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ABSTRACT

In the past decade, the application of orthonormal or parau-
nitary (PU) matrices to subband coding has drawn consid-
erably attention. In this paper, we will study signal com-
pression using unimodular matrices. Like PU matrices, uni-
modular matrices have FIR inverse. However unimodular
matrices do not have the energy preservation property. Ap-
plying unimodular matrices to subband coding is not always
a good choice as quantization noise might be amplified and
coding gain can be less than one . We introduce a new struc-
ture for unimodular coders. The new structure consists of a
closed-loop vector DPCM structure followed by a transform
coder. Using such a structure, it is shown that the coding
gain of unimodular coders is never less than 1. Simulation
example shows that despite having the smallest system de-
lay, unimodular coders have a better performance than sub-
band coding with the same complexity for AR(1) input.

1. INTRODUCTION

Orthonormal or paraunitary (PU) matrices have found many
applications in signal processing. In particular, they have
been successfully applied to subband coding. PU matrices
enjoy many desired features and have been widely studied
(see [1] and references therein). In this paper, we will con-
sider unimodular matrices for signal compression. Like PU
matrices, unimodular matrices have the advantage that if
they are used as polyphase matrices of filter banks (FB),
perfect reconstruction (PR) can be obtained by FIR analysis

and synthesis filters. In addition, unimodular matrices also

enjoy the advantage of having the smallest system delay for
all FBs. System delay is particular important in applications
such as speech coding [2]. Though there are efficient design
methods for low delay FBs [2][3], there are relatively few
results on unimodular FBs.

The earliest paper that studied the relationship between
unimodular matrices and FIR PR FB is [4]. The author in-
troduces the most general degree one unimodular matrices
and demonstrates that unlike PU matrices, there are unfac-
torizable unimodular matrices. In [5], we show that though
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there are unfactorizable higher order unimodular matrices,
all first-order unimodular matrices (or lapped unimodular
transforms, LUTs) can be minimally factorized into degree-
one building blocks.

In this paper, we will apply the unimodular matrices to
signal compression. It is well known that subband coding
using non PU matrices suffers from quantization noise am-
plification problem. Therefore subband coding structure is
not a good choice for implementing unimodular coders. In
this paper, we introduce a new structure for the unimodular
coders. The new structure consists of a closed-loop vec-
tor DPCM structure followed by a transform coder. It en-
joys the unity noise gain property for any quantization noise
model. Using the proposed structure, the coding gain of
unimodular coders is never less than 1. Simulation example
shows that for the coding of AR(1) process, the first-order
unimodular coder outperforms LOT coder.

2. REVIEW OF UNIMODULAR MATRICES

A causal matrix A(2) is unimodular if its determinant
det[A(2)] = c for some nonzero constant. Without loss
of generality, we assume that ¢ = 1 in this paper. The in-
verse of a causal unimodular matrix is also causal unimodu-
lar. If a causal unimodular matrix and its inverse are used as
polyphase matrices of FBs, then PR is obtained with causal
FIR analysis and synthesis filters. The system delay of an
M -channel unimodular FB is always (M — 1), regardless of
the filter length. Many useful properties of unimodular ma-
trices can be found in [4] [6] [5]. In particular, for a causal
unimodular matrix Ao + Az~ + ...+ An2z~V, its first
coefficient matrix Ag is always nonsingular. Moreover the
most general degree-one unimodular matrix has the form
AoD(z), where Ay is a nonsingular matrix and

D(z) =I+uvtz™!, viu=0. (€))

The inverse of D(z) is given by D™1(2) = I — uvfz~!,
which is also a degree-one unimodular system. Using D(z)
as a building block, it is shown [5] that any first-order uni-
modular matrices can be decomposed into degree-one build-
ing blocks. Though there are higher order unfactorizable
unimodular matrices, a broad class of useful unimodular
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matrices can be obtained by cascading the degree-one build-
ing block D(z).

3. REVIEW OF VECTOR DPCM SCHEME

The theory of DPCM is well known and can be found in
many references. Let x(n) be a zero-mean WSS vector ran-
dom process. Consider the Nth order prediction error vec-
tore(n) = x(n) = P1x(n — 1) —... — Pyx(n — N). The
prediction error polynomial matrix is given by

B(z) =1 - P(z),

where P(z) = Y, P;z™*. In a DPCM scheme, we quan-
tize the prediction error e(n) instead of the original signal
x(n). The reconstructed signal is obtained at the decoder
whose transfer matrix is B~!(z). An open loop DPCM
structure will encounter noise amplification problem. Thus
the closed loop DPCM structure shown in Fig. 1 is intro-
duced for the implementation of the DPCM encoder. It
is well known that the noise transfer function of DPCM
scheme using closed loop structure is I. Hence closed loop
structure enjoys the unity noise gain property. The quantizer
Q in Fig. 1 is in general a vector quantizer (VQ) as in the
predictive VQ.

x(n) + e(n) &(n)
Ny IR
|
——{PG) ¢

[
L

Figure 1: Closed loop structure for the vector DPCM en-

coder.

