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Abstract 

A Markovian queueing system is used to model a Two 
Phase Service (TPS) system. In this system, there are two 
queues, batch queue and individual queue, and a central 
server switching service between them. Expressions of 
mean task response time in the TPS are derived from the 
Markov-Chain concept and the Z-transform technique. 
Other performance parameters, such as the concept of 
power and speedup, and the optimization issues have also 
been taken into consideration. Furthermore, the 
performance improvement issue is investigated and the 
speedup upper bound is therefore obtained. Finally, 
numerical results are provided to verify the analytical 
model. 

1. Introduction 
In a distributed system, there are various 

applications, such as task allocation, scheduling, load 
sharing, and system reconfiguration, that have the 
characteristics of two phase execution on a central server. 
Tasks enter server which then probes the system for status 
information. This is the first phase. In the second phase, 
the server performs specific seivice, based on status 
information, for each task. We call the first phase a batch 
phase and the second one an individual phase. 

One concrete example of two-phase servicc is load 
sharing using probing. Two important components of a 
load sharing policy are the transfer policy which generates 
status information and determines whether to process a 
task locally or remotely, and the location policy which 
allocates individual tasks to lightly loaded processors [l]. 
The batch service here is the transfer policy, and the 
individual service is the location policy. 

Computer system analysts use some kind of models 
such as mathematical ones or simulation models to gain 
insight into the behavior of systems and to aid in system 
design. The analyst has several tools at his disposal to aid 
in estimating the  performance of systems. Queueing 
models are becoming a more widely used method for 
analyzing computer systems, and have proved to be a 
powerful tool for performaiice analysis and prediction, such 
as for parallel processin systems [2], multiple bus 
multiprocessor systems (3-8 ,  and distributed systems [SI. 

In this paper, we use a simple queueing system to 
model the T P S  system. Markov-Chain used to describe 
the behavior of the T P S  system is developed to obtain the 
expression of mean task response time and other 
performance parameters. 

In section 2, we describe the structure of queueing 
system and the assumptions applied in this paper. In 
section 3, we analyze the characteristics of TPS system to 
obtain the Markov-Chain of the system state. The 
Z-transform technique is used to solve equilibrium 
equations and thus obtain the expression of mean task 
response time. Numerical results are provided in section 4. 
Section 5 concludes this paper. 

2. The Queueing Model and Assumptions 
The queueing model for the TPS system is shown in 

Fig. 1. The function of central server is to alternatively 
serve tasks in the batch queue and in the individual queue. 
In the batch service phase, the server first serves all tasks 
in the batch queue together at ones, and then switches to 
the individual queue. Tasks whose batch phase has been 
completed enter the individual queue, and then follow the 
FCFS (First Come First Serve) discipline to wait for 
service in the individual service phase. 

There are assumptions described below for 
simplifying the problem so the resultant queueing system 
is mathematically tractable. 

(a) Tasks enter the system according to a Poisson 
process with intensity A. 

(b) The batch service time and the individual service 
ti me are identically independent, exponentially distributed 
random variables with mean 1//3, and l/p, respectively. 

(c) The batch service time is independent of batch 
size, and whenever tasks enter the system when the server 
is in batch service phase, they will join the batch service 
immediately. 

Se rve r  

F i g .  1 .  TPS Queueing Model 

3. Analysis 
As described above, state of the TPS system can be 

modeled as a continuous time and discrete state 
Markov-Chain. The performance index is the mean task 
response time which is derived from the state equilibrium 
equations using Z-transform technique. We draw the 
Markov-Chain of the system in which the state (nl,nz) 
represents the situation where there are nl tasks in the 
batch queue and n2 tasks in the individual queue, including 
tasks in the server. P(n1,nz) denotes the probability that 
the system is in state (n1,nz). 
3.1. General Case 

In this section we consider a general case that the 
central server will switch to the individual queue with 
probability p, and will switch to batch queue with 
probability 1-p, when the number of tasks in the 
individual queue is nonzero. Markov-Chain of this case is 
shown in Fig. 2. The steady state equilibrium equations 
are as follows. 
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F i g .  2. Markov-Chain of TPS 

. ,  

Let m be the mean number of tasks in the system, then 

(7) 

By manipulating the above equations (1) to (4), we obtain 
the following result 

w w  
F ( y ) = y ( ~ + ( l - p ) ~ p ~ l ~ o ( y ) + p ( l - p ) ~ ~ ~ j ~ l p ( i , j ) y j + ' .  (8) 

The detailed derivations of G(z,y) are given in the 
Appendix. 
3.2. Exhaustive Service Case 

To simplify the analysis, in this section, we consider 
the exhaustive service case. This means that, when the 
server finishes a batch service phase and then switches to 
the individual queue, it serves this queue exhaustively. In 
other words, the server serves all tasks in the individual 
queue before returning to the batch queue. Obviously, 
exhaustive service whose switching probability (p) equals 
to one is a special instance of the general cases. From (8), 
and let p=l ,  we have 

3.3. Performance Analysis 
3.3.1. Mean Task Response Time 

From (6), we have liimz+l G (z,l ) = lzmy+l G (1, y)= 1. 
Using these relatiods and (9), after some algebra, we 
obtain 

where the prime (I)  denotes the derivative'with respect to 
its argument. From (7), (9), and ( lo) ,  the mean number of 
tasks in the system 

(10) x I x  
P 7' IIo(l)=l- - , and no( 1)= 

The iiieaii ta,sk response time can be obrtained form the 
following two approaches. 

