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Abstract: The paper presents an interactive fuzzy 
satisfying method for solving a multi-objective 
VAR planning problem by assuming that the deci- 
sion maker (DM) has imprecise or fuzzy goals for 
each of the objective functions. Through the inter- 
action with the DM, the fuzzy goals of the DM 
are quantified by eliciting corresponding member- 
ship functions. If the DM specifies the reference 
membership values, the minimax problem is 
solved for generating a corresponding global non- 
inferior optimal solution for the DM’s reference 
membership values. Then, by considering the 
current values of the membership functions as well 
as the objectives, the DM acts on this solution by 
updating the reference membership values. The 
interactive procedure continues until the satisfying 
solution for the DM is obtained. The minimax 
problem can be easily handled by the simulated 
annealing (SA) approach which can find a global 
optimal solution even for the solution space which 
is nonconvex and the objective functions which 
are non-differentiable. Results of the application of 
the proposed method are presented. 

1 Introduction 

The purpose of optimal VAR planning lies in providing 
the system with enough VAR sources so that it is oper- 
ated in an economically feasible operating condition and 
the system security margin is enhanced, while load con- 
straints and operational constraints with respect to cred- 
ible contingencies are met. 

In the last decade, numerous methods have been 
developed for a more systematic approach to VAR plan- 
ning [l-121. A common characteristic of these methods is 
that the value of VAR sources has always been treated as 
continuously differentiable. Additionally, these methods 
have expressed the multi-objective VAR planning 
problem as a single objective optimisation. The most 
important feature is that the system security margin is 
not taken into consideration [l-8, 10-121. 

In this paper optimal VAR planning is formulated as a 
multi-objective optimisation problem. The objectives 
consist of three important factors: i.e. the economical 
operating condition of the system, system security 
margin, and the voltage deviation of the system. The 
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operating constraints, load constraints of the system and 
the new VAR source expansion constraints are also taken 
into consideration. 

In multi-objective optimisation problems (MOP), 
multiple objectives are usually noncommensurable and 
cannot be combined into a single objective. Moreover, 
the objectives usually conflict with each other in that any 
improvement of one objective can be reached only at  the 
loss of another. Consequently, it is necessary to present a 
decision maker (DM) for the MOP which implies a 
trade-off between objectives. The aim of the MOP lies in 
finding a compromise between satisfying the solution of 
DM. This means that the DM must select the com- 
promise or satisfying solution from among global non- 
inferior solutions. 

In this paper, assuming that the DM has imprecise or 
fuzzy goals for each of the objective functions in the 
MOP, an interactive fuzzy satisfying method is presented 
for solving the multi-objective VAR planning problems. 

This paper is summarised as follows: 
(i) A proposed method is presented for dealing with 

the imprecise nature of the DM’s judgement in multi- 
objective VAR planning in power systems. 

(ii) Through interaction with the DM, the proposed 
method is capable of finding a desirable compromise or 
satisfying solution for a general MOP. 

(iii) The simulated annealing (SA) approach is applied 
for solving the minimax problem and it can search 
towards a global optimal solution even for nonconvex 
objective space. 

(iv) A formulation of multi-objectives for VAR plan- 
ning represents a more realistic mathematical model for 
the actual behaviour of a power system; the proposed 
method can easily cope with the discrete and non- 
differentiable variables in MOP. The salient feature of the 
proposed method is that it is unnecessary to assume the 
convexity of the objective functions and the constraint 
set. 

2 Problem formulation 

A formulation for multi-objective VAR planning is pre- 
sented in this Section. This formulation treats the 
problem as a multi-objective mathematical programming 
problem, which is concerned with the attempt to improve 
each objective simultaneously. The equality and inequal- 
ity constraints of the system must, meanwhile, be satis- 
fied. 

