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APERTURE ADMITTANCE MATRIX BY FINITE ELEMENT METHOD
FOR SCATTERING FROM A CAVITY-BACKED APERTURE

Shyh-Kang Jeng
Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan, R. 0. C.

The generalized network formulation has been proposed for
aperture coupling problems for a long timel1]; however, to the au-
thor's knowledge, there is still no systematic and efficient way to nu-
merically solve the aperture admittance matrix (AAM) of a cavity.
This paper will apply the finite element method to compute the AAM.
Numerical results for the aperture field excited by a piane wave nor-
mally incident upon a 2D cavity-backed aperture on a ground plane
are also included. Afthough only 2D TE cases are considered here, the
approach can be easily generalized for more complicated problems.

Consider a 2D cavity excited by a surface magnetic current
(Fig. 1) No(x) along the y-direction. The magnetic field in the cavity

will posess only a y-component H(x, z), which satisfies the following
variational equation
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derived from a Helmhoitz equation and natural boundary conditions
for H. Note that all space coordinates have been multiplied by the
wavenumber k, and No has been normalized by dividing v, the intrin-

sic impedance of the free space. The relative permittivity and perme-
abilty are set to bel.

The problem domain, then, is subdivided into many elements.
For a rectangular cavity, we may expand the H field by linear bases.
For an arbitrary cavity, other basis functions like the higher order
triangular element [2] could be adopted.
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The basis functions for the magnetic current, then, are selected
as rectangular pulses to fullfill the requirement that the electric field
depends on the derivatives of H. The whole aperture is divided into N
segments, and let sampling point x_' be the center of the qth segment

q
(Fig. 2).

With such a discretization, and by Ritz procedure [2], the ap-
proximate solution of (1) may be solved through

(Kb, = RV ]
where hn‘s are the magnetic field at finite element node n, and Vq‘s

are the magnetic current at the qth sampling point. The indices m and
n run through all finite element nodes, while q varies simply from | to
N. This is indeed a very large sparse matrix equation, however, we
need only the magnetic field on the aperture, and thus most un-
knowns are unnecessary to solve. A numerical technigue called static
condensation [2), which is common in finite element method, can use
Gaussian elimination to reduce the matrix equation to one which in-
volves only the needed unknowns. By inverting the reduced matrix
equation, we get the magnetic field on the finite element nodes at the

aperture
- t
() =[Y, ]V,
wherep=1,2,.,N+l,andq=1,2, .. N

The AAM of the cavity, however, relates the magnetic field at
sampling point xr’ to the qth magnetic current segment, with q and r
running from 1 to N. A close look reveals that the magnetic field at the
center of each segment can be interpolated as the average of the mag-
netic field at both ends. Thus the desired AAM is
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The minus sign here, as in [1], is determined by power consideration.
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The procedure stated above seems to be tedious; however, with
the aid of a frontal solution program written by the author, the static
condensation and matrix inversion are automatically accomplished.
The algorithm of this program is modified and enhanced from the one
proposed by Iron [3].

The computed AAM, then, is added to the AAM of an aperture
on a ground plane, which may be evaluated simply by moment
method. The total admittance matrix now can be used to solve the
aperture field at the sample points.

In Fig. 3 we consider the aperture field for waves normally inci-
dent upon a rectangular cavity. In addition to those obtained by the
finite element method, fields computed by mode-matching are also
presented. 40 segments for the aperture field and 40 X 40 elements
for the interior field have been applied. It is seen that both results
match rather well. All computation was done on a VAX-11/780 mini-
computer. Several minutes (turn-around time) are required for each
finite elemet solution.

With little modification, the aperture field of a two-stage cavity
excited by a normally incident plane wave may be evaluated easily.
Fig. 4 represents a typical case.
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Fig. 1. Cavity excited by a surface
magnetic current.

Fig. 2. Finite element mesh and
sampling points on the
aperture of a 2D
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Fig. 3. Aperture fields by finite element method and by mode-

matching.
method.
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Fig. 4. Aperture fields for waves normally incident upon a two-stage

cavity.
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