1 
(a) Little's formula [9], 

+ -  
P 

T = R / , \ = W .  1- I (12) 

(b) Since Poisson arrivals see time averages, for a 
specified task, it's iiiean response time is composed of three 
parts, the n1ea.n ba.tcli service time (+), the mean 

waiting t,ime i n  llie individual queue (m -), a i d  the 

niean individual servicc time (-). Hence, using ( l l ) ,  

1 
I', 

1 '  
/ 1  

1 

1- ~ 

- + -  
T=+ -IN(+)+ +=- 

/ L  

The niean task response time T in the above equation has 
similar expression lo that of M M 1 queueing system. The 
mean response time Tmml of M/M/I system was given by 

1 

T m m i = q  171 . 
1- - 

IA 
3.3.2. Optimization Issues 

In this section, we apply the definition of power used 
in queueing system to TPS system. Froin the optimization 
point of view, we find the optinial system operating point 
(arrival rate of tasks) a.nd the optimal number of tasks in 
the TPS system in  order to maximize power. In [SI, power 
P was defined as 

p = u ,  
T 

where U was the utilization of the server and T was the 
response time of the system. We use the symbol * to 
denote the optimal values maximize power. It was found 
that for any M/G/l queueing system, power is optimized 

when m*=1. We also assume that the full-loaded 
condition of the computer system occurs when the system 
response time approaches infinity. It is eas to show that 
the optimal operating point of the MfM/1 queueing 

system is A*=--&, i.e., 50% of the full load, since the full 
load occurs at X=p. 

For TPS systems, we define the utilization of the 
server is the ratio of task arrival rate to  individual service 
rate, i.e., U=-. From (12) and (13), we have x 

I.1 

d Optimizing P with respect to A, we have -P=O, which 

leads to  A*=-$-. We obtain the same results as in the 
M/M/l queueing system. The optimal number of tasks in 
the system is, using ( l l ) ,  

(14) 
3 
N =1+-$-. 

r 
This indicates that the optimal number of tasks in the 
TPS systems increases linearly with the mean batch 
service time, and that the slope is mean individual service 
rate. 
3.3.3. Performance Improvement and Fksponsive Server 

Tasks executed in the TPS systems can be regarded 
as fully parallel in the batch phase and fully serial in the 
individual phase. In other words, performance of the TPS 
systems is limited in the individual phase. Based on this 



observation, if we increase the number of servers in the 
individual phase, the individual service time will decrease, 
and consequently the system performance will be 
improved. 

In this section, we let the speedup (SP) be the 
performance measure to describe how faster a task can be 
processed in a n  improved T P S  system, as opposed to 
uniserver TPS system. We are interested in finding what 
the highest SP value could be. Intuitively, the more 
processors are used to serve the individual phase, the 
better performance improvement is obtained, if the 
communication overhead is ignored. 

In the following, we consider and investigate, the 
ideal case, the effect of responsive (infinite) server [7], i.e., 
there is always a server available for each arriving task 
during the individual service phase, in the TPS system. 
Two theorems are provided to describe this phenomenon. 

Theorem-I. In a TPS system with responsivc server, 

the mean nuniber of tasks in thp individual queue (Ni) and 
the mean number of tasks in the system during the batch 
service phase are --, and 

<Proof> Following the same procedures mentioned 
above, we obtain, after some algebraic iiianipulahons 
which we omit here, the Z-transform, denoted by G,,(z,y), 
of the T P S  system with responsive server. 

x x 
I-1 

respectively 

1 / x  1 T s i m  I T 
1 0 . 0  I 2 . 0 3 8  2 . 0  

7 . 5  2 . 0 5 3  2 . 0  

(15) 
where H(~,y)=+,~(z ,y)  d . 
(a) Let z=y and y approaches to one, we have 
G ~ ~ (  1 ,I)=+H( I ,I )= 1. 

Thus, the mean number of tasks in the individual queue 
is as follows. 

6(%) 
1 . 8 6  
2 . 5 8  

(b) Let y= l ,  we have 

Grs( Z, I ) =-,. 
Let z approaches to 1, after some algebra we obtain 

Thus the mean number of tasks in the system during the 
batch service phase is as follows. 

lzmz+l G rs( z, 1) =I =+Io( P I  1 ) . 

