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Abstract—A low-cost, highly-accurate real-time GPS carrier phase 
frequency syntonization system based on a single-frequency receiver 
is presented. By using the atmosphere free model of the carrier 
phase with the neural-wavelet filter, and performing the 
time-difference operation, the low-cost oscillator can be 
automatically steered to obtain very high frequency accuracy and 
stability in the short term (1 sec.) as well as in the long term (1 day). 

I. INTRODUCTION 
The frequency source (FS) plays a key role in many 

applications, such as telecommunication networks, power 
systems, navigation systems, instrumentation systems, and 
Doppler radars, etc. The Global Positioning System Disciplined 
Oscillator (GPSDO), based on C/A code observations, is one of 
the principal methods of maintaining highly accurate frequency 
dissemination worldwide. However, GPSDOs are subject to 
errors or biases caused by signal noise and the atmosphere. The 
possibility of using the GPS carrier phase, rather than C/A code, 
for the precise time and frequency transfer has been described by 
many researchers [1]. Because the frequency of the carrier phase 
is roughly 1000 times higher than that of C/A code, time and 
frequency dissemination using the carrier phase should provide 
much greater resolution, in principle. To achieve the highest 
frequency accuracies from the GPS system, the atmospheric 
propagation errors should be neutralized and considered within 
the adjustment process.  Currently, on the one hand, 
atmospheric errors may be minimized by a multi-frequency 
receiver with or without the common view method, but this type 
of receiver is either more expensive or less reliable than a 
single-frequency receiver. Therefore, we here introduce a less 
communication-dependent, low-cost, yet accurate syntonization 
system composed of a single-frequency GPS carrier phase 
receiver with an intelligent atmosphere-forecasting model. On the 
other hand, single-frequency receivers usually include a 
correction for the atmosphere delay based on an ionosphere 
model and a troposphere model built into the GPS system. These 

models are expected to eliminate about 40%~75% of the 
atmospheric effects on average. Since the parameters of these 
models are estimated in advance and then transmitted to the GPS 
satellites, they cannot anticipate day-to-day random fluctuations 
and thus cannot be completely accurate in real time. Alternatively, 
various organizations have developed detailed and accurate 
models of the atmosphere based on GPS observations for 
single-frequency users to reduce atmospheric effects as much as 
possible in post-processing. However, the accuracy of these 
models may vary according to computational complexity and 
user location. To compensate for the above drawbacks, we have 
developed an accurate real-time atmosphere forecasting model 
composed of a neural-wavelet technique. A low-cost GPS 
receiver, Ashtech G12, was modified in order to estimate the 
real-time average frequency deviation of the steered 
Oven-Controlled Crystal Oscillator (OCXO) with respect to the 
GPS system time by performing the time-difference, 
all-satellites-in-view average, and atmospheric correction. The 
scheme can achieve traceability in frequency dissemination. The 
non-decimated wavelet method, neural networks, and neural 
network MPC (Model Predictive Controller) were employed to 
implement the syntonization system. The steered clock was then 
syntonized with the GPS system time by way of the D/A 
converters. 
  With the above methods, the steered clock (OCXO) showed 
that the accuracy could be improved from about two parts in 
10 9  to about three parts in 10 14 , and the stability of the 
syntonized clock could be improved from about nine parts in 
10 10  to about four parts in 10 14  for an averaging time of one 
day. Our experiments revealed that the proposed architecture is 
sound and cost-effective.   
  This paper is organized as follows:   
1) Section 2 introduces the model of the GPS carrier phase 

observations.   
2) Section 3 presents the intelligent atmosphere forecasting 
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model with a neural-wavelet network. 
3) Section 4 describes the system architecture.   
4) The experimental results are illustrated in Section 5. 
5) Finally, the concluding remarks are given in Section 6. 