4. ANEW CODING STRUCTURE

Let the encoder be the M by M polynomial matrix A(2) =
> o Arz~*. To ensure that the inverse A~'(z) has a
causal realization, we assume that the matrix A is nonsin-
gular. In the case when A(z) is unimodular, there is no loss
of generality in making such an assumption because A g is
always nonsingular. Under this assumption, we can rewrite
A(2) as

A(z) = Ap[I-Piz7' ... = Pn2 V] = Ap[I - P(2)).
(2)
Using a technique similar to that in a closed loop DPCM
system, we can implement the encoder A(z) as Fig. 2.
As the constant term of P(z) is a zero matrix, there is no
delay free loop in Fig. 2. The new structure is different
from the vector DPCM structure in Fig. 1, it reduces to

the vector DPCM structure when Ao = I. In the absence
of quantizers Q, it can be shown that the transfer func-
tion from x(n) to e(n) is A(z). One can also show that
the transfer function of the decoder is [I — P(z)] "'Ag",
which is equal to A~!(2). In the absence of quantizers,
the vector r(n) in Fig. 2 can be expressed as r(n) =
x(n) - Pix(n~1) —--- —Pyx(n — N). Compared with
the DPCM system, one immediately realizes that P(2) is
in fact a predictor of x(n) and the prediction error is r(n).
From the expression in (2), one can interpret the new struc-
ture in Fig. 2 as a predictive transform coder. The input
x(n) is first passed through the prediction error polynomial
[I — P(2)] and the prediction vector r(n) is encoded using
the transform coder Ag.

In a predictive VQ scheme, a VQ is used to quantize the
prediction error vector e(n). Here we assume that Q con-
sists of a set of M scalar quantizers with different bit rate b;
so that the average bit rate is

1 M-1
b= s Z by
k=0

The use of scalar quantizers will not cause a major degra-
dation on the performance. The reason is as follows. In a
predictive VQ scheme, we have Ay = I. Any two elements,
say e;(n) and e;(n), in the prediction error vector e(n) are
in general correlated. Hence a VQ is needed to encode e(n)
efficiently. In the new coders, the nonsingular matrix A ¢
has the ability to decorrelate the error vector e(n). Hence
scalar quantizers with suitable bit allocation can represent
e(n) efficiently.

Remark: For the class of PU and CAFACAFI (CAusal Fir
with AntiCAusal Fir Inverse) matrices, their first coefficient
matrix Ag is always singular [6]. Therefore PU and CAFA-
CAFI matrices can not be realized using the proposed struc-
ture in Fig. 2.

A. Noise Analysis

Let the quantization noise vector be g(n) = €(n) —e(n) =
[go(n) ... gar—1(n)]T. Define the output noise vector as
e(n) = X(n) — x(n), where X(n) is the output of the de-
coder as shown in Fig. 2. It is not difficult to show that
the noise transfer matrix from q(n) to the output of the de-
coder is Ay". Therefore the output noise vector (n) and
the quantization error g(n) are related as e(n) = A5 'q(n).
Using this relation, one immediately gets

R. = E{e(n)e"(n)} = Aj'RqA; 7, 3)

where Rgq is the autocorrelation matrix of q(n). Note that
in the above derivation, we do not make any assumption on
the quantization noise q(n). Therefore (3) holds for any
additive noise model. ‘The average output noise variance is
givenby 02, = 1/Mtr(Re).
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Figure 2: The new coding structure. The quantizers are a set of scalar quantizers.

B. Optimal Bit Allocation and Optimal A(z)

From the above discussion, the new coder in Fig. 2 can be
viewed as a predictor followed by a transform coder. There-
fore the optimization problem of b; and nonsingular A ¢ (not
necessary unitary) in the new coder is the same as that of a
transform coder with input vector r(n). Under the high bit
rate assumption, the autocorrelation matrix of the quantiza-
tion noise q(n) is: :

R, = diag[c2™%02 27102 ... c27%M-142

T™M~1 ] ?

where o2, is the variance of r (n). Given this noise model,
the transform A o and the bit allocation b; that minimize the
trace of R in (3) is well-known. There are two optimal so-
lutions which give the samé minimum average output error

; 2 .
variance 63,,;:

S1. Karhunen-Loeve Transform (KLT): In the Appendix of
[7], Vaidyanathan showed that the optimal nonsingu-
lar Ao that minimizes o2, is the well known KLT.
The optimal bit allocation formula and the minimum
achievable 02, are respectively given by [7]:

1 M-1
b; = b+ log, 0, — Mlogz IIO Oe; s
i=

Ohit Ay = €27 (det Ry)! /M, @)

where R, is the autocorrelation matrix of r(n). The
subscript of ‘bit, Ay’ is chosen as a reminder that the

¢ error variance is obtained when the bit allocation and
the matrix Ag are optimal. The optimal transform A
is the unitary matrix that diagonalizes R .

