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Abstract 

New techniques for pole placement 
problem of single input singular systems are 
proposed in this paper. These techniques provide 
different ways to approach the generalized 
Ackermann’s formula with better numerical 
properties and flexibility. Since the solution of 
the pole placement problem depend on the 
singularity of the matrix E. Two sets of 
recursive algorithms are presented separately 
corresponding to the matrix E i s  singular and 
nonsingular respectively. These algorithms are 
verified and implemented in MATLAB 
program. 

1. Preliminaries 
Consider the single input singular 

linear system 

where and 2 ER”“”, h E R n X ’ ,  Eis possibly 
singular matrix, and u(t) E R  and x ( t )  E R ”  are 
input and state vectors respectively. The 
problem of pole placement in singular systems is 
to find the state feedback control law 
u(t) = -h( l )  +r(l) ,  where k E X”” and r ( t )  E R 
such that the closed-loop system has prescribed 
finite and infinite eigenvalues. To develop the 
generalized Ackerinann’s formula, the restricted 
equivalent transformation is performed as 
follows 

EX(t) = &(t) +Fu(l)  (1) 

E = (/LE - Z)-’ E (24 

A = ( / L E  - z)-’ z (2b) 
b = ( p E - X ) % .  (2c) 

Definition 1 

singular system of system (2) 

if system (3) is obtained from the (2a), (2b) and 

0 

The generalized system (1) is controllable 

rank[sE -. 2 6-1 = n for all s (4) 
0 

For the standard singular system satisfying 
the controllable condition of Lenima 1 is 
referred as standard controllable singular system. 
In Lemma 2, we define a indeterminate 
parameter p and explore the determinant 
relationship of the open-loop system and closed- 
loop system in terms olf p. 
Lemma 2 

The system (3) is called the standard 

Ex(t)  = A x @ )  + bu(t) (3) 

(2c). 

Lemma 1 [SI 

if and only if 

Forthecaseof @-A=Zand s # p 7  
1 

det(sE - A )  = (-)” det(pl - E )  
P 

( 5 )  

det[sE-(A-bK)]=(-)ndet[p(Z+bk)-E] (6)  

1 
or s = p - -  where p = -  

P - s  P 

1 

P 
1 

0 
For a standard controlllable generalized system, 
the following two theorems are derived. 
Theorem 1 (Generaliiied Ackermann’s 

forimula$[ 11 
Let E i ( t )  = A x ( t )  + bu(t) be a standard 

controllable generakzed system, satisfying. 
Assume the state kedback control law is 
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u(t)  = -kx(t) + r ( t )  and the desired closed-loop 
characteristics polynomial is 

A,,(P> = (P)" d e t W  - ( A  4 0 1  I / = 2 , , - , p 1  

kE = e; ,C- 'Ad(E) (7) 

.\ I / - - -  l = O  
P 

, where d, = del(-E) . lhen  

where = [0 o ..- o 13 

C = [ b  Eb ... E"-'b] 

Ad ( E )  = E dn-, E' 
i=O 

CT 
Theorem 2 [l] 

Let E ( t )  = A x ( f )  + bu(t) , with E singular, 
be a standard controllable generalized system, 
satisfying pE - A = I .  Assume the desired 
closed-loop characteristic polynomial is 

Ad ( P )  = (P)" det(sE - ( A  - bk)]( I = ?d,,pi 

, Then 

. s = p -  , = I  
P 

where 

Remark : 

n-l 

i=O 
det(p1- E )  = Ea,-,p' + p" 

0 
The Leverrier's algorithm [6]  can be 
used to compute the coefficients of 
A,,(p) . To compute the coefficients 
of A,,(p) , the following procedure 
can be proceeded : 

(1) Convert the desired eigenvalues sld to p,d 
1 via formulap, = ~ 

P - Sld 

(2) Compute A d  0 = 0, - P I ~  10-I - PZ(/ ). + SO, - Pnd 1 
(3) Compute the scale factor c=c&(-EJ/[(-l)"~pd], 

and adjust the A(, ( y )  = c A,, (17) to meet the 
condition det(-E) = d,, . 

Step (3) can be skipped when theorem 2 is 

I 

applied. Since the condition det(-E) = d,  is 
reached as matrix E is singular matrix. 

2. Main Results 
Prom prcvious scction, it is clcar that thc 

solution of feedback gain k is depend on the 
singularity of matrix E. In subsection, 
algorithms are proposed separate respect to the 
singularity of matrix E. 

There are two major problem been 
criticized about the Ackermann's formula (1) 
the inverse of controllability matrix C might 
cause numerical error due to the ill-conditioning 
of C (2) the numerical error computing feedback 
gain due to the multiple multiplication of matrix 
E .  For the first problem, technique to solve this 
problem i s  recommended by [2] which is listed 
as follows : 
Algorithm 1 : (Computation of CO = eiC-') 

rl = b  
for i = 1 : n 

n, = norm(r, ) 
r, = r, I n, 
r,,, = Er, 

end 

e, = e, / n n ,  

X =  [rl r2 r,] 
CO= ( ~ - ~ ' e , ) ' '  

n 

,=I 

In algorithm 1, the controllability matrix is 
normalized and the scaling adjustment is made 
as the computation of Co. Algorithm 1 has been 
verified and claimed by [2] that have the 
advantage of numerical robustness. 