II. THE MODEL OF GPS CARRIER PHASE OBSERVABLES 

  The typical model of GPS carrier phase observables [2] is 
shown in equation (1): 
 
 

where  
j
AΦ :  Carrier phase measurement of the receiver A from the  

 j-th GPS satellite; 
j
Aρ :  True distance between the receiver A and the j-th GPS 

  satellite; 
 c:  Speed of light; 

jdt : Clock bias of the j-th satellite; 
AdT :  Clock difference between the GPS time and receiver A 

 clock; 
λ :  GPS carrier phase wavelength; 

j
AN : Initial phase integer ambiguity; 

j
iond : Ionospheric delay; 
j

tropd : Tropospheric delay; 
j
Aε : Unmodeled errors primarily due to multi-path, temperature 

variation, physical factors, etc. 
The unit of the phase observable j

AΦ  in the equation is the 
meter.  
  To study the frequency syntonization, we would like to first 
examine the behavior of the oscillator. Hence, the GPS receiver’s 
internal clock will be replaced by an external one. Under this 
arrangement, the term AdT  in equation (1) represents the time 
difference between the GPS clock and the external clock A. In 
our system, the A (user) site performs the time-difference 
operation (differences between two epochs) on the carrier phase 
observations to obtain the phase difference with respect to the 
GPS system time. If the satellite signal is continuously tracked 
and no cycle slip occurs, the cycle ambiguities j

AN  remain a 
constant. After the time difference operation, equation (1) is then 
rewritten as equation (2): 

 
(2)                  j

A
j

trop
j

ionA
jj

A
j
A dddTcdtc δεδδδδδρδ ++−−+=Φ

                                       
where )(⋅δ  denotes the operator for the differences between two 
epochs. The AdTδ  represents the phase difference with respect 
to the GPS system time. The unmodeled ionospheric delay j

iondδ  
and tropospheric delay j

tropdδ  cannot be eliminated, and they are 

regarded as errors of the frequency offset. 
  The B (host) site, stratum 1, installs the same GPS receiver and 
performs the time difference operation that is the same as that of 
the A (user) site. Additionally, the A (user) site performs the 
single difference operation between two receivers at post 
processing. The two receivers are denoted by A and B, 
respectively. The satellite is denoted by j. After the 
time-difference and single-difference operations, equation (2) is 
further adapted for equation (3): 
 
 (3)                                                       j

ABAB
j
AB

j
AB dTc δεδδρδ ∆+∆−∆=Φ∆

                 
where )(⋅∆  represents the operator for differences between 
receivers with the same satellite. Due to the strong correlation 
between the un-modeled ionospheric and tropospheric delays of 
the two receivers in the local area, the terms j

iond  and j
tropd  in 

equation (1) are then eliminated. Since 
AdT  and 

BdT  are both 
referring to the same GPS time, their difference ABdTδ∆  in (3) is 
the phase difference between external clock A and external clock 
B of stratum 1. 

 
Figure 1. The functional block diagram of the intelligent forecasting model for the 
average atmosphere delay. 

III. INTELLIGENT ATMOSPHERE FORECASTING MODEL 
Atmospheric forecasting is an example of a signal processing 

problem which is challenging due to small sizes, high noise, 
non-stationarity, and non-linearity. We present a novel forecasting 
strategy that operates at multiple resolutions, using a wavelet 
transform. The latter exposes useful information, which is then 
processed by the neural networks. Neural networks provide a 
valuable framework for the representation of relations present in 
data. Especially in the fields of classification and time series 
prediction, neural networks have made substantial contributions. 

(1)            j
A

j
trop

j
ion

j
AA

jj
A

j
A εddλN)dTc(dtρΦ ++−+−+=
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The intelligent forecasting model has two main systems. This is 
illustrated in Figure 1.  

System I performs a global approximation of the desired 
prediction with the real-time limited information composed of 
high noise, non-stationarity, and non-linearity. Wavelet 
transforms provide a sensible decomposition of a single or time 
series, so that faint temporal structures can be revealed and 
handled by nonparametric models. Two processing strategies are 
addressed for System I. First, all the wavelet coefficients for a 
particular time-point are taken together and fed into the input of a 
Dynamical Recurrent Neural Network (DRNN). These neural 
network models, endowed with a temporal dimension through 
embedding autoregressive filters in a fully recurrent neural 
structure, have powerful representation capabilities. Second, the 
prediction task is subdivided: a DRNN model is run at each 
resolution level to provide corresponding estimates. The latter are 
then combined to form the forecast for the average atmosphere 
delay series. This allows not only for a modular approach but 
also for what could be informally described as a mixture of 
experts: other forecasting techniques may be employed 
conjointly and modeled at different levels of resolution. The 
correction of System II is available for fine-tuning the coarse 
prediction of System I by performing a local approximation. Two 
main networks are included. The first network uses three 
parameters, time, elevation angle, and azimuth angle, to create an 
average atmosphere forecasting model. Other multi-layer 
perception neural networks, which feed-forward with error 
back-propagation, are applied to model the past atmosphere 
average delays for the 28 GPS satellites [3]. This model allows 
for less interference with the input data when it is modeled by a 
neural network. The second network delivers the difference 
signal between System I and the parametric model of System II 
to another neural-wavelet network trained to estimate the 
fine-tuning calibration for System I.  

