
given targets of TP-. It should be noted that our comparisons 
are thus different from most previous comparisons in which net- 
works with the same replication and expansion factors were com- 
pared (e.g. comparing a K-RDN to a K-RDN [3]), and in which it 
was always implied that the crossbar switch is more complex. 

For all networks under consideration, Fig. 2 shows C,. as a 
function of the target TP-, for N = 128. We notice that expan- 
sion costs the least C,, for a wide range of target TP-. We also 
notice that for target values of TP,, greater than 0.56 (0.61), a CS 
requires lower C,, than both RDN and DDN (EDN). When the 
target TP,, is less than 0.52, replication requires lower C,, com- 
pared to dilation. Fig. 3 shows C,. against log,N for target TP,, 
= 0.61. We notice that for N s 128, a CS requires the lowest C,,,., 
whereas for N z 128, an EDN requires the lowest C-. Finally, 
the RDN and the DDN keep interchanging their positions while 
being close to each other. 

E lo6, 

log N 

Fig. 3 C,, against n af  target TP,, = 0.61 

0 RDN 
0 DDN 
X EDN 

~ cs 

Summary: Based on extensive results obtained by the approach 
described in this Letter, the fmdmgs, applicable to unbuffered 
interconnection networks for which one packet only can be 
accepted at any output in each cycle, are summarised as follows: 

(i) Among delta-based networks, the EDN has the lowest number 
of crosspoints, almost always. 

(ii) For target values of the maximum throughput close to the 
maximum achievable throughput, the CS requires the lowest 
number of crosspoints for small to moderate network sizes. 

(iii) For a given network size, replication outperforms dilation up 
to a certain target maximum throughput, above which they seem 
to have comparable complexities. 
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Mapping iterative networks to parallel 
lookahead circuits 

J.-C. Shyur and T.-M. Parng 

Indexing term: Finite state machines 

Finite state machines have sequential iterative network 
implementations. The authors show that by the proposed 
algorithm and Boolean matrix operations, nonlinear parts of 
recnrrence sequences can be eliminated. Linear mapping is thus 
obtained, which by use of the prefu technique, results in parallel 
lookahead circuits. 

Infroduction: Finite state machines can be implemented in iterative 
networks [I]. However, with parallel input and output, there are 
signals propagating along the networks, resulting in the worst case 
P(N) time. However, if the network is associative, by using the 
prefix technique [2], a product circuit can be achieved with depth 
exactly flog, Nl and size bounded by 4N. For simplicity, such cir- 
cuits are called parallel lookahead circuits [3,4]. 

In this Letter, we present a mapping from iterative networks to 
parallel lookahead circuits. We first show how linear recurrence 
sequences can be mapped to parallel lookahead circuits, and then 
give an algorithm to transform the nonlinear parts in recurrence 
sequences into h e a r  parts. The resultant recurrence sequences are 
shown to be associative in the domain of the propagating signals, 
and parallel lookahead circuits can be realised. 

Linear recurrence sequence: Let the j t h  input and propagating sig- 
nals of an iterative array be vectors A' and P, the recurrence rela- 
tion of P in the form of sum-of-products is 

for j = 1, 2, . .., n, where n is the dimension of P, II and I: are the 
massive AND and OR operations. 

A special case of eqn. 1 is that each nyfl  contains only one 
component from Y'I; eqn. 1 can thus be written in linear form: 

k 

where .&(A3 and c,(A') are Boolean expressions of variables from 
A'. It then forms a linear mapping by augmenting P by a '1': 

(Y"' = ((Y')'t l ) t  
(3) 

= E'(A*)(Y'-')' 
where E(k)  is the augmented matrix of (e#?) by (c,(A?): 

We note that Boolean matrix multiplication is implied in eqn. 3 
which can be further expanded as 

(Y')' = E'(A')E'(A'-'). . .E'(A')(Yo)' ( 5 )  
where F' represents the initial values propagated to the first cell of 
the iterative network. Without proof that Boolean matrix multipli- 
cation is associative, eqn. 5 becomes 

(Y'))' = (E'(Ai)E'(A"-') .. .E'(A'))(Yo)' (6)  

where the term E(A1)E(Akl) _ _ _  E(AI) can be parallel-computed 
by a product circuit, forming the following prefix problem. 

Prefix problem formulation; It is revealed by eqn. 6 that the prefix 
technique can be applied to solve the prefuc problem [2] defined as 
follows: 

Let 0 be an associative operation on a domain D. The prefix 
problem is to compute, for given xI, ..., x, E D, each of the prod- 
ucts xI 0 xI 0 ... 0 x,, 1 s k +: N. 