2.1 Matrix E is nonsingular 

Let A,,(p) = ?d,,-,p' be the closed-loop 

polynomial in terms of p with d,, = det(-E). 
There are two ways to approach the computation 
of C0Ad ( E ) .  First, we can factorize A,[ ( p )  in 
terms of closed-loop eigenvalues pd,l as 
follows : 

1=0 
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A d ( p )  = do$ +dlpn-l+*.+d,-lp+d,,  
= do(P- P, , l ) (P-P, , , ) . . . (P-I'd,)  

= dOii(P-Pd.;) i=l  

rt 

Since d,  = (-l)"d, n pd,r = det(-E) , we have 

do = det(-E) / [(-1)" n p d , ; ] .  Hence, 

i=l 

II 

;=I  

CO& ( E )  = doCO ir ( E  - P d , ,  0 
, = I  

where do = det(-E) / [(-1)" fi ptl,r ] 

Next, we will develop a recursive 
procedure to compute CoAd ( E )  in terms of the 

;=I 

coefficients of closed-loop systems di . 
CO Ad ( E )  = doC0E" + dl CoE"-I +- - -tdn-, CO E + dnCo 

= doln + dIl,,-l +***+dn-lll +d,,Zo 

= idn-rll  
r=O 

where Z, = Zr-l E and Zo = CO 
From remark 2 and above derivation, k can be 
computed as 

k=t;,C"4/(@E' =[%1,]P =4[~fl(E-p(/,I)]El (9) 
ra -1 

Algorithm 2 and 3 are provided to implement 
the approaching methods discussed above. 
Algorithm 2 : (Use desired closed-loop 

Compute CO as Algorithm 1 
eigenvalues) 

fo = (det(-E) / [(-1)" f ip r  l>C0 

J;  = f , ( E - P d , r o  

r = l  

for i = l : n - 1  

end 
k = J,E-' 

Algorithm 3 : (Use the coefficients of the 
closed-loop system) 

Compute CO as Algorithm 1 

k = dnlo 
for i = l : n  

lo =CO 

1, = L I E  

It = k + dnJi 
end 
k = kE-' 

2.2 Matrix E is singular 
From theorem 2, the solution of feedback 

gain k need no( only the information of closed- 
loop system but also open-loop system. From 
last section, we see that the information of 
closed-loop system can be expressed in either 
eigenvalues cif closed-loop systems or 
coefficients of closed-loop systems. Therefore, 
as matrix E is singular, there are four possible 
combination algorithms. 
From eq. (8), we can separate the solution k into 
two parts as follows : 
k = q[(dn-l -awl)1+(4,-2 -awJ3-  *-+(do -1)E'-'I 

=q(& I + ~ J c +  * +,E-') - ~ ( % 1  I +qn E+ +IT' ) 
= CO& ( E )  - CO&, ( E )  

Coxc (E) .  represents the information of closed- 
loop systems while Coxf) ( E )  represents the 
information of open-loop systems. 
Use the same technique as (9) in previous 
section, we have 

n-l 

r=O r = l  
n-1 

r+O 1 x 1  

CO&(E) = ~ i d ~ ~ l - l l r  = CO r I (E  -PJ) 

c,x,,(E) = ~ a n . . r - l ~ l  =- c,%'(E - p ~ )  

where 1, = lr.$ 
p',,; : desired eigenvalues 

pr : eigenvalues of open-loop system 
U,, d, : cciefficients of open-loop systems 

and closed-loop systems respectively. 
Lemma 3 141 

The closed-loop system has at most 
rank E finite poles fca any feedback control. 

0 
From lemma 3, there are only rank E 
eigenvalues can be atsigned. Hence, there are 
n -.rank E closed-loop poles 
( P ~ , ~ , ,  i = rankE + l , - - - , i t )  being assigned as 0. 

Four algor.ithms corresponding to different 
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combination of the information of open-loop 
system and closed-loop system are given as 
following. 
Algorithm 4 : (Use the coefficients of the 

closed-loop system and open-loop system) 
Compute CO as Algorithm 1 
lo = CO 
k = ( 4 - 1  - - % I ) ~ O  

1, = l1J 
k = k + (dn+ - q,-J 

for i = l : n - 1  

end 
Algorithm 5 : (Use eigenvalues of closed-loop 

system and open-loop system) 
Compute CO as Algorithm 1 

for i = l : n - 1  
Io = f, = CO 

4 = 11-1  ( E  - Pd,lI)  

f ;  = “6-1 ( E  - PI 1) 
end 
k = f n - l  - / , - I  

Algorithm 6 : (Use the coefficients of closed- 
loop system and eigenvalues of 
open-loop system) 

Compute CO as Algorithm 1 
lo = f o  =CO 
k = dnJo 

2, = lf-l E 
f ,  = f ; - , t E - P , I )  

k = k + dn-.,-lll 

for i = 1 : n-1 

end 
k = k - f n - l  

Algorithm 7 : (Use the eigenvalues of closed- 
loop system and coefficients of 
open-loop system) 

Compute CO as Algorithm 1 
10 = . f o  = CO 
k = an-lEo 
for i = l : n - 1  

I, = 11-1 E 
f, = JL ( E  - Pl.dO 

k = k + an-i-lZi 
end 
k = f n - l  - k 

3. Conclusio~i 
Algorithms to solve the pole placement 

problem of the singular systems utilizing the 
generalized Ackermann’s formula are proposed. 
The weakness of numerical properties of 
generalized Ackermann’s formula are improved 
by these algorithms. Since the open-loop 
characteristic polynomial can be obtained by the 
Leverrier’s algorithm and the desired closed- 
loop poles are more straightforward needed, 
algorithm 7 is better than the others (algorithm 4 
to 6).  The algorithm 4 has the least computation 
flops in the four algorithms of section 2.2. All of 
the proposed algorithms in this paper are 
implemented and verified by MATLAB 
software package. 
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