 

 
Figure 2. Non-decimated wavelet transform of a time-series signal. 

A. The Non-decimated Wavelet Decomposition  
Overlapping window sample methods and non-decimated 

wavelet techniques are implemented in our proposed model. The 
overlapping window sample is pre-proceeded with the wavelet 
technique for use in real time. In addition, the overlapping 
sample must be adopted into the neural learning target data to 
avoid aliasing in wavelet recombination. The window length and 
shift of each sample should be traded off to obtain enough signal 
information on wavelet decomposition and to avoid a long setup 
time.  

The non-decimated wavelet transform (NWT) overcomes the 
problem encountered with discrete wavelet transform (DWT) by 
using a redundant basis in which it produces equal-length  
wavelet coefficients for each resolution level. Redundancy is 
helpful in detecting fine features of the detail signals since no 
aliasing biases arise through decimation. The algorithm of the 
NWT is the same as that of the DWT except that there is no 
decimation step [4]. If we consider a given time series signal 0( )c k , 
the DWT is performed by passing the signal through a series of 
low pass filters, lh . The result obtained at the output of each 
filter is the approximation (low frequency information) 
coefficient series. The number of times the signal is filtered 
depends on the highest resolution level determined for the 
filtering process. That is, if the highest resolution level set is n, 
the signal will be filtered n times with a chain of approximation 
coefficient series ( )nc k  obtained at each of the different 
resolution levels. The expression that describes this process is 
given as  
          

1 1
1

0
                         ( ) ( 2 )          (4 )

L j
j l j

l
c k h c k l

− −
−

=
= +∑

 
  In addition to producing an approximation coefficient series at 
level j, the NWT wavelet transform also generates the wavelet 
(high frequency information) coefficient series. Referring to 
equation (5), the wavelet coefficient series is obtained by taking 
the difference between 1( )jc k−  and ( )jc k .  
 

j 1 j                        w ( ) (k )-c (k )               (5 )jk c −=

 
  The generation of the wavelet coefficient series is further 
illustrated with the block diagram shown in Figure 2. 

Last, the signal can be reconstructed using the mathematical 
expression described in equation (6). 

0
1

                            ( ) ( )                     (6)
n

n j
j

c k c w k
=

= + ∑  

B. The DRNN Model 
The use of a dynamic recurrent neural network is also 

243
2004 IEEE International Ultrasonics, Ferroelectrics,

and Frequency Control Joint 50th Anniversary Conference5290-7803-8414-8/04/$20.00 (c)2004 IEEE.



important for our system in consideration of the curse of 
dimensionality because the RNN can take into account the 
greater history of the input [5]. The Elman recurrent neural 
network was chosen because it is suitable for the grammatical 
inference style problem, and because it has been shown to 
perform well in comparison to other recurrent architectures.  

The raw time series values of phase error function 
are ℜ∈Φ=Φ functionerror  phase ),(  where,...,,2,1),( kNkk .     
These denote the phase error time series of the receiver external 
clock. The first difference for the time series of phase error 
function, )(kΦδ , is taken as follows: 
 
                              ( ) ( ) ( 1)                                  (7)k k kδΦ = Φ − Φ −
 
This produces .1,...,2,1 ,)( ),( −=ℜ∈ΦΦ Nkkk δδ  In order to 
compress the dynamic range of the series and reduce the effects 
of the outliers, a log transformation of data is used: 
 
      ( ) ( ( ))(lo g ( ( ) 1))              (8 )m k sig n k kδ δ= Φ Φ +
 
resulting in .)( ,1,...,2,1 ),( ℜ∈−= kmNkkm  As is usual, a 
delay embedding of this series is then considered: 
 

1 1  ( ; ) ( ( ), ( 1), ( 2), ..., ( 1)        (9)k d m k m k m k m k d= − − − +M  
 
where 1d  is the delay embedding dimension and equal to 1 for 
the experiments reported here. );( 1dkM  is a state vector.  This 
delay embedding forms the input to the scaling function.       
Hence, the scaling function input is a vector of the last 1d  
values of log transformed differenced time series. The output of 
the scaling function always falls within a specified range.  Then, 
the neural network training can be made more efficient for the 
network inputs and targets. 