Here the general multi-objective VAR planning 
problem is formulated as the following three objective 
optimisation problems. The objectives consist of three 
important terms: the economical operating condition of 
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the system, the system security margin and voltage devi- 
ation of system 

(1) min fib, U ,  w) = K ,  Pl,,(x, U ,  w)Di + C(w) 
U . W S X  

max fi(x, U ,  w )  = SM(x, U ,  w) 
" , W E X  

min f3(x,  U ,  w )  = max I b - Vjde4' I (3) 
Y . W E X  isJr.  

subject to 

where 

x = state variable vector 
U = control variable vector 
w = expansion variable vector of the new VAR 

x = a feasible solution region 

D = duration of the system operating time 

sources 

K ,  = converted real power to expense 

Ploss( . ) = system real power loss 
C(w) = total purchase cost of the new installed VAR 

sources 
= c (4 + sci 4ci + s,i 4,i) 

i E n L  

a, = a set of all candidate buses to install new 

J ,  = a set of all load buses 
di = installed cost at bus i 
sCi = unit costs of capacitor 
s , ~  = unit costs of reactor 
qci = added capacitive compensation at bus i ;  it is 

q,i = added inductive compensation at bus i ;  it is 

VAR sources 

an integer 

an integer 
SM = security margin of the system 

y q 1 =  MVA load of bus j at initial state 
S y  = MVA load of bus j at critical state 

b = voltage magnitude at bus i 
Vi""' = ideal specific voltage at bus i 
L( . ) = equal constraint set 
G( . ) = inequal constraint set 

Obadina et al. [13] determined the load limit, 
J L  S y ,  of a general multimachine power system. 

The equality constraints are the active and reactive 
power balance load flow equations which hold for every 
bus of the system. The inequality constraints consist of 
the available range of the active and reactive generated 
powers, the bound of the controlled transformer tap 
change, line flow limits, security bonds on voltage magni- 
tudes, and the limits on voltage angle differences between 
every pair of buses. 

The VAR planning problem consequently becomes a 
constrained, multi-objective and nondifferentiable optim- 
isation problem (MNOP). In this optimisation problem, 
it is attempted to minimise the operating cost and voltage 
deviation, and maximise the system security margin, 
simultaneously. To maximise the system security margin 
a system must be able to suffer more load demand 
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without voltage collapse. Put another way, a severe con- 
tingency (e.g. line outage etc.) must not cause a voltage 
collapse. 

Fundamental to the MNOP is the Pareto optimal 
concept, which is also known as a noninferior solution 
[14]. A noninferior solution of the MNOP is that any 
improvement of one objective can be reached only at the 
loss of another. Mathematically, formal definitions of 
local and global noninferior solutions to the MNOP are 
given in the following. 

Definition (local noninferior solution): z* is said to be a 
local noninferior solution of MO if there exists an E z 0 
such that in the neighbourhood N(z*, E )  of z* there exists 
no other feasible z (i.e. z E N(z*, E ) )  such thatf(z! C f (z*), 
meaning J(z) <fi(z*) for all i = 1, 2, . . ., rn with strict 
inequality for at least one i .  Thef(z*) is said to be a local 
noninferior solution of MO in objective space. 

Definition (global noninferior solution): z* is said to be a 
global noninferior solution of MO if there exists no other 
feasible z (i.e., z E x )  such that f(z) <f(z*), meaning 
J(z) <fi(z*) for all i = 1, 2, . . . , rn with strict inequality for 
at least one i .  Thef(z*) is said to be a global noninferior 
solution of MO in objective space. 

Usually, the global noninferior solutions consist of an 
infinite number of points, and the DM must be presented 
for some kind of subjective judgement. The DM must 
select a compromise or satisfying solution from among 
the global noninferior solutions. 

In this paper, assuming that the DM has imprecise or 
fuzzy goals for each of the objective functions in the 
MNOP, we present an interactive fuzzy satisfying 
method based on SA for solving a general multi-objective 
VAR planning problem. It is described in the following 
Section. 

3 Interactive fuzzy satisfying decision making 

Assuming that the DM has imprecise or fuzzy goals for 
each of the objectives in the MNOP, a fuzzy goal 
expressed by the DM can be quantified by drawing out a 
corresponding membership function. To elicit a member- 
ship function pli(z) from the DM for each objective func- 
tion Az), i = 1, 2, . . . , rn, we first estimate (or calculate) 
the individual minimumf;'" and max imumfy  of each 
objective function fi(z) under given constraints by the 
experiences of the DM. By taking account of the estim- 
ated f? and fy"", the DM must select the subjective 
membership function p,,(z), which is a strictly 
monotonically decreasing function with respect to A(z). 
Here, in a minimisation problem, it is assumed that 
p,i(z) = 0 or +O, ifJ{z) 2fy and pf,(z) = 1 or -+l, if 
f{z) <fy, w h e r e f y  andf;'" are an unacceptable level 
and the desirable level for fi(z), respectively. In contrast 
with the minimisation problem, in a maximisation 
problem, it is assumed that p,,(z) = 0 or +O, iff,(z) Cf;'" 
and p,,(z) = 1 or + 1, iff;(z) >fy. 