Define the Boolean matrix multiplication as operation 0 and 
E(A? as xi, i = 1, ..., N; we have a prefix problem that computes 
,"(Ak) E(Ak-I) ... E(A'), 1 s k s N. 

Transform algorithm: Finally we are left with the problem of elim- 
inating the nonlinear parts in eqn. 1 such that the recurrence 
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sequences can be described by eqn. 2. The algorithm introduces 
new variables to F to substitute for inversion or product terms, 
and decomposes them by recurrence relations of the substituted 
terms. 

Algorithm I :  

(a)  Restate eqn. 1 as 
nonlinear 

(b )  While there is an inversion signal y,-‘ or a product term IIy,+l 
composed of more than one component from Y“, 

(i) Add a new component yn+i+l = ?;-I or ny;’. 

(ii) Replace ?,+I or IIy;l by yn+;-I. 

(ii) Decompose yn+: by substituting recurrence relations of or 
every y;, such that yn+lE can be expressed by a recurrence relation 
of components of Y‘I: 

Y ~ + I  = n a; Y:-’ + cn+1 (A’) (8)  
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Diffraction coefficients at edges in artificially 
soft and hard surfaces 

S .  Maci, R. Tiberio and A. Toccafondi 

Indexing terms: Electromagnetic wave diffraction, Geometrical 
theory of diffraction 

( c )  Describe components of F as a linear form like in eqn. 2. 

Examples: We use two examples to illustrate the mapping: the par- 
ity checker and the comparator. Let p‘ be the parity of d to a‘, 
that is p‘ = 1 if there are odd numbers of 1s in ( a 1 ,  ..., a i ) .  We 
have the recurrence relation with p” = 0: 

(9) 

(10) 

pi = + 

where the inversion can be expanded by algorithm 1: 
p = aipi-l + ai$-l = .ipi-1 + iLzp‘-l 

Finally the linear recurrence sequence can be obtained as follows: 

(4) = (:: :: :) (;;:) (11) 
0 0 1  

For comparators, we use g. and P to denote that the number xN ... 
I is greaterfless than the number y” ... y,  with initially g” = IN = 
0. The recurrence relation is 

g’+l + gi+lp+lzi -i 

l i+ l  + gz+lp+lzi 1 ) (;:) = ( Y 
(12) 

where the nonlinear term gi7, can be substituted by ei and 
expanded 

. 
(13) e’ = gy1” = e%+l(z”Bi + “iYi) 

resulting in the linear recurrence sequence 

In this Letter, both uniform GTD and incremental diffraction 
coefficients at edge discontinuities in artificially soft and hard 
surfaces are obtained from the exact solution of the relevant 
canonical wedge configuration. Numerical results are presented 
for a dipole on the axis of an artificially soft disk. 

Introduction: Accurate control of the radiating characteristics of 
high-performance antenna systems is important in electromagnetic 
engineering applications. To this end, undesired scattering mecha- 
nisms may be reduced by conveniently shaping or corrugating the 
scattering surfaces. Recently, a systematic method for characteris- 
ing corrugated surfaces for different applications has been pre- 
sented [I]. There, it is suggested that suitable combinations of 
corrugations and dielectric loadings may usefully be employed to 
devise surfaces that exhibit artificially soft and hard boundary 
conditions (BCs). It has been shown that this technology may pro- 
vide effective tools for controlling the sidelobe level and crosspolar 
components of radiation patterns. Within this framework, an 
accurate description of diffraction mechanisms at edge discontinu- 
ities is relevant for an exhaustive examination of the polarisation 
effects. 

In this Letter, uniform, dyadic GTD diffraction coefficients are 
obtained, that provide basic tools for treating the scattering at 
actual edge configurations of practical interest. Furthermore, 
incremental diffraction coefficients are presented which provide a 
suitable correction near to and at caustics. These are obtained 
according to the incremental theory of diffraction (ITD) [2, 31. 
Both GTD and ITD diffraction coefficients are derived from the 
exact solution of a canonical wedge with artificially soft and hard 
BCs on one face and a perfectly electric conducting (PEC) BC on 
the other face. This procedure yields a representation of the field 
which is uniformly valid at any observation aspect, including caus- 
tics of the corresponding ray-field description. 

Summory: We have presented an approach to mapping iterative 
networks to parallel lookahead circuits. By using the proposed 
algorithm, nonlinear parts in the recurrence sequences can be elim- 
inated and substituted by linear parts. The resultant linear recur- 
rence sequences are then shown to be expressible by augmented 
Boolean matrices and matrix multiplications. As the multiplica- 
tions are associative operations, the linear recurrence sequences 
can be implemented by parallel lookahead circuits by using the 
prefm technique. We conclude that all iterative networks can be 
transformed to parallel lookahead circuits. 
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