The scaling function can be represented by the following 
equation (10):  
 
                  ( ) ( ( , ) )                   (1 0 )S k g k d= M
 
where [ ] ss nnkS  and ,,...,3,2,1)( ∈ is the number of embedded 
time series for the scaling function. If the scaling function is used 
to preprocess the training set data, then each time the trained 
network is used with new inputs, they should be preprocessed 
with the same parameters of scaling that were computed for the 
training set. 

For the Elman network [6], [7]: 
 

                        ( )               (1 1 )k + 1 T
k 0O = C z + C

and 

                                           (12)
hk n k-1 k z = F (Az + Bu + b)  

 
 
Figure 3.: An DRNN is trained on a sequence of scaling time series (The 
pre-processed, delay embedded series is converted into a specified range using a 
scaling function). 
 
where C  is an 0nnh ×  vector representing the weights from 
the hidden (processing) layer to the output nodes, hn is the 
number of the hidden nodes, 0n is the number of the output 

nodes, 0C  is a constant bias vector, hnℜ∈K,z , and is an 1×hn  

vector, denoting the outputs of the hidden layer neurons. ku  is 
a 12 ×d  vector as follows, where 

2d  is the embedding 
dimension used for the recurrent neural network. 
 

2

( )
( 1)

                                        (1 3 )

( 1)

S k
S k

S k d

 
 − =
 
 − +  

ku

 
A  and B  are matrices of appropriate dimensions which 

represent the feedback weights from the hidden layer to the 
hidden notes, and the weights from the input layer to the hidden 
layer, respectively.

hnF  is an 1×hn  vector containing the 

sigmoid functions. One benefit of a sigmoid function is that it 
reduces the effect of extreme input values, thus providing some 
degree of robustness to the network. The b is an 1×hn  vector, 
denoting the bias of each hidden layer neuron.  )(kO is an 

10 ×n  vector containing the outputs of the network.  0n is 1 
throughout this paper. Thus, for the completed system: 

 
1    ( 1) ( ( ), ( 1), ..., ( 4))            (14)k F k k kδ δ δ+ = Φ Φ − Φ −O  

 
which can be considered in terms of the original time series: 
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2     ( 1) ( ( ), ( 1), ..., ( 5))                (15)k F k k k+ = Φ Φ − Φ −O
   
Note that this is not a static mapping, due to the dependence on 
the hidden state of the recurrent neural network. However, the 
forms of the nonlinear function 21 , FF  are not apparent from the 
neural network. 
 

C. The Ability of the Intelligent Forecasting Model    
To verify the ability of our real-time forecasting model, the 

data from an Ashtech Z-XIIT is preliminarily processed. Now, 
the ION-free effect of the dual frequency method is the training 
goal for our forecasting model. We use the information on the 
past three days to train our model. Then, we simultaneously 
adopt the dual frequency method and our model to correct the 
phase difference data between the primary clock and GPS system 
time for 7 days. 
 

 
 
Figure 4. The phase difference estimation between primary clock and GPS system 
time using the dual-frequency method for ION-delay free. 

 

 
Figure 5. The phase difference estimation between primary clock and GPS system 
time using the forecasting model for the real-time correction of ION-delay. 

 

 
Figure 6. The frequency stability comparison using the two ways of the 
ION-delay correction, without ION-delay correction 
 

The phase difference estimations produced using these two 
methods are shown separately, in Figure 4 and Figure 5. Figure 6 
expresses the frequency stability analysis. The results indicate 
that our real-time forecasting model is effective and reliable. The 
model has the ability to perform continuously with rational 
accuracy for 7 days. In addition, the model establishment is not 
relevant to user location, so the accuracy will not vary with 
latitude. Next, we introduce the forecasting model into the 
low-cost disciplined oscillator to correct for the atmosphere in 
real time.  
 

