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ABSTRACT 
In this paper, we develop some methods to save the bandwidth 
required in the fractional domain. The fractional domain is the 
transformed domain of the fractional Fourier transform (FRFT). 
It is the intermediate of the time domain and the frequency do- 
main. We find that, with the aid of the fractional Hilbert trans- 
form and other techniques, we can save 112 or 314 of the band- 
width in the fractional domain if the signal is causal, real, a real 
signal multiplied by chirp, a fractal, or a finite duration signal. 
The efficiency of the FRFT can hence be improved. 

1. INTRODUCTION 

In communication, we usually use the Hilbert transform and 
other techniques to save the bandwidth in the frequency domain. 
The Hilbert Transform (HLT) [ I ]  is defined as: 

where FT, IFT are forward I inverse Fourier transforms. If x( t )  is 
causal (i.e., x(t)  = 0 for t < 0), the real part and imaginary part of 
A'( w) (X( w) = F q x ( t ) )  form a Hilbert transform pair: 

I~ (x (w) )  = o,, (Re(X(w))) ifx(t) is causal. (2) 
Since Im(X(w)) can be recover from Re(X(w)), in the frequency 
domain we can store Re(X(w)) instead of X(w), and half of the 
bandwidth can be saved (because the imaginary part of the spec- 
trum is not required). Besides, the even part and odd part ofX(w) 
also form a Hilbert transform pair: 

X o  = ' H I  (xe if@) is causal. (3) 
So, in the frequency domain we can also store X,(w)s(w) (~(0) = 
0 for w < 0, s(0) = 112, s(w) = 1 for w > 0) instead of X( w) to save 
half of the bandwidth (since X,(w)s(w) = 0 for w < 0). 

Besides, if x( t )  is real, X(w) = FT(x(t)) is conjugate-symmetric: 

Since X(-w) can be recovered from X(w) by the above relation, 
in the frequency domain, we can store X(w)s( w) instead of X( w), 
and half of the bandwidth can be saved. 

Thus, in the frequency domain, we can use the above techniques 
to save half of the bandwidth if x( t )  is causal or real. Then, we 
may ask whether the same things can be done in the fractional 
domain. The fractional domain is the transformed domain of 
the fractional Fourier transform (FRFT) (see equation (5)). 
Since the FRFT becomes more and more important in signal 
processing, how to process signal efficiently in the fractional 
domain also becomes an important topic. 

0, (x< t>)  = IFT(- j sgn(w) . F T ( x ( ~ ) ) )  (1) 

x ( w )  = x(- j  if x(t) is real (4) 

For example, the FRFT have been used for fractional modulation 
and fractional multiplexing [ 6 ] ,  i.e., store and transmit the signal 
in the fractional domain instead of the frequency domain. Be- 
sides, the FRFT can be used for fractional filter and fractional 
system design [2] [6] .  There are also many other operations re- 
lated to the FRFT [2] .  They process signals in the fractional do- 
main instead of the frequency domain. If we can develop some 
techniques to save the bandwidth required in the fractional do- 
main, the efficiency of those operations can all be improved. 

In this paper, we develop some methods to save the bandwidth in 
the fractional domain. We find that, if x( t )  is causal, real, a real 
function multiplied by chirp, a finite duration signal, or a fractal, 
half of the bandwidth in the fractional domain can be saved. If 
x( t )  is causal-real, a real signal with finite duration, or a real frac- 
tal, 3/4 of the bandwidth in the fractional domain can be saved. 

First, in Sec. 2, we introduce the FRFT and the fractional Hilbert 
transform (FRHLT). Then, in Secs. 3-7, we develop some meth- 
ods to save the bandwidth in the fractional domain. In Sec. 8, we 
give some examples. In Sec. 9, we give a conclusion. 

2. FRACTIONAL FOURIER / HILBERT 
TRANSFORMS 

The fractional Fourier transform (FRFT) [ 2 ] ,  which is the 
generalization of the Fourier transform (FT), is defined as 

x ( t ) .  dt when a f Nn, (5) 
, e  j c o t  a.t2 t 2 

0,2" (x( t ) )  = x ( t )  , o;("'+')~ (x( t ) )  = x(- t )  . (6) 

(7) 

When a = d 2 ,  it becomes the FT. It is reversible and additive: 

0," (0; (x ( t ) ) )=  x( t> 7 og(o;(xW))= O;+P(x(t>). 
In this paper, we use &(U) to denote the FRFT of x( t )  

x a ( u ) =  G(44 (8) 
The FRFT can extend the utilities of the FT, and is useful for 
filter design, optical system analysis, pattem recognition, com- 
munication, etc. Many signal processing problems that can't be 
solved well by the original FT will be solved by the FRFT. The 
FRFT becomes more and more important in signal processing. 