Having determining the membership functions for 
each of the objective functions, in order to generate a 
satisfying solution, the DM is asked to speclfy the refer- 
ence (desirable) levels of achievement of the membership 
functions, called reference membership values [lS]. For 
the DM's reference membership values p l j ,  i = 1, 2, ..., 
m, the corresponding global optimal solution, which is in 
a sense close to the DM's requirement, can be obtained 
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by solving the following minimax problem [16-181: 

min { max (iili - P,,M} 
Z E X  i = l . 2 .  .... m 

It should be emphasised here that it is possible for DM 
to improve the solution by updating the reference mem- 
bership values p,, when the DM is not satisfied with the 
current global non-inferior solution. In the following 
theorem, we prove a global optimal solution of the 
minimax problem (expr. 6) and also a global optimal 
solution of the MNOP. 

Step 2*: Draw out a membership function p,l(z) from 

Five types of membership functions are selected (see 

a linear membership function 
b convex exponential membership function 
c concave exponential membership function 
d hyperbolic membership function 
e piecewise-linear membership function. 

the DM for each of the objective functions. 

Fig. 1): 

Theorem I :  If 2 is not a global noninferior solution to the 
MNOP then 2 is not a global optimal solution to the 
minimax problem (expr. 6) for some ji, = (jir,, ji,,, . . ., 
erd. 

a b C 

Proof: Assume that d is not a global noninferior solution 
to the MNOP, then there exists some z E x such that 

f(z) <f(z3 
PA4 > P A 3  

ji, - P,(Z) < P, - PA23 

max C& - P/,(Z)I < max CP/, - P / , m  
i I 

Then it holds that 

min max [Pfc - P,,MI c: max [Pfz - ~,,(231 (7) 
Z E X  i 

Thus, the theorem is proved. 

Theorem 2: If z* is a global noninferior solution to the 
MNOP then z* is a global optimal solution to the 
minimax problem (expr. 6) for some pJ = (ifl, ,iiJz, . . . , 
Pf 3. 

Proof: Assume that z* is a global noninferior solution to 
the MNOP, then there exists all z E x such that 

f(z*) B f ( 4  

P/ - P,(Z*) 2 PJ - P/(4 

max [& - P,XZ*)l a max Ciili - P,,(Z)I (8) 

Thus, the theorem is proved. 
Theorems 1 and 2 guarantee the fact that z* is a global 

optimal solution to the minimax problem (expr. 6) and 
also a global noninferior solution to the MNOP. 

In the following, we construct the interactive fuzzy 
satisfying method to derive the satisfying solution for the 
DM from the noninferior solution set in the MNOP. The 
resulting solution would be very much a compromise 
solution for the DM. The steps of the proposed inter- 
active algorithm can be stated as follows and the steps 
marked with an asterisk involve interaction with the DM. 

Step 0: Input the problem data and set the interactive 

Step I * :  Estimate (or calculate) t h e f y  a n d f y ,  for 
index v = 0. 

i = 1,2,. . . , rn by the experiences of the DM. 
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d e 

Fig. 1 
a Linear membership function 
b Piecewise-Linear membership function 
c Convex exponential membership function 
d Concave exponential membership function 
e Hyperbalic membership function 

Fiue types of menbewhip functions 

Step 3 :  Set the initial reference membership values 
$) = 1, i = 1,2, ..., rn. 

Step 4 :  Solve the minimax problem using the simu- 
lated annealing technique to obtain the corresponding 
global optimal solution with respect to 

(9) I min { max (Fy! - pJ/i(z)) 

Step 5* :  Observe &)(z*) andf?)(z*), i = 1, 2, . . . , rn. 
If $/(z*) andfy’(z*), i = 1, 2, . . . , rn are satisfactory, go 

to next step; otherwise, set v = U + 1 and select new 
reference membership values, p z ) ,  i = 1, 2, . . ., rn. Go to 
Step 4. 

Step 6: Output the best compromise solution, z(”), 
f(”)(z*) and p,i(z*) for the DM. 