S2. Prediction-based Lower triangular Transforms (PLT):
In [8], it was shown that though we cannot do better
than the KLT, there are nonunitary transforms that can
achieve the same coding performance. One of the so-
lutions is a lower triangular transform with unity diag-
onal elements called PLT. Given an input vector r(n),
the kth row of PLT matrix is formed by the optimal pre-
diction coefficients when we predict 7 (n) from r;(n)
for i < k. As the PLT matrix is nonunitary, the quanti-
zation noise will be amplified at the reconstruction end.

A unity noise gain structure called MINLAB [8] is in-
troduced for the implementation of the PLT. By using
the MINLAB structure, it is shown that the minimum
achievable output noise variance is the same as afit’ Ao
in (4). In addition to its excellent coding performance,
the PLT enjoys many other attractive features [8), such
as low design and implementation cost, structurally PR
property, multiplier-less realization, and adaptability.

Under the optimal bit allocation and the optimal trans-
form A, the achievable lower bound on the average output
noise variance is given by (4). Note that this lower bound
depends on det R.;. From the expression of r(n), we know
that r(n) can be viewed as the prediction vector of x(n).
To minimize the average output noise variance afil, A, the
predictor P(2) should be chosen such that det R, is mini-
mized. This is different from the DPCM system where the
predictor is chosen to minimize ¢r(R). The optimization
of P(z) such that det R, is minimized is nonlinear. A sub-
optimal solution is the conventional predictor where ¢7(R..)
is minimized.

Performance Comparison of Propesed Coders and
DPCM Scheme: In a DPCM scheme where Ag = I, the
predictor P(2) is chosen to minimize tr(R.). In general, bit
allocation is not done in a DPCM scheme. That is, b; = b.
One can show that the coding gain of the DPCM scheme is
given by: ’

2

Oz

c =T
Gorom a7 min tr(R,;)
P(z)
In the proposed coder as in Fig. 2, the predictor is chosen to
minimize det R,. The coding gain of the proposed coder is
given by:

2
z

min (det R,.)I/M .

P(z)

[ep

COnew =

Comparing the above two equations, we have the ratio:
1 .
+min tr(R,
anew — M P(z) ( r)
CGppcM  min (detR,)"™

P(2)
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From the Hadamard inequality and the arithmetic-geometric
inequality, we know that for any positive semidefinite ma-
trix Ry:

M-1
det R, < [] [Re)i < (Xll—trRr)M
i=0

The first inequality becomes equality if and only if R, is a
diagonal matrix. The second equality holds if and only if the
diagonal entries of R., are identical. Therefore we conclude
that CGpnew > CGppom, with equality if and only if Ry is
o21. That is, the DPCM and proposed coders have the same
coding gain if and only if the elements r;(n) and r;(n) are
uncorrelated. The additional gain of the proposed schemes
in Fig. 2 comes from two modifications. One is the bit allo-
cation which reduces the arithmetic mean, +-£r[R.], to the

geometric mean ]'L.Aio_l ([Re)is) Y™ One is the nonsingu-

lar transform A which reduces the product, [T [Relii,
to the determinant det R,

FIR Encoder and FIR Decoder: In the proposed coder, we
need to implement the inverse A ~!(z) at the decoder. The
inverse A ~!(z) is in general IIR. In some applications, FIR
systems might be preferred. Unlike scalar DPCM scheme
where either the encoder or decoder has to be IIR, the en-
coder and decoder of a vector DPCM scheme can both be
FIR. To achieve this, we can constrain I — P(z) in (2) to be
unimodular. One way to do this is to assume that

I - P(z) = Do(2)D1(2) ... Dn(2), (5)

where D(z) is the degree-one unimodular matrix given in
(1). This is in general a loss of generality as there are un-
factorizable unimodular systems. In the special case of one-
step prediction, P(2z) becomes an LUT and the assumption
of (5) is no loss of generality. To optimize P(z), the cas-
cade Dy(2)D;(2) ... Dn(2) should be designed such that
det[R,] is minimized. In the following, we will provide an
example for the comparison of the coding performance of
LOT, BOLT [6] and LUT.

C. Numerical Example

In this example, the vector x(n) is taken as the blocked ver-
sion of AR(1) process with correlation coefficients a. The
number of channels is M = 8. For 0.85 < a < 0.95, we
optimize the coding gain of (i) subband coding using LOTs
and BOLTs [6]; and (ii) unimodular coder using LUTs. All
three matrices are first-order with McMillan degree equal to
2. The results are plotted in Fig. 3. From the figure, we
see that the LUTs always outperform the BOLTs while the
BOLTs always outperform the LOTs. The system delays of
the LUTs, BOLTs and LOTs are respectively 7, 23 and 15.
We see that the LUTs have the highest coding gain and the
smallest system delay when the input is an AR(1) process.

The gain is substantial when the correlation coefficient « is
close to 1.

10

ol - - LT /)

Coding Gain

3 N R . N
0.85 0.87 0.89 0.91 0.93 0.95
o

Figure 3: Comparison of coding gain of 8-channel degree-
two LUT, BOLT and LOT for AR(1) input with correlation
a.
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