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Migratory History Recorded in Otoliths of the Japanese Eel, Anguilla
Japonica, Elvers as Revealed from SEM and WDS Analyses

Wann-Nian Tzeng

Department of Zoology, College of Science, National Taiwan University, Taipei, Taiwan 106, R.O.C.

The environmental history of the Japanese
eel, Anguilla japonica (Temminck & Schlegel),
during its migration from the spawning ground to
the rivers of Taiwan, was studied by examining
otolith microstructure with SEM, and the stron-
tium (Sr) and calcium (Ca) contents measured from
wavelengths of x-rays emitted from the otoliths with
WDS (Wavelength dispersive spectroscopy). The
Sr/Ca changes in the otoliths in relation to environ-
mental and physiological changes of the fish are
discussed.

LIFE HISTORY OF THE EEL

The Japanese eel is one of the most important
culture species in Taiwan. Large numbers of eel
elvers are caught for cultivation from November
to March during their upstream migration in
estuaries (Tzeng 1985). The eel is a catadromous
fish, spawning in the North Equatorial Current
west of the Mariana Islands (15°N, 140°E) during
the period from June to July (Tsukamoto 1992).
The eel larvae, a willow-leaf-shaped leptocephali,
drift with the current from their oceanic spawning
ground, and metamorphose into transparent
glass eel, or elvers, before entering the estuaries.
After upstream migration, the elvers become
young eels and live in the rivers for 5-20 years.
During late autumn, the maturing eel migrates
downstream to the ocean to spawn.

OTOLITH MICROSTRUCTURE AND DAILY AGE

Since Pannella (1971) discovered primary
growth increments in otoliths of fish, ageing tech-
nique by examining daily growth increments in
otoliths has been applied widely to study the age
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of ths fish (Campana and Neilson 1985). There are
three pairs of otoliths in fish's ofic vesicles, function-
ing as hearing and body balance of the fish. Otolith
is a biogenic aragonite, alternatively consisted of
a calcium-rich incremental zone and an organic-
rich discontinuity zone. When otoliths are ground
with fine mesh polishing paper, polished with al-
umina paste, and etched with 5% EDTA (ethylene
diamine tetra-acetate; pH adjusted with NaOH to
7.4). The above-mentioned two zones become the
"crest and trough” on the polished otolith, which
could then be viewed under SEM (Fig.1). The
otolith incremental and discontinuity zones are
deposited on a daily basis (Tzeng and Yu 1988).
This permitted the time required for migration of
the eel larvae from the spawning ground to the
coasts, and the spawning season of the eel, to be
estimated (Table 1).

OTOLITH MICROCHEMISTRY AND
MIGRATORY HISTORY

Recent studies have indicated that past envir-
onmental history of the fish can be reconstructed
from analysis of the ratio of trace element, especially
Sr, incorporated during the process of otolith
growth (Radtke et al. 1990, Secor 1992). Sr can
inter-change with Ca in otoliths during the deposi-
tional process because Sr has the same valence
as Ca, as well as a similar ionic radius (Amiel et al.
1973). The Sr content in the otolith of diadromous
fish was found to differ between freshwater and
seawater phases (Casselmam 1982, Radke et al.
1988, Kalish 1990). The incorporation of Sr into
the otolith is a physiological process controlled
by many interactive factors including temperatrue,
salinity, ontogeny and migration (Kalish 1989,
Sadovy and Severin 1992, Smith et al. 1979,
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Fig. 2. Changes in strontium/calcium concentration ratio measured through the maximum edge-primordium-edge axis (spots 1-19) of a
sectioned otolith of a 56.2 mm TL elver with a maximum otolith diameter of 142 pm, collected in a river estuary of northern Taiwan

on 22 January 1990. (from Tzeng and Tsai 1994)
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