In Step 1, the DM must estimate the fy and f yx for 
each of the objective functions by the DM’s experiences. 
Then a membership function p,i(z) must be elicited by the 
DM for each of the objective functions. Usually, four 
types of membership functions can be chosen. A global 
noninferior solution which is close to the DM’s reference 
membership values will be obtained in Step 4. In Step 5, 
the DM acts on this solution by either updating the refer- 
ence membership values or not. In Step 4 and Step 5,  
continue until the best compromise, the global nonin- 
ferior solution is found. 

It may be worthwhile to note here that the proposed 
interactive algorithm offers several advantages. 

(a) The DM does not give an accurate goal for each of 
the objectives in MNOP. 

(b) The DM can change the reference membership 
values at each iteration, thus achieving a certain degree of 
flexibility in solving the decision-making problem. 

r e x  i = l . 2 .  ..., m 
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(c) By communicating with the DM, the solution pro- 
duced by the algorithm should improve and possibly 
converge to the most satisfactory solution. 

4 Simulated annealing 

In this Section, we briefly describe the algorithm of the 
simulated annealing approach as follows (see Reference 
21 for more details). A parameter T ,  temperature, is 
defined in this algorithm. 

4.1 Algorithm: Simulated annealing 

(solution). 

current point from the solution space. 

S t e p  4 :  If AC < 0 then accept the new solution point and 
go to Step 6. 

S t e p  5 :  A random number r, uniformly distributed in 
the interval [0, I), is chosen. If exp ( -AC/T)  > r then 
accept the new point; otherwise, the new point is dis- 
carded. 

S t e p  I :  Randomly choose an initial condition 

S t e p  2: Generate a feasible point neighbour of the 

S t e p  3: Evaluate the increase in the cost AC. 

S t e p  6 :  If the moves are not finished, go to Step 2. 
S t e p  7: Cooling down temperature, T = /I x T .  
S t e p  8 :  If T > Tmin, go to Step 2. 
S t e p  9: Output global optimal solution. 

The advantages of the SA approach being applied to 
optimal VAR source planning lie in that it is both 
capable of handling a mixed-integer nonlinear pro- 
gramming problem and also can search toward a (near) 
global optimal solution [20-241. 

5 Decision strategy in VAR planning problem 

In this Section, we present some decision strategy for the 
decision maker to design the satisfactory membership 
functions for each objectives and to set or change the 
reference membership values in the VAR planning 
problem. At the same time, we propose a weak bus- 
oriented and a heavy load-oriented criterion to choose 
the buses for installing new VAR sources. 

5.1 Design membership function 
The power of any fuzzy-set-based method depends very 
much on the design of the membership functions. Hence, 
it is crucial to the design of the membership functions for 
each objective. Usually, a membership function for each 
of the objective functions is drawn out by the experiences 
and intuitive knowledge of the DM or planner. In the 
VAR planning problem, three important objectives are 
taken into consideration. To design a good membership 
function, the following suggestions are considered. 

5.1 .I Cost function: This objective is to minimise the 
total cost of the system. A linear membership function 
(see Fig. la) is a good choice for this objective because it 
has no strict limit. In the linear membership function, an 
unacceptable level, fy, set to be the initial operating 
cost of the system, and a desirable level,fp, set to be the 
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reduced percentage (e.g. 35%) of fy are the good 
estimations. 

5.1.2 System security margin : Maximising the system 
security margin means that a system can suffer more load 
demand without voltage collapse. Another meaning is 
that a severe contingency (e.g. line outage) will not cause 
a voltage collapse. A convex exponential membership 
function (see Fig. IC) is a good choice for a system 
security margin objective because this objective will 
damage the system security. For the convex exponential 
membership function in the maximisation problem, the 
membership value is increased slowly as the objective of 
the system security margin increases to near an unaccept- 
able level, and the membership value is increased quickly 
as the objective increases to near a desirable level. This 
result allows the system a certain safety security margin 
in after-VAR planning. For the above reason, the hyper- 
bolic membership function will also be a good choice for 
this objective. 

According to the definition of the SM, a stable oper- 
ating condition of the system, the SM must take on 
values between 0 and 1. It, is obvious that, in order to set 
an unacceptable level, fy = 0 is suitable, and to set a 
desirable level, fyx ,  is suitable, estimated by the DM or 
planner (e.g.fyx = 0.4). 

