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Full-Wave Analysis of Coplanar Waveguides 
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Abstract-A new full-wave analysis of coplanar waveguides is pre- 
sented. A modification of Wen’s mapping is combined with the varia- 
tional formulation to facilitate a finite-element solution. This mapping 
function transforms the infinite original domain into a finite image 
domain and also overcomes the diqiculty of field singularities near the 
conductor edges. In this study, numerical results for the frequency- 
dependent effective dielelectric constants a id  characteristic impedances 
of coplanar waveguides are presented. Particular attention is given to 
the electric field distributions over the air-dielectric interface of slots 
and the current distributions on the signal strip. Comparisons are also 
made hetween the computed results and available ones. 

I. INTRODUCTION 
OPLANAR waveguides (CPW’s) have been the sub- C ject of extensive study [1]-[11] because they are eas- 

ily adapted to the active or passive components in shunt 
or series configurations. Drilling of holes or slots through 
the substrate is not needed. Therefore, various applica- 
tions of coplanar waveguide in microwave integrated cir- 
cuits (MIC’s) have been suggested, for instance, as detec- 
tors [ll, balance mixers [3], and directional couplers [41. In 
the design of these circuits it is important to calculate the 
propagation constant, the field pattern, and the character- 
istic impedance of the coplanar waveguide. 

Since coplanar waveguides are inhomogeneous open 
structures with fields extending to infinity, many investi- 
gators have proposed the conformal mapping technique 
together with the quasi-static approximation [5]-[9]. Wen 
[5] initiated such an analysis in 1969 by using a mapping 
function in term of complete elliptic integrals and making 
the assumption that the dielectric substrate is thick enough 
to be considered infinite. By a modification of Wen’s 
method, Davis et al. [63 later took the thickness of dielec- 
tric substrate into account. Hanna and Thebault [7] stud- 
ied the asymmetric effect of slots by using a combined 
hyperbolic mapping function. Ghione and Naldi [SI inves- 
tigated the parasitic effects in an actual realization of a 
coplanar waveguide, also using a suitable mapping func- 
tion. Recently, Wong [9] combined the finite-element and 
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conformal-mapping techniques to give a better under- 
standing of the coplanar waveguide. All these works, 
however, were based on the quasi-static approximation 
and could not reveal the frequency-dependent behavior of 
the important parameters. 

To date, full-wave analysis of the coplanar waveguiding 
structures was mainly carried out in the spectral domain 
[lo], Ell]. Fujiki and Kitazawa [lo] studied the dispersive 
characteristics of coplanar waveguide modes by applying 
the Galerkin method to the simultaneous integral equa- 
tions for the tangential magnetic fields over the slot. In 
their study, the waveguide is bounded by perpendicular 
conducting sidewalls and hence is a semiclosed structure. 
Knorr and Kucher [ 111 studied the frequency-dependent 
parameters of an unbound coplanar waveguide by apply- 
ing the Galerkin method to the assumed tangential elec- 
tric field over the slot. 

In this paper, a rigorous full-wave method that involves 
combining the conformal mapping technique and varia- 
tion reaction theory [12] is proposed. This method has 
proved to be successful in handling open dielectric wave- 
guides [13] and microstrip lines [14]. In this work, the 
mapping function originally employed by Wen [5] is used 
to map the original infinite domain into a finite image 
domain and also to account for the singularity of fields 
near the conductor edges. Here, the finite thickness of 
the dielectric substrate is considered together with the 
assumptions of lossless guides and negligible metallization 
thickness. The current distributions on the center signal 
strip as well as the tangential electric fields over the slot 
along the air-dielectric interface are examined. The fre- 
quency-dependent effective dielectric constants and char- 
acteristic impedances are then calculated and compared 
with available data by other investigators [ll]. 

11. METHOD OF ANALYSIS 
The open uniform coplanar waveguide under investiga- 

tion is shown in Fig. 1, where a central metal strip of 
width 2a and two ground planes of separation 2b are 
placed on a substrate with relative permittivity E ,  and 
thickness h. The guided modes of this inhomogeneous 
structure are in general hybrid; therefore, both axial com- 
ponents E, and H, are required in the analysis. As far as 
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2’- plane 

I R; 
Fig. 1. Geometry of coplanar waveguide and definition of original 

domain Cl’=  Ri + 05 + Cl;  ( x ’ >  0) in z‘ plane. 

E,=O ’ 
Fig. 2. Corresponding image domain R = C l ,  + R2 + R3 in z plane. 

the dominant ( E ,  even and H, odd) mode is concerned, it 
is sufficient to consider the right half structure with a 
magnetic wall on x ’  = 0. 

By the variational conformal mapping technique, the 
coplanar waveguide in the original z‘ plane (Fig. 1) may 
be analyzed in the finite image z domain (Fig. 2)  by using 
the (E,, H,) formulation as follows [131, [141: 

S I = O  

I’ 

where p denotes the propagation constant in the wave- 
guide. 