The fractional Hilbert transform (FRHLT) [ 3 ]  is defined 
based on the FRFT. Its formula is as follows (we generalize the 
formula in [ 3 ]  a little): 
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OEb)'a (x<t>) = 0," ( f f ( ( i , b )  (U)' 0; (.(l))) (9.) 

where ~ ( ( , , b )  (U) = a - j sgn(u)b . (10) 

The original HLT, the analytic signal, and the fractional analytic 
signal [4] are all the special cases of the FRHLT. We will show 
that the FRHLT is very helpful for saving the bandwidth in the 
fractional domain (the transformed domain of the FRFT). 

3. REDUCING THE BANDWIDTH OF 
CAUSAL SIGNALS 

For the case of the FRFT, when x( t )  is causal, there is no obvious 
relation between the real part and odd part of X A u )  (which is the 
FRFT of x(t)) ,  and it is hard to find the counterpart of (2). How- 
ever, we can find the counterpart of (3). If x( t )  is causal: 

in the fractional domain, the even part and the odd part o f & @ )  
form a fractional Hilbert transform pair (FRHLT pair): 

x( t )  = 0 for t < 0, (1 1) 

xa," (U) = OljO'-i),n-n (x,,, (U)) (12) 

(13) 

where X,,, (U) = (Xa (U)+ X ,  (- U))/ 2 , 

x , , o  (4 = ( X ,  (4 - X ,  (- w. 
It is a generalization of (3). Its proof is shown in Appendix. 

Thus, if x( t )  is causal and in the fractional domain we have 
known the even part of X J u ) ,  we can use the FRHLT to recover 
the odd part of Xa(u) from (12), and hence the whole value of 
XAU).  Therefore, in the fractional domain, we only have to 
store the positive even part of &(U): 

' a , ,  (U) = xa,e (u) .s(u)  (14) 
where s(u) is the step function: 

s(u )=O f o r u c 0 ,  s(O)=1/2, s (u )= l  foru>O. (15) 

Since Xa,e (U) = 0 for U < 0, if we store Xa,e  (U) instead of 
XJu), half of the bandwidth can be saved. We can recover XJu) 

from Xa,e  (U) by the following process: 

- - 
- 

- 
0 x a , e  (U) = ,,,e (U)+ xa,e (-U) 

0 x, (U) = X,$ (U)+ og-j)J-a 

= o p z - a  (x,,, (U)). (17) 

x ( t )  = 0 for t > 0, (18) 

xu,,, (.) = 0 g ' j ) J - a  (~,,,("))' 

(16) 

(U)) 

Similarly, if x( t )  is anti-causal: 

the even part and odd part of &(U) also form a FRHLT pair: 

(19) 
Notice that the parameters (0, -j) in (12) is changed into (0, j ) .  
Thus, in this case we can also store X,,(u).s(u) instead of Xa(u), 
and half of the bandwidth in the fractional domain can be saved. 

4. REDUCING THE BANDWIDTH OF 
REAL SIGNALS 

The FRFT of a real signal does not have conjugate-symmetry 
property. Thus, the relation as in (4) is no longer satisfied in the 
fractional domain. However, we can still reduce the bandwidth in 

the fractional domain with a more complicated method. If x( t )  is 
real, in the fractional domain we can store A&) defined as 
follows instead of X J u )  

where 

' a , e ( U ) = x a , e ( U ) s ( U ) ,  ' , , o ( U ) = X a , o ( U ) s ( U ) .  (21) 

A ,  (U) = 0 for U < 0, (22) 

X,,(u),  &,,(U) are the even part and odd part of &(U), and s(u) is 
defined as in (1 5). Because 

hall' of the bandwidth in the fractional domain can be saved. We 
can recover X ~ U )  from A&) by 

0 z, (U) = A ,  ( U ) + E ) ,  

a x a ( U ) = J _ j e i n . e j c o t a . u 2 / 2 .  { z ,(U)+ 
(23) 

FT\j tan(sin(2a)t2 / 4). IFT(Z, (u))D. (24) 

In fact, in (23), Z&) is equal to 

za (U> = Re( ,/F. ,-icota.u2 12 x 
,,e 

The proof of (24) is rather complicated, and can be seen from our 
manuscript. 