5.1.3 Voltage magnitude deviation: To minimise this 
objective means trying to push the values of the voltage 
toward a hard limit. In general, an ideal range of load 
bus voltage is between 0.95 and 1.05 p.u. For this reason, 
a linear or a piecewise-linear membership function will be 
a good selection. In VAR planning problems, the authors 
suggest that the choice of a piecewise-linear membership 
function (see Fig. lb)  is more suitable than a linear func- 
tion. An unacceptable level, fy, set close to 0.05 PA., 
and a desirable level,f;'", set close to zero, are the best 
choices. In the piecewise-linear membership function for 
the voltage deviation objective, the absolute value of the 
slope of the segments of the piecewise-linear curve near 
the unacceptable level is designed to be smaller, and the 
absolute value of the slope of the segments near the desir- 
able level is chosen to be larger. 

5.2 Criterion of set reference membership value 
The interactive fuzzy satisfying method can solve a satis- 
factory or compromise global noninferior solution of the 
DM who sets or changes the reference membership 
values, j , i .  In the interactive procedure, the initial refer- 
ence values are all set to 1, then by solving the minimax 
problem (expr. 6) the corresponding global optimal solu- 
tion can be obtained. Then by considering the current 
values of the membership functions as well as the object- 
ives, the DM sets a larger value of & in order to 
improve the ith objective, J;(z), and sets smaller values to 
the other reference membership values. The criterion is 
the improvement of ith objective with the set of larger 
reference membership values of p J i .  

5.3 Criterion of selection candidate buses 
In the past, the determination of the candidate buses for 
installing new VAR sources was based on the experiences 
of the planner or the environmental limit. In this paper, 
we present two criteria, a weak bus-oriented and a heavy 
load bus-oriented, in order to determine the candidate 
buses. 
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5.3.1 Weak bus-oriented criterion: A system may be 
voltage unstable if it includes at least one voltage 
unstable bus [25], and appropriate VAR planning can 
enhance the system security margin [9]. For the above 
reason, the weak bus is an appropriate bus for installing 
new VAR sources in the system. Using this criterion, we 
select the weak buses as the candidate buses. 

5.3.2 Heavy load bus-oriented criterion: This criterion 
is based on the concept of intuition. A heavy load bus is 
usually a very voltage-sensitive bus and installing new 
VAR sources is necessary. The heavy load buses are then 
the primary choices as candidate buses. 

6 Numerical examples 

Consider the application of the proposed method to the 
AEP 14-bus system [ll]. The heavy load conditions of 
the system are shown in Tables 1 and 2. The constant 

Table 1 : Estimate of heavy load operating condition (AEP 
14 bus) 

Bus Bus Voltage Bus Power' Statict 
mag. ang. shunt 

1 1.06 0.0 
2 1.045 0.0 
3 1.01 0.0 
4 1.0 0.0 
5 1.0 0.0 
6 1.01 0.0 
7 1.0 0.0 
8 1.01 0.0 
9 1.0 0.0 

10 1.0 0.0 
1 1  1.0 0.0 
12 1.0 0.0 
13 1.0 0.0 
14 1.0 0.0 

MW MVAR 

40.0 0.0 
-94.2 -19.0 
-57.8 -23.9 
-47.6 -1.6 
0.0 0.0 
0.0 0.0 
0.0 0.0 

-29.5 -16.6 0.19 
-29.5 -5.8 
-13.5 -5.8 
-36.1 -11.6 
-23.5 -15.8 
-14.9 -10.0 

- -  

* for load 
t 1 0 0  MVAR base 

Table 2: Regulated bus data 

Bus MVAR Limits MW Limits 
min. max. min. max. 

~ 

2 -6.0 24.0 30.0 70.0 
3 -6.0 24.0 0.0 0.0 
6 -6.0 24.0 0.0 0.0 
8 -6.0 24.0 0.0 0.0 

power model is applied to all load demands. To deter- 
mine the maximum MVA load demand, x.,,, SY""', the 
components of the distribution vector p are chosen to be 
p .  I ,  = p t i a l  /z.E,L Sfi""", and the participation factors of 
the generating unit are chosen as in Reference 11. 