Using the double periodic property of the sine elliptic 
function [15], [16], it can be proved that the mapping 
function 

z ’ = a s n ( z , k )  (3)  
maps the right half plane x ’ >  0 (a’= fll, + Cl; + Q;) in 
the original domain (Fig. 1) into a rectangular region of 
width 2K(k) and height K(k’)  (a  = $2, + CI2 + Cl,) in the 
image domain (Fig. 2). Here, sn(z,k) is the sine elliptic 
function, K ( k )  and K ( k ’ )  are the complete elliptic inte- 
grals of first kind and second kind [151, [16], k = a / b ,  and 
k ’ =  m. The Jacobian of the function in (3) is 

J = lw~l:=(x,y) 
= a2/(1 -sn2(z, k ) ) ( l -  k2sn2(z,k))12 (4) 

from which one may verify that J + r’ near the strip edge, 
where r’ is the distance from the conductor edge in the 
original domain. 

Onc2 tge longitudinal and transverse fields, (E,, H,) 
and (E,, I f t ) ,  in the image domain are evaluated from (l), 
oye c,an calculate the corresponding transverse fields 
(E;,  H;) in the original domain [14]: 

-t I &  
0 
I& 
0 

E; = - [cos ( *e + e)a  +sin ( *e + e ) g ]  

@ = - [cos ( qh + 0 )  3 + sin ( qh + e )  91 . (6) 

Here 6 denotes the argument of the first derivative of the 
mapping function, and Te 2nd .\Js, aje the angles between 
the two components of E, and H,, respectively._Fro_m 
edge condition analysis, the transverse fields (E;, H;) 
near the stri edges are proportional to r r - * I 2  [17]. How- 
ev_er,_the P J factor in (5 )  and (6) renders the fields 
( E , ,  H,) smooth over the image domain. 

To solve (1) by the finite-element method [18], one first 
discretizes the image domain 0 into a finite number of 
isoparametric triangular elements, each with six nodes as 
shown in Fig. 3(a). The six second-order shape functions 
N I  to N6 are defined by 

( 5 )  

NI = L,(2L1 - 1) 

N3 = L3( 2 L3 - 1) 

N2 = L2(2L2 - 1) 

N4 = 4L,L2 

(7) where (E:,H:) and (E,,H,) are the weighting and trial 
fields [14l, respectively. Here, J denotes the Jacobian of where L,, L,, and L, are the local coordinates of any 

the mapping function, and the integration region s1 ex- point in an element. The relation between the local area 

ters E ,  and p r  denote the relative permittivity and perme- an element is given by 
ability of the substrate, while qo and k are the intrinsic 
impedance and wavenumber of free space, respectively. 
The effective dielectric constant eeff is defined as 

N, = 4L2L3 N6 = 4L3L, 

tends Over the finite image domain (Fig. 2). The parame- coordinates and the global coordinates ( x ,  y )  of a point in 

E e f f =  ( ~ / k ) ~  ( 2 )  
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Fig. 3. (a) Nodes and area coordinates for second-order 
element. (b) Typical subdivision in image domain. 

triangular 

where (xl, yi), i = 1,2,3, are the global Cartesian coordi- 
nates of the ith vertex of the triangle (Fig. 3(a)). In each 
element, the field 4 (which denotes E, or H,) at any 
point is interpolated as 

6 

4 =  C 4 A  (9) 
1 = 1  

where 4l denotes the nodal unknown. The integral over 
each element is calculated by the Gaussip-Hammer 
quadrature [ 181. By assembling the calculated results for 
each element, one finally obtains a matrix equation by the 
Rayleigh-Ritz procedure, viz. 

CA1[41= k2[B1[#d ( 10) 
where [ 4 ]  is the column vector corresponding to all nodal 
unknowns, and [A]  and [B]  are known sparse matrices. 
Although [A]  is not positive definite, (10) can still be 
effectively solved by the determinant search together with 
the inverse iteration method [19]. 

111. NUMERICAL RESULTS AND DISCUSSION 
Based on the procedures described in Section 11, a 

computer software package has been developed on the 
VAX-11/780 computer which also includes an automatic 
mesh generation of second-order triangular elements in 
the image domain. In Fig. 3(b), a typical mesh division is 
shown. By investigating the effective dielectric constants 
of several typical coplanar lines ( ~ , = 1 3 ,  h = 1.5 111111, 
a / b = 0.2 - 0.6) it is found that a mesh division of 16 X 16 

FREQUENCY (GHZ) 
Effective dielectric constant versus frequency with E ,  as param- 

eters ( a =  0.5 mm, b = 0.9 mm, h =  1 mm). Results of Knorr and 
Kuchler [11] x x x x are given for comparison. 

Fig. 4. 

= 256 elements is usually enough to give results with 
four-digit accuracy. Since the matrices in (10) are sparse, 
a skyline storage scheme [19] for matrix elements is used 
to save computer memory. To improve the convergence 
rate of the iteration in the eigensystem, the Cholesky 
decomposition [20] is employed for the system in (10). 