IV. THE ARCHITECTURE OF THE SYNTONIZATION SYSTEM 

A. Low-Cost Syntonization System 
  The functional block diagram of our syntonization system is 
shown in Figure 7. This system consists of mainly the DDS 
(Direct Digital Synthesizer), a D/A converter, a low-cost 
modified G12 GPS receiver, a forecasting model of atmosphere 
correction, and a notebook PC. In order to estimate the offsets of 
the steered clock with respect to the GPS system time, the user 
clock is connected to the modified GPS receiver. Hence, the 
original internal quartz oscillator in the receiver is replaced.  
With the help of the frequency synthesizer, i.e. the DDS (Direct 
Digital Synthesizer) manufactured by NOVATECH, the signal of 
the external clock can be appropriately converted and supplied to 
the GPS receiver. The behavior of the clock then comes into view 
from the GPS observations. The average frequency offset of the 
syntonized clock with respect to the GPS system time can be 
estimated by performing the time difference operation (i.e., (2)) 
on carrier phase observations. Equation (2) can be further 
expressed as equation (16): 
 

      (16)j j j j j j
A A ion trop A Ac dt d d c dTδ δρ δ δ δ δ δεΦ − − + − = − +
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The left-hand side of the equation (16) is the time difference 
data of the known measurement. The coordinates of the GPS 
antenna are predetermined by the IGS (International GPS 
Service), and the coordinates and the satellite clock error of the 
j-th GPS satellites are obtained from the broadcast navigation 
message. Furthermore, the ionospheric delay ( j

iondδ ) and the 
tropospheric delay ( j

tropdδ ) are thus eliminated from the real-time 

average atmospheric delay forecasting model. Some noise errors 
affecting the estimation of the average frequency offset may 
occur in the evaluation of the right-hand side. 
 

  
 
Figure 7. The functional block diagram of our syntonization system 
 
  The term )( iA tdTδ (= )()( 1−− iAiA tdTtdT , where τ+= −1ii tt ) can be 
obtained by averaging (16) for all in view GPS observations. As 
previously mentioned, since )( iA tdTδ  is the phase difference 
between the GPS system time, the associated estimate frequency 
offset )(ˆ ir ty′  is shown in equation (17): 
 

( )ˆ                              ( )                                        (17)            
j

A i A
r i

dT t
y t

c
δ δε

τ τ
′ = −

                                         
  In general, fine frequency tuning can be performed on an 
inexpensive oscillator through voltage control. Because of 
environmental effects such as vibration, temperature, pressure, 
and humidity, the desired frequency output is not always under a 
constant voltage. 
  In our system, the frequency offset )(ˆ ir ty  is chosen as the 
input variable of the model predictive controller.  An 
incremental voltage )( itv∆ will be generated to update the 
voltage to allow steering of the oscillator. 
 

1 ( 1 8 )                                          i iv v v+ = + ∆

  For a low-cost quartz or rubidium oscillator, the frequency 
offset may vary over very large scales. The log transformation of 
the data is used to compress the values of the estimation ( )iy tτ

. 
The compression function is shown in equation (19): 

[ ] { }         ( ) ( ) log ( )            (19)i i iw t sign y t a y t bτ τ = × × + 
 
where a and b are the scaling factor and the offset factor, 
respectively. We decide to adopt the model predictive controller 
(MPC) to steer the external clock because the MPC can 
systematically take into account real plant constraints in real time. 
It is also robust with respect to modeling errors, over and under 
parameterization, and sensor noise [8]. 
  The neural network predictive controller that is implemented 
in the highly-accurate real-time sytonization uses a neural 
network model of a nonlinear plant to predict future plant 
performance. The controller then calculates the control input that 
will optimize plant (OCXO) performance over a specified future 
time horizon. The first step in MPC is to determine the neural 
network plant model. Next, the plant model is used by the 
controller to predict future performance. The following section 
will describe the system identification process. 
 
 

 
 
Figure 8. The process of the MPC system identification 
   

The first stage in modeling predictive control is to train a 
neural network to represent the forward dynamics of the OCXO. 
The prediction error between the compressed signal of the 
OCXO output phase error and the compressed signal of the 
neural network output is used as the neural network training 
signal. The process is represented in the following Figure 8. The 
neural network plant model uses previous inputs and previous 
plant outputs to predict future values of the plant output. The 
network can be trained offline in batch mode, using data 
collected from the operation of the plant.  
  The second stage is actual predictive control. The neural 
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network model predicts the plant response over a specified time 
horizon.  The predictions are used by a numerical optimization 
program to determine the control signal that minimizes the 
following performance criterion over the specified horizon. 
 