In order to determine the candidate buses for install- 
ing new VAR sources, the identifying weak bus method, 
proposed by Obadina et al. [26] is applied to identify the 
system weak buses. In the study, buses 9, 11, 12, 13 and 
14 are the weak buses, bus 4 is a heavy load bus; and 
they are all selected as candidate buses for installing new 
VAR sources (i.e. QL = {4,9, 11, 12, 13, 14)). One bank of 
the VAR source is set at 3 MVAR, the specific voltage 
Vi""' of all load buses is set at 1 P.u., and the following 
parameters are used: power loss cost weight (K, = N T  
%2.31/kW h, Di = lqy)  x 365 x 0.5 x 8(h)), VAR source 
cost weight (sei = N T  $11 385/bank, s , ~  = N T  $16400/ 
bank and di = N T  $420000/location), and q y  and q y  
are all limited to 90 MVAR (30 banks). The K ,  param- 
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eter is the average cost of real power in Taiwan at  this 
time. The lifetime of the VAR compensator is determined 
as ten years. The duration of the summer peak load is 
about 6 monthslyear and 8 hourslday in Taiwan, and the 
other cost parameters are all estimated in real life in 
Taiwan. 

In the following, some of the interaction processes for 
solving the multi-objective VAR planning problems 
under SUN SPARC station 2 in the computer centre of 
National Taiwan University are explained with the aid of 
some of the computer outputs. 

Some of the membership functions for each of the 
objectives which are derived by interaction with the DM 
are shown below. 

An interactive fuzzy satisfying method for solving the multi-objective 
VAR planning problems 

Input the name of planning system ? = AEP-14bus 

Initial state of the system 

(1)  f 1  = 1241.10 system cost (million NTS) 
(2) f2 = 0.09461 system security margin 
(3) f 3  = 0.19252 voltage deviation bu.) 

Draw out a corresponding membership function for each of the objec- 
tive functions 

L = linear membership function 
V = convex exponential membership function 
C = concave exponential membership function 
H = hyperbolic membership function 
P = piecewise-linear membership function 

M( f) = membership function 
f-0 = unacceptable level 
f-1 = desirable level 

(1) Input the membership function type offl, M l ( f )  = '? L 

Input two points (f-0, f-1) such that 
Ml(f-0) = 0.0 ,f-0 = '! 1241.1 
Ml(f-1) = 1.0 ,f-1 = ? 1241.1 t 0.65 

(2) Input the membership function type off2, Mqf )  = ? V 

Input three points (f-0, f-0.5, f-1) such that 
MUf-0) = 0.0 ,f-0 = ? 0.0 
M2(f-O.S) = 0.5 ,f-O.5 = ? 0.25 
M2(f-l) = 1.0 ,f-1 = ? 0.4 

(3) Input the membership function type off3, M 3 ( f )  = ? P 

Input four points such that 
M3(f-0) = 0.0 ,f-0 = ? 0.06 
M3(f-l) = 1.0 ,f-1 = ? 0.01 
M3(f-a) = ? 0.5 ,f-a = ? 0.04 
M3(f_b) = ? 0.1 , f_b = ? 0.05 

Would you want to change the membership function type? 
=NO 

The objective of the system cost is elicited as a linear 
membership function. An unacceptable level, f?, is set 
as initial cost, and a desirable level,f;", is determined as 
f';"" x 0.65. This means that the DMs goal is a reduction 
of 35%. An exponential membership function is 
expressed for the objective of the system security margin. 
An unacceptable level,f';'", is set at zero, and a desirable 
level, f';"", is chosen as 0.4 which is the system security 
margin of 40%. The membership function value 0.5 is set 
as the system with 25% security margin. This design is 
strictly for system security in heavy loading conditions. 
The voltage deviation objective is drawn out as a 
piecewise-linear membership function. 

An interactive fuzzy satisfying decision-making process 
for this example is illustrated below. 
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WAITING.. . . , . 
Initial dobal noninferior solution 

RMV I membership I obiective 

RMl = 1.0 Ml(f) = 0.60613 f l  = 977.791 (million NT$) 
RM2 = 1.0 MYf) = 0.69177 J2 = 0.31819 (security marpin) 
RM3 = 1.0 M3(f) = 0.64577 J3 = 0.03125 (P.u.) 