Numerical results for the coplanar waveguide, including 
the effective dielectric constants, the field distributions 
over the slot in the air-dielectric interface, the current 
distributions on the signal strip, and the characteristic 
impedances, will next be presented and discussed. 

A. Effective Dielectric Constant 
Fig. 4 shows the frequency-dependent effective dielec- 

tric constants for different materials. Also shown for 
comparison in Fig. 4 are the results of Knorr and Kuchler 
[ l l ]  for E, = 16. Agreement between the two is observed, 
with a pointwise difference of at most 2%. 

In Fig. 5, the frequency dependence of the effective 
dielectric constant is plotted with h / b  as a parameter. 
Small values of h / b correspond to wider widths of both 
the signal strip and the slot. The arrows at the left of each 
curve indicate the corresponding quasi-static values calcu- 
lated by Wong [9] and by Kitazawa and Hayashi [21]. 
Excellent agreement at the low-frequency limit is evident. 

B. Field Distributions 
The normalized tangential field distributions E, / Exmi, 

and Ez/Ezmm over the slot are presented in Fig. 6. The 
ratio E , / E ,  at any point over the slot is smaller than 
1/100, which makes the zero longitudinal field assump- 
tion in the spectral-domain analysis acceptable. As ex- 
pected, the normalized transverse field Ex / Ex,,, exhibits 
the edge singularity near the conductor edges. The fre- 
quency independence and symmetric distribution of this 
transverse field are the essential assumptions of the spec- 
tral-domain method [ll],  and these are again supported 
by this study. 
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FREQUENCY (GHZ) 
Fig. 5. Effective dielectric constant versus frequency with h / b  as 

parameters ( h  = 1.5 mm, e, = 13, a / b = 0.4). 

C. Current Distributions 
Shown in Fig. 7 are the normalized longitudinal and 

transverse current distributions at different frequencies. 
Again, the longitudinal current exhibits an edge singular- 
ity at points near the strip edge. The arrows in Fig. 7 
indicate the tendency of the normalized currents as the 
frequency is increased. This tendency is contrary to that 
of microstrip lines [14] owing to the different configura- 
tion of ground planes in the two structures. 

It is noted that the current distributions for different 
dielectric constants of the substrate are hardly distin- 
guishable. This behavior is the same as in microstrip lines 
[14. 

D. Characteiistic Impedance 
Three definitions for characteristic impedance are dis- 

cussed and compared. They can be evaluated both in the 
original domain and in the image domain: 

2 P  
(1la) z .=- 

at lU2 
IKl 
14t1 
IKI2 

z .=-  
,I 

z =- 
a, 2 P  * 

Here P and Zzr denote the power along the guide and the 
total longitudinal current on the strip [141, while V, is the 
voltage defined along the air-dielectric interface of the 
slot. 

Since the integration region is finite and the fields are 
nonsingular in the image domain, we calculate all quanti- 
ties in this domain. Fig. 8 shows the frequency depen- 
dence of impedances for different cases. The increase in 
strip width causes an increase in capacitance of the copla- 
nar structure in the quasi-static approximation. Thus the 
characteristic impedances for a given frequency decrease 
as the strip width is increased, as indicated in Fig. 8. The 
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Fig. 6. Normalized field distributions over slot with frequencies as 
parameters (a = 1.2 mm, b = 2.4 mm, h = 1.2 mm, E ,  = 13). 
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Fig. 7. Normalized current distributions on signal strip with frequen- 
cies as parameters (a = 1.2 mm, b = 2.4 mm, h = 1.2 mm, e ,  = 13). 

corresponding quasi-static values [9], [21] are indicated by 
the arrows. It is noted that the impedance Z,, based on 
current and power tends to the quasi-static value whereas 
Z,, and Z,, do not. Note also that the geometric mean of 
the Z,, and Z,,  curves gives Z,,  as defined by (llb). 

In Fig. 9, the frequency dependences of characteristic 
impedances for different materials are plotted. The 
crosses in this figure are the results for Z,, for E ,  = 16 in 
the spectral-domain method [ 111. Agreement between the 
two is observed, with a pointwise deviation of at most 3%. 

IV. CONCLUSIONS 
A new full-wave analysis of coplanar waveguides has 

been presented. By using a modification of Wen's map- 
ping, the difficulties due to the finite domain and field 
singularities near the conductor edges have been properly 
treated. Numerical results for effective dielectric con- 
stants, field distributions, current distributions, and char- 
acteristic impedances have been computed and compared 
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Fig. 8. Characteristic impedances versus frequency with a / b  as pa- 

rameters ( b  = 1.5 mm, h = 1.5 mm, E ,  = 13). 
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Fig. 9. Characteristic impedances versus frequency with E ,  as parame- 
ters ( a =  0.5 mm, b = 0.9 mm, h =  1 mm). Results of Knorr and 
Kuchler [ l l ]  are denoted by X X X x X . 

with available data, and good agreement has been ob- 
tained. 

By choosing suitable mapping functions, certain other 
waveguide problems can also be solved efficiently. Re- 
lated work, such as the study of multilayer coplanar lines, 
is in progress and will be reported in the future. 
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