(20)
u2

1

NN
2 2

m r
k N k 1

J (y (t k) y (t k)) ρ (u (t k 1) u (t k 2))
= =

′ ′= + − + + + − − + −∑ ∑
 
where 

1N , 2N and uN define the horizons over which the tracking 
error and the control increments are evaluated. The u′ variable is 
the tentative control signal, ry  is the desired response, and my  
is the network model response. The ρ  value determines the 
contribution that the sum of the squares of the control increments 
makes to the performance index. 
  The following block diagram illustrates the model predictive 
control process. The controller consists of the neural network 
plant model and the optimization block. The optimization block 
determines the values of u′ that minimize J , and then the 
optimal u is input to the plant.  
 

 
Figure 9. The model predictive control block diagram 

 

B. Initialization and Modeling 
  On the other hand, the host (master) station also contains a 
high-performance frequency source with the national standards 
of time and frequency, the direct digital synthesizer (DDS), a 
modified G12 GPS receiver, and an industrial PC, all of which 
are the same as those owned by the user site. The carrier phase 
data and other GPS observations messages are then passed to the 
user site through a communication network, e.g. the PSTN or the 
Internet. The average frequency offset of the user clock with 
respect to the master clock can be estimated by performing the 

time difference (i.e. (2)) and then single difference (i.e. (3)) on 
the carrier phase observations. In the process, the biases and 
errors from the satellites and receivers can be significantly 
reduced. Equation (3) can be further expressed as follows: 
 
                            (21)j j j

AB AB AB ABc dTδ δρ δ δε∆ Φ − ∆ = − ∆ + ∆
  
  The term )( iAB tdTδ∆ (= )()( iBiA tdTtdT δδ − , where τ+= −1ii tt ) 
can be obtained by averaging equation (21) for all-in-view GPS 
observations. Then, the associated estimate average frequency 
offset )(ˆ ir ty ′′  is: 

 
( )ˆ           ( )                    (2 2 )

j
A B i A B

r i
d T t

y t
c

δ δ ε
τ τ

∆ ∆′′ = −

                                   
  To attain low-cost, highly-accurate training data on 
atmospheric variation for common users, we can first obtain the 
frequency stability and accuracy by performing equation (17) in 
real-time at both sites. Next, we acquire the reference destination 
of the atmosphere modeling by subtracting )(ˆ ir ty ′′  from )(ˆ ir ty′  
in the post-processing at the user site. Since the master station 
possesses the same degree of time and frequency as the GPS 
system time does, our model will not vary in accuracy according 
to user location. The model creation is adapted to the individual 
circumstances of the user site. The correction method of the 
syntonization system is thus more accurate and easier to use than 
the other models for a single-frequency receiver. 
 

 
 
Figure 10. A depiction of the training and test sets used 
 
  The difficulty with our approach is the reduction in the already 
small quantity of training data. The size of the training set 
controls a noise vs. non-stationary trade-off [9], [10]. If the 
training set is too small, the noise makes it harder to estimate the 
appropriate mapping. If the training set is too large, the 
non-stationary data will lead to more data with statistics that are 
less relevant for the task at hand being used in the creation of the 
estimator. The entire training/test set window is moved forward 1 
day and the process is repeated, as depicted in Figure 10. For the 

247
2004 IEEE International Ultrasonics, Ferroelectrics,

and Frequency Control Joint 50th Anniversary Conference5330-7803-8414-8/04/$20.00 (c)2004 IEEE.



problem of noisy data, we use early stopping to control 
over-fitting. 

V. EXPERIMENTAL RESULTS 
The basic experimental structure of the tests is shown in Figure 

9. The low-cost TMAshtech  G-12 single-frequency GPS 
receiver installed in our system was not designed for time and 
frequency applications. It had no interface ports for external 
clocks. In order to use the G-12 receivers to establish the system, 
we replaced the 20.460MHZ internal quartz oscillator of the 
receiver with the external frequency source and connected a G-12 
receiver through a DDS manufactured by TMNOVATECH , 
model DDs5m. An oven controlled crystal oscillator 
manufactured by TMDatum , model FTS 1130, was used as the 
disciplined clock. The software, including the model predictive 
controller, the real-time forecasting model, and the 
communication interface between the time interval counter (TIC) 
and a PC, which was used for data collection, were programmed 
in C++ language on Professional Windows 2000 and executed on 
a mobile computer manufactured by Acer. The data used for 
frequency accuracy and stability analysis were measured once 
every second with a TIC manufactured by TM SRS , model SR620. 
This system included the DDS (Direct Digital Synthesizer), a 
D/A converter, a low-cost modified G12 GPS receiver, a 
forecasting model of atmosphere correction, and a notebook PC. 
In order to estimate the offsets of the steered clock with respect 
to the GPS system time, the user clock was connected to the 
modified GPS receiver. Hence, the original internal quartz 
oscillator in the receiver was replaced. The coordinates of the 
GPS antenna were predetermined by the IGS (International GPS 
Service). With the help of the frequency synthesizer, i.e. the DDS 
(Direct Digital Synthesizer) manufactured by NOVATECH, the 
signal of the external clock could be appropriately converted and 
supplied to the GPS receiver. The behavior of the clock then 
came into view from the GPS observations. The average 
frequency offset of the disciplined clock with respect to the GPS 
system time could be estimated by performing the time difference 
and real-time atmospheric corrections on the carrier phase 
observations with all satellites in view. 