***(CPU time = 943 s ) * * t  

Are you satisfied with the current noninferior solution? 
= N O  
Input your reference membership values (RMV) for each of the mem- 
bership function: 
RMI = ? 0.660 RM2= ? 0.710 RM3 = ? 0.700 

WAITING ......... 
Global noninferior solution (interaction 1) 

RMV I membership I objective 

RM1 = 0.660 Ml(f) = 0.60194 f l  = 979.610 (million NT$) 
RM2 = 0.710 M2(f) = 0.67570 f 2  = 0.31335 (security margin) 
RM3 = 0.700 M3( f )  = 0.67385 f3 = 0.02957 (PA.) 

***(CPU time = 324s)tt* 

Are you satisfied with the current noninferior solution? 

Input your reference membership values (RMV) for each of the mem- 
bership function: 

= N O  

RMI = ? 0.660 RM2= ? 0.700 RM3 = ?  0.710 

WAITING 

Global noninferior solution (interaction 2) 

RMV I membership I obiective 

RMl = 0.660 Ml(f) = 0.60393 f l  = 978.745 (million NT%) 
RM2 = 0.700 M 2 ( f )  = 0.67676 f2  = 0.31367 (security margin) 
RM3 = 0.710 M3(f) = 0.67678 f3  = 0.02939 (P.u.) 

***(CPU time = 298 s)*** 

Are you satisfied with the current noninferior solution? 
=YES 

The followine values are vour satisfvine solution: 

membership obiective function 
~ 

Ml(f) = 0.60393 f l  = 978.745 (million NTS) 
M 2 ( f )  = 0.67676 f2  = 0.31367 (security margin) 
M3(f) = 0.67678 f3 = 0.02939 (P.u.) 

The loss reduce rate = 21.38 c/c 
The cost reduce rate = 21.14 c/c 

For the initial reference membership values, ,ii,i =, 1, 
the minimax problem is solved to obtain a global nonin- 
ferior solution. The DM then considers the current values 
of the membership functions as well as the objective func- 
tions in order to choose to update the reference member- 
ship values or not. If the DM is not satisfied with the 
current solution, the DM updates the reference member- 
ship values to improve some objectives at the expense of 
other objectives. In this study, the DM give a larger value 
to the reference membership value ,!if, = 0.71 in order to 
improve the voltage performance at the expense of the 
cost objective, which is given a smaller value of pII = 
0.66, causing little expense to the system security margin 
objective. The same procedure continues according to 
this scheme until the DM is satisfied with the current 
optimal solution. At the second interaction, the best com- 
promise and satisfying solution of the DM is obtained in 
this example. The results of installing new VAR sources 
for each interaction are given in Table 3. This study 
required 1565 s total computer time on a SUN SPARC 
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station 2 computer to obtain the optimal solution. 
Although the solution algorithm wastes time in obtaining 
the optimal solution, it is unimportant when applied to 

Table 3: Results of the installina new VAR sources (banks) 

BUS no 4 9 11 12 13 14 

Initial @$:’ = 1 ) 2 6 4  5 4 9 0 
Interaction 1 @$:I = 0.66, j$i’ = 0.71, j!:) = 0.70) 26 3 6 4 7 1 
Interaction 2 @El = 0.66, j$: = 0.70. j$t) = 0.71 ) 26 2 6 3 7 3 

One bank = 3 MVAR 

planning problems, because obtaining the optimal solu- 
tion is more attractive than minimising the computation 
time involved in planning problems. Meanwhile, the 
authors believe that a faster computer will be obtainable 
in the future and computation time will thus not be a 
problem. 

7 Conclusion 

In this paper, an interactive fuzzy satisfying method was 
proposed, to deal with the imprecise or fuzzy goals of the 
DM in multi-objective VAR planning problems, con- 
sidering three objectives: an economical operating condi- 
tion, the system security margin, and voltage deviation. 
These are all mostly concerned with optimal VAR plan- 
ning problems. The salient features of the proposed 
method are: (a) it allows the DMs to learn from the 
available information or simply ‘change their mind‘, (b) it 
guarantees that a global noninferior solution, which cor- 
responds to the reference membership values derived by 
the DM, will be generated at each iteration, and (c) by 
updating the DM’s reference membership values, the pro- 
posed method demonstrates that the best compromise 
solution will be obtained by the interactive scheme. 

In fact, the proposed method will, hopefully, become 
an efficient tool for man-machine interactive fuzzy deci- 
sion making under multiple conflict objectives. 
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