Similarly, if x( t )  is pure imaginary, we also only have to store 
the value of AAu) ,  and half of the bandwidth in the fractional 
dornain can be saved. We can recover X A u )  from (23) and 
0 x, (U) = JT . e i c0ta.U' 1 2 . {z, (4 - 

FTLj cot(sin(2a)t2 / 4). IFT(Z, (U))!. (26) 

5. REDUCING THE BANDWIDTH OF 
REAL SIGNALS MULTIPLIED BY CHIRP 

The results in Sec. 4 can be further generalized. If x( t )  is a real 
signal multiplied by chirp: 

A:(t)  = ei.J y(t)  wherey(t) is a real function, (27) 
and z is any real number, then in the fractional domain, we also 
only have to store the value of &(U) defined as in (20), and half 
of the bandwidth in the fractional domain can be saved. We can 
follow the process similar to (23) and (24) to recover XJu) from 
Aa(u), except for that (24) is modified as 

0 x, ' { Z a  (U)+ 
= ,/?. e j c0ta.u' 1 2  

FTlj  tan((sin(2a) + v)t2 / 4). ZFT(Z, (u))u. (28) 
That is, sin(2a) is changed into s in(2a)+~.  

6. REDUCING THE BANDWIDTH OF 
THE SIGNALS WITH FINITE DURATION 

In the case where x( t )  is a finite duration signal: 
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X ( f )  f 0 only when t E [ t l ,  tz], (29) 

B, ( U )  = 

we can use the FRHLT pair relation to save half of the bandwidth 
required in the fractional domain. In this case, we only have to 
store the value of BAu) the fractional domain 

sina.uXu (U + t l  cos a)]even $(U) 

@ Bl ,u (u)=(B , (U)+B, ( -U) ) /2 .  (31) 

0 B2,,  ( U )  = O p - j ) J - a  (B1,, ( 4) + B I , a ( 4  

(30) 
where [f(u)leven = mu) +f(-u)]/2. Since Bdu) = 0 for U < 0, so 
half of the bandwidth in the fractional domain can be saved. We 
can recover X ~ U )  from BAu) by the following process: 

(32) 

(33) 2,* (U - tl cos a ) .  0 X, (U) = e-jt l  sina(u-tl c o s a ) ,  

The above results can be proved from the fact that the even and 
odd parts of ex O'tlsind.u).XAu+tlcoscl) form a FRHLT pair: 

(0,-j),n-u e jtl  sin mu 
0, [ (U + '1 cos a)]even 

= [ e j t l S i n a . u X u ( u + t I  cosa)Ldd. ifx(t) = o for te[t l ,  t21 (34) 

In signal processing, the signal we deal with is usually a finite 
duration signal. Using the above method, we can save half of the 
bandwidth required in the fractional domain: 

Some signals are not finite duration signals, but, with a little 
modification, we can also use the above method to save the 
bandwidth required in the fractional domain. For example, for a 
scaling invariant signal (i.e., a fractal) which satisfies: 

if we know the value ofy(t) where 
X ( U .  t )  = A .  n(r) 

y(t)  = x( t )  for t E [ t l ,  tzl,  tl < o < t2, 

y( t )  = 0 otherwise, (36) 

where t E (-CO, CO), (35) 

we can find all the values of x(t)  for t E (-CO, 03) by iterative scal- 
ing. Thus, we can first convert the fractal x(t)  into the finite dura- 
tion signal y(t), then apply the method described in (30)-(33) to 
save half of the bandwidth in the fractional domain. 

7. THE CASES WHERE WE CAN SAVE 
3/4 OF THE BANDWIDTH 

In Secs. 3-6, we have described several conditions where we can 
save half of the bandwidth in the fractional domain. In fact, 
sometimes we can further reduce the bandwidth. 