(16) 
x l a ,  

IIo(l)=.E iP(i,O)= T .  Q.E.D. 
1.0 

Theorem4 The performance improvement 
1 (speedup) upper bound of the TPS systems is 

where load factor ( p )  is defined as -. 
<Proofi As mentioned above, the minimum of mean 

number of tasks in the system can be obtained in a TPS 
system with responsive server. From (15) and engage in 
some algebraic manipulations, we have 

x 
I.1 

5 . 0  2 . 0 7  
2 . 5  2 . 1 2 1  
1 . 5  2 . 1 8 5  

By applying the results of Theorem-I, we obtain 

2 . 0  I 3 . 3 8  
2 . 0  I 5 . 7 1  
2 . 0  I 8 . 4 7  

-* -* 
Thus, T = N  / A >  ?r t I I .  

SP*< I-p ' 

(18) 
From (12) and (18), we obtain the upper bound of speedup 

1 x 
(+ + 7'"'- T)=A &,E.), (19) 

From (19), it is clear that, the maximum of speedup 
obtainable from the TPS system with responsive server is 
small when the system is lightlv loaded (small load factor). 

However, speedup will grow sharsy  when the system is 
heavily loaded, and it will approach infinity if the system 
is fully loaded ( p = l ) .  

4. Numerical Results 
In this section, we present some simulation results to 

verify the analytical models mentioned above. In the 
following experiments, we fix the mean batch service time 
( ) and the mean individual service time (L) while 

varying the mean task interarrival time (+) to obtain 

the mean task response time ('Tsim) by numerical 
simulation. The simulation results and the analytical 
results, computed from (12), of exhaustive service 
(uniserver) are listed in Table 1. The table also contains 
relative deviations which are computed by: 

V P 

6(%)=[( ITsim-TI)/Tsim]*lOO . 
This table shows a good consistence between the analytical 
results and the simulation results. 

In the proof of Theorem-2, we ignore the third part 
of mean number of tasks, i.e., those in the batch queue 
during the individual service phase, in the TPS system 
with responsive server. Table 2 shows the results. The 
approximation mentioned above leads to larger deviations 
than that in the table 1. However, they stay in an 
acceptable region (lower than 10%). Note that the 
deviation increases with the decreases of mean task 
interarrival time. This is due to the fact that mean number 
of tasks queued in the batch queue during the individual 
phase will increase under the heavy load condition. 

Table 1. 
Simulation and Analytical Results of Exhaustive Service 

with Uniserver, Mean Batch Service Time and Mean 
Individual Service Time are fixed at one. 

I 2 . 2 9 2  1 2 . 3 0 8  1 0 . 6 9 8  
I 2 . 4 8 5  I I 0 . 6 0 4  

1 . 5  1 5 . 9 7 4  1 1 0 . 4 3 5  
I 3 . 3 3  I 0 . 9 0 9  
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into consideration. The system perfornxmce is improved 
when more servers are used to serve the individual phase. 
Speedup is defined as tlie ratio of tlie mean task response 
time of the uniserver system to that of the improved 
system. We investigate the effect of the responsive server 
in the TPS system, and find a phenomenon that, even that 
the communication overhead can be ignored, tlie maximum 
speedup obtainable from an infinite iiuiiiber of servers is 
1, p is the system load factor. 

Finally, numerical results are provided t,o verify tlie 
analytical models. The results show a good consistence 
between the simulation approach and the analytical 
approach. Furthermore, the approxiination applied i n  the 
derivation of performance improvement upper bound is 
accept able. 
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Appendix 
This appendix describes the utilization of Z-transform 

technique used to solve state equilibrium equations and 
consequently obtain the expression of G(z,y). 

By niultiplying both sides of (4) by zi and summing up 
with respect to i, we have 

m 
p(X+/~)P(O,j)+paP(j,O)+p(~-p)/3~,P(i,j)+ 
[A + ] ) / I +  ( 1 -p) P (0, j )  =O . (20) 

By multiplying both sides of (20) by yj, summing with 
respect to j, and applying (3)  to this summing, after some 
algebraic manipulations, we obtain 

-y [G(Z>Y )-Ynl(z)-no(z)l+ 

p(l-p)~JZ;llCIP(i,j)yJ=O . (21) 

[/\z-~-P/L-( I - P ) ~ ]  [G (Z,Y )-r10(~)1 + ~ D [ ~ O ( Y  1-P (070)I -t- 
[A-PA+(l-P)PI [Ro(Y)-P(O,O)I+ 

o o w  

Follow the same procedures mentioned above, 
manipulation of (1) and (2) yields 

Substituting (22) into (21) and engaging in some algebra, 
we finally obtain 

ppnl(z) = ( x +p--xz) no( Z)-X( 1-p)P ( 0 ,O) . (22) 

A 1 3  


