenesis of zebrafish, Dev.
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to the failure of eye formation, and even the ectopic expressions of
these genes cause an additional eye formation (Bonini et al., 1997;
Shen and Mardon, 1997). Dach2, Six1 and Eya2 were first described
in the chick model system, and this report demonstrates that they
synergistically regulate the expressions of Pax3 and MRFs during
myogenesis (Heanue et al., 1999). Thereafter, mouse Six1 was found
to have synergistic genetic interactions with Eya factor (Li et al.,
2003), and Six1 knockout mice displayed defects in the kidney,
muscle and inner ear (Ozaki et al., 2004). Li et al. (2003) concluded
that binding Eya protein, which possesses phosphatase, can switch
the Six1–Dach function from transcriptional repression to activation.
Through this process, co-activators are recruited to regulate specific
gene targets for controlling the proliferation and survival of
precursor cells during mammalian organogenesis. Moreover, mouse
Six and Eya genes are activated independently in the ventrolateral
part of somitic dermomyotome, and the induction of Pax3 in this
region also relies on the interactions between Six and Eya proteins
(Grifone et al., 2007). Band-shifted assay and chromatin immuno-
precipitation studies reveal that Pax3 expression is directly con-
trolled by Six1 protein through binding to a conserved MEF3 site
located in Pax3 hypaxial enhancer sequence. In zebrafish, eya1 and
six1 are proven to act synergistically in adenohypophyseal cell
development (Nica et al., 2006). This evidence suggests that the
interaction of Six1a, Eya1 and Pax3 may be conserved among species
in trunk muscle development. However, in this study, we found that
the functions of Six1a, Eya1 and Pax3 in the cranial muscle
development of zebrafish are different from their functions in
trunk muscle development: eya1 does not affect head muscle
development, whereas the influence of pax3 on the gene expressions
of MRFs in the head muscles is similar to six1a.

The function of myod in head muscle development is directly
modulated by Six1a, but not myf5, with the exception of sh muscle
which originates from trunk muscle. When the function of either
Tbx1 or Myf5 is lost, Six1a is unable to initiate myogenesis in arch
muscles. Knockdown of six1a results in the reduction of myod
transcripts, suggesting that the role of Six1a in arch muscle does not
involve lineage of specification. Instead, Six1a activates and main-
tains myod expression in order to help the proliferation and
differentiation of muscle cells. Moreover, knockdown of tbx1 and
myf5 does not induce the defect occurring in extraocular muscles
mr and ir, where tbx1 and myf5 are not expressed. Thus, six1a is
capable of displaying the lineage of specification through the
activation of myod expression.

Regarding Eya1, when we knocked down eya1, the expressions of
myf5 and myod in the head muscles of wild-type were normal, as
well as the appearance of RFP in the head muscle of transgenic line
(Fig. 7), suggesting that the loss of Eya1 function does not affect the
cranial muscle development of zebrafish. In ZFIN, three Eya genes,
Eya1, Eya3 and Eya4, are identified. The eya1 (Sahly et al., 1999) and
eya4 (Schonberger et al., 2005) have been described as expressing
in branchial arches (ba) and the developing somites (so) which are
precursors of myogenic cells in zebrafish embryos. Nomajor defects in
head myogenesis were observed in the eya1-MO-injected embryos.
Thus, we cannot exclude the possibility that either Eya4 or other Eya
proteins could participate in a Six transcriptional complex which
functions to activate downstream targets. Nevertheless, in zebrafish,
adenohypophyseal cells in the eya1 mutant maintain either an
undifferentiated or de-differentiated state and therefore fail to initiate
gsud and pomc expressions, suggesting that Eya1 is required for
lineage-specific differentiation (Nica et al., 2006). However, knock-
down of six1 does not affect adenohypophyseal cells in lineage-
specific differentiation steps in wild-type embryos. Nevertheless,
when six1 is knockdown in the embryos derived from eya1 mutant,
the proliferation of adenohypophyseal cells is affected and the
specification defects are enhanced (Nica et al., 2006). Although eya1
and six1 are co-expressed in all adenohypophyseal cells, this evidence
Please cite this article as: Lin, C.-Y., et al., The transcription factor Six1a pl
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suggests that the stratum and extent of gene regulation are different.
Therefore, we conclude that Six1a plays a more dominant function
than Eya1 during head muscle development of zebrafish.

Regarding Pax3, when we knocked down pax3, the defective
phenotypes of cranial muscles were found to be similar to those of
six1a morphants (Fig. 7). However, co-injection of six1a-, myf5- or
myod mRNA failed to rescue the defects induced by pax3-MO (Fig. 7).
By comparing the expression patterns among pax3, six1a, myf5 and
myod, it can be seen that pax3 is not expressed in head muscle
primordia (Supplemental Fig. S6). Based on these results, we suggest
that the modulation of pax3 in head muscles may be through an
indirect means. Moreover, we found that myf5 is normally expressed
in the cranial muscles in pax3 morphants, which is consistent with the
result obtained from mouse myf5 studies, demonstrating that myf5
has a function in cranial muscle development of splotch mutant
(Tajbakhsh et al., 1997). Again, this evidence strongly supports our
hypothesis that the regulatory networks involved in craniofacial
muscle development and trunk muscle development are not identical.
In addition, lost FoxD3 expression in the splotch mutant indicates that
Pax3 plays important roles in neural crest development (Dottori et al.,
2001). Zebrafish pax3 mRNA is also expressed in the cranial neural
crest precursors and is required for specification of two specific
lineages of neural crest, xanthophores and enteric neurons (Minchin
and Hughes, 2008). In chicken, ablation of the cranial neural crests
influences paraxial mesoderm migration, resulting in the abnormal
patterning of head muscles. Moreover, the muscle precursor cells fail
to undergo terminal myogenic differentiation (Rinon et al., 2007).
Therefore, we speculate that the lost function of Pax3, which leads to
induction of defective cranial muscles, may be the result of abnormal
neural crest cell development. Taken together, we conclude that the
interaction among Six1a, Eya1 and Pax3 in the cranial muscle
development of zebrafish is processed in a pathway very different
from the Eya1–Six1–Pax3 pathway observed in the trunk muscle
development of other model animals.

Upstream regulators of Six1a and possible pathways involved in head
muscle development

In mice and chicks, transcription factors Pitx2, Tbx1, Tcf21
(Capsulin), and Msc (MyoR) are necessary for activation of MRFs
during branchiomericmyogenesis. In contrast,Wnt and BMP signaling
display negative modulators in head muscle development (Grifone
and Kelly, 2007). Here, we are the first to demonstrate that zebrafish
Tbx1 initiates myogenesis in arch muscles through myf5, while six1a
functions in head muscle development through myod (Fig. 6). These
data strongly support our previous conclusions reported in Lin et al.
(2006), which indicated that the regulatory pathways involving myf5
and myod are different during head muscle development.

By using P19 cells, Petropoulos and Skerjanc (2002) reported that
canonical Wnt3a/β-catenin/Lef/TCF signaling activates the expres-
sions of transcription factors, including Pax3, Mox1, Gli2, and Six1. In
addition, Pax3 induces Six1 and Eya2 expressions in skeletal
myogenesis (Ridgeway and Skerjanc, 2001). Thus, we speculate that
Wnt signaling may also play an important role in head muscle
development of zebrafish. Nevertheless, further study of the relation-
ship between Wnt and Six1a during cranial myogenesis is more than
justified.

Uncited reference

Tajbakhsh and Cossu, 1997

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ydbio.2009.04.029.
ays an essential role in the craniofacial myogenesis of zebrafish, Dev.
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