If x(t)  is real and causal, in the fractional domain, we only have 
to store the value of 

ca Re( JF. e - j c o t a . u 2  12 x a , e  - (U)) (37) 

- - 
where (U) is defined as in (21). Since Xa;e (U) = 0 for u < 
0, so C&) is a positive real function. If we store CJu) instead of 
X d u ) ,  314 of the bandwidth in the fractional domain can be 
saved (since Cdu) has no negative part and positive-imaginary 
part). We can recover X ~ U )  from CAU) by the following process, 
which is in fact the combination of (23, (24), and (17): 

0 Za ( U ) =  ca (U)+ c, (-U) 9 (38) 

0 X , , , ( U )  = ,/?. e j c o t a u 2 / 2  . { z , ( U ) +  

F T ~  tan(sin(2a)tz / 4). IFT(Z, ( u ) ) l ,  (39) 

Q Xu (U) = O$'-')'n-u (X,,, (U)). (40) 

Similarly, if x(t) is real and anti-causal, or pure imaginary and 
causal (or anti-causal), we can also store C&) defined as in (37) 
instead of X&), and save 3/4 of the bandwidth in the fractional 
domain. We can also use the above process with a little modifica- 
tion to recover XAU) from CAu). If x(t) is pure imaginary and 
causal (or anti-causal), the 2& step is modified as: 

0 X,,e(U>= J j , j n . e j c o t a , u 2 / 2  . @a (U) - 
F T I ~  cot(sin(2a)t2 / 4). IFT(Z, (U))!. (41) 

If x( t )  is real (or pure imaginary) and anti-causal, the 3d step is 
modified as 
Q Xu (U) = Ot')'r-u (Xu,e ( U ) ) .  (42) 

Moreover, if x(t)  is a real (or pure imaginary) signal with finite 
duration, we only have to store the value of D ~ u )  defined as 
follows to save 3/4 of the bandwidth in the fractional domain. 

Da(u)= re i e - ju  j s i n 0 a ) t : / 4 ~ - j c o t a u ~ / 2 ~  CL (4]44 (43) 

where Bdu)  i s  defined as in (30). 

8. EXPERIMENTS 
Wee do some experiments to illustrate the concepts introduced in 
this paper. Fig. I(a) is a real signal. Its FRFT is shown in Fig. 
I(b). It is not band-limited, but we can use (20)-(25) to save half 
of the bandwidth in the fractional domain. Figs. 1 (c) and 1 (d) are 

Fig. l(c): exp(--cot~u2/2)Xu,,(u) 
Fig. 1 (d): exp(-jcot~~~/2)X,,~(u).  (44) 

Fig. I(e) is the combination the real part of Fig. I(c) and the 
imaginary part of Fig. I(d). It is equal to ZAU) defined in (25). 
Since ZAu) = conj(ZA-u)), the negative part of ZJu) is redun- 
dancy. Thus, we can take its positive part, as in Fig. I ( f ) .  It is in 
fact equal to A&) defined in (20). Since Adu)  = 0 for U < 0 , if 
we store A,(u) instead of XAu), half of the spectrum in the frac- 
tional domain is saved. We can recover ZAu) from AAu) by (23), 
and use (24) to recover X&) from Z ~ U ) .  

In Fig. 2, we give another example. The signal in Fig. 2(a) is a 
real-causal signal. It is not band-limited in the fractional domain, 
as in Fig. 2(b). However, we can use (37)-(40) to save 3/4 of the 
bandwidth in the fractional domain. We can take the even part of 

X&) (as in Fig. 2(c)), then multiply it by ('je-ja)''' e-Jc0a'u212 
and take the real part (as in Fig. 2(d)), then take the positive part 
(as in Fig. 2(f)). The result in Fig. 2(f) is equal to Cdu) defined 
in (37). Since 

3/4 of the spectrum in the fractional domain is saved. We can 
recover &(U) from CJu) by (38), (39), and (40). The outputs of 
Steps 1 ,  2 ,3  are just Figs. 2(d), 2(c), and 2(b), respectively. 

Cdu) = 0 for u < 0, Im(CAu)) = 0, (45) 
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9. CONCLUSION 

' 

---A--+& , ? ~ ~ J > , +  _-__ 
d V  J 

In this paper, we have introduced some methods to reduce the 
bandwidth required in the fractional domain (the transformed 
domain of the fractional Fourier transform (FRFT)). We find that: 

In following conditions, we can save half of the bandwidth in 

(1) real (or pure imaginary), (2) causal (or anti-causal), 
( 3 )  real function x chirp, (4) finite duration, (5) fractal. 

hi following conditions, we can save 3/4 of the bandwidth in 

(1)  real (or pure imaginary) & causal (or anti-causal), 
(2) real (or pure imaginary) & finite duration (or a fractal). 

Thus, by the methods introduced in this paper, we can improve 
the efficiency of the FRFT in signal processing. 

the fractional domain: 

the fractional domain: 

0 

-5 
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