Finally, we examined the performance of the free running 
OCXO used in our system and a GPSDO manufactured by 
Trimble ThunderBolt TM  in order to compare the results with the 
performance of the controlled OCXO under atmospheric 
correction and the common view (CV) method. The frequency 
stability analysis is shown in Figure 11. The frequency stability 
of the OCXO without the atmosphere delay variation correction 
is significantly degraded over the averaging time between the 
100s to the 60,000s. Figure 12 shows the average-free phase 
difference between the free running OCXO clock and the primary 
(Cs.) clock. The accuracy of this OCXO is about 92.41 10−×  
for an averaging time of about one day. Figure 13 presents the 
average-free phase difference between the primary (Cs.) clock 

and the disciplined OCXO with atmospheric effects. The 
accuracy of the OCXO is about 135.43 10−×  for an averaging 
time of about one day. Figure 14 presents the average-free phase 
difference between the primary clock and the controlled OCXO 
with atmospheric delay variation correction of the real-time 
forecasting model. The accuracy of the OCXO is about 

143.12 10−×  for an averaging time of about one day. The 
stability per second was about nine parts in 1210  in Figure 10. In 
addition, we found the frequency stability of the OCXO to be 
significantly improved over the averaging time between the100s 
to the 60,000s. With the above results, we demonstrated that our 
low-cost scheme, composed of a GPS carrier phase 
single-frequency receiver with the real-time atmospheric 
forecasting model, achieves a highly-accurate and reliable 
disciplined clock. 

Figure 11. The frequency stability comparison of the free running OCXO, 
GPSDO Thunderbolt TM , OCXO-Ctrl without atm. delay correction, OCXO-Ctrl. 
with the atm. correction of the real-time forecasting model and the common-view 
method. 

 
Figure 12. The phase difference between free running OCXO and primary clock 
with linear-fit line. 
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Figure 13. The phase difference between primary clock and OCXO-Ctrl. (MPC) 
under atmospheric effects with linear-fit line. 
 

Figure 14. The phase difference between primary clock and OCXO-Ctrl. (MPC) 
under the real-time correction of forecasting atmospheric model with linear-fit 
line. 

VI. CONCLUSIONS 

In this paper, a new low-cost, highly-accurate, and real-time 
GPS carrier phase disciplined system based on a single-frequency 
receiver and the atmospheric forecasting model is presented. The 
scheme can achieve traceability of frequency dissemination. In 
addition, we observed that the model predictive control of the 
neural network is robust and adaptive for our frequency 
syntonization by GPS carrier phase measurements. Three 
improvements and advantages in our methodology were given. 
First, we have developed a real-time forecasting model to correct 
atmospheric errors and filter time-series noise in real time. The 
model is more accurate than the existing ionosphere model and 
troposphere model for single GPS receivers. Furthermore, it is 
available easily and anticipative day-to-day, irrelevant to user 

locations. Second, the low-cost oscillator can be automatically 
steered to obtain very high frequency accuracy and stability in 
the short term as well as in the long term. Experimental results 
show that the stability per second was nine parts in 1210 . 
Compared with the commercial GPS Disciplined Oscillators 
(GPSDOs), the short-term stability (1s) was improved by about a 
factor of ten. Moreover, the increased instability of the GPSDOs 
and other single receivers in the medium term (approximately 
from 100s to 60000s) due to the atmosphere effect was also 
improved. Third, the frequency performance of the disciplined 
system, with the use of low-cost GPS engines, inexpensive 
clocks and less communication effects, was almost as good as 
that of the commercial atomic clock. Therefore, the disciplined 
frame of the clock is sound, reliable and cost-effective. 
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