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Abstract: An approach based on artificial neural 
networks (ANNs) is proposed for the scheduling 
of hydroelectric genlxations. The purpose of 
hydroelectric generation scheduling is to figure 
out the optimal amounts of generated powers for 
the hydro units in t:he system for the next N 
( N  = 24 in the work) hours in the future. Input 
data include system hourly loads and the natural 
inflow of each reservoir. In the proposed ANN 
approach, a clustering ANN is first developed to 
identify those days with similar hourly load pat- 
terns and natural inflows. These days with similar 
load patterns and inflows are said to be of the 
same group. A total of four groups are used in the 
work. Then a multilayer feedforward ANN is 
developed for each grsoup to reach a preliminary 
generation schedule for the hydro units. Since 
some practical constraints may be violated in the 
preliminary schedule, ii heuristic rule based search 
algorithm is developed to reach a feasible sub- 
optimal schedule which satisfies all practical con- 
straints. The effectiveness of th proposed approach 
is demonstrated by short-term hydro scheduling 
of Taiwan power system which consists of 10 
hydro plants. It is concluded that the proposed 
approach is very effective in reaching proper 
hydro generation schedules. Moreover, the pro- 
posed approach is much faster than conventional 
dynamic programming approach. 

List of symbols 

C 

L, 
C O S T , ( . )  =generation cost function at hour t 

approxiinated by second-order poly- 
nomial 

GTHERMAL,  = total geineration from thermal units at 
hour t 

Yr =water volume of reservoir i at the 
beginning of hour t 

Xi, = volume of water released from 
reservoir i for generation during hour t 

Sir 

= system generation cost over the study 

= system l'oad at hour t 
period 

= spillage from reservoir i during hour t 
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P,( . )  = water-to-energy conversion function of the power 

Ri, = volume of natural inflow to reservoir i during 

N, = set of the immediate upstream reservoirs of 

I 
U 
Z 

plant associated with reservoir i 

hour t 

reservoir i 
= number of reservoirs ( I  = 10 in the present work) 
= input vector of artificial neural network 
= output vector of artificial neural network 

1 Introduction 

The purpose of hydroelectric generation scheduling is to 
find the optimal amounts of generated powers for the 
hydro units in the study system for the next N ( N  = 24 
in the present work) hours in the future. Usually, the 
objective function to be minimised in a hydro scheduling 
problem is the total fuel cost of thermal units and the 
practical constraints to be satisfied include power 
generation-load balance equations and water balance 
equations. Thus, the hydro scheduling problem is a 
typical constrained optimisation problem. Numerous 
approaches [I-61 have been reported in the literature to 
solve this problem. Quite promising results in terms of 
fuel cost savings have been reached in most works. 
However, a major disadvantage associated with these 
optimisation algorithm based approaches is that it 
usually takes a long time for these algorithms to get the 
desired solution. 

In the present work, an approach based on artificial 
neural networks (ANNs) is proposed to reach the desired 
hydro generation schedules in an efficient manner. Artifi- 
cial neural networks [S-IO] have been given much atten- 
tion by power engineers in the past few years. Many 
interesting applications of neural nets in the power field 
have been reported, such as load forecasting [ I  I], power 
system stabiliser design [12], transient stability analysis 
[ 131, capactor control [ 141, and torsional oscillation 
analysis [IS]. In artificial neural network computing, 
most of the time is spent on an off-line training process in 
which the ANN accumulates knowledge from the given 
input-output data pairs. Once the network is completely 
trained, the on-line operation would involve only a chain 
of simple arithmetic operations which can be completed 
in a very short period compared with analytical pro- 
gramming techniques. For a complicated constrained 
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optimisation problem such as hydro scheduling problem 
considered in this work or unit commitment problem in 
power system operation, it is expected that the ANN 
approach will require much less computer time to get the 
solutions. In fact, several interesting applications of the 
ANN approach to unit commitment problem have been 
reported [ 16, 171. 

In the present work, a clustering ANN is first designed 
to identify those days with similar hourly load patterns 
and natural inflows. These days with similar load pat- 
terns and inflows are said to be of the same-day type. A 
total of four different-day type are identified in this work. 
For each day type, a multilayer feedforward ANN is 
designed to get a preliminary schedule for the hydro 
units. The inputs to this ANN are the hourly loads and 
inflows and the outputs are the hydro generation sched- 
ules. Before the ANN can be used to generate the hydro 
schedules, a set of input-output pairs called training pat- 
terns are first compiled. Then the connection weights of 
the ANN are figured out through these training patterns 
using the generalised delta rule [SI, and the ANN can 
now be used to yield the hydro generation schedules. 
Since some practical constraints may be violated in the 
preliminary generation schedule reached by the multi- 
layer feedforward ANN, a heuristic rule based search 
algorithm is developed to reach a feasible suboptimal 
schedule which satisfies all practical constraints. 

heuristic rule 
based 

prdiminary 

schedule search algorithm 

2 Hydroelectric generation scheduling problem 

Scheduling hydro generation is well known to be coupled 
with its thermal counterpart. We decouple the hydro 
scheduling from the thermal part by first assuming a 
purely thermal system. For each given load level, the 
lambda-iteration method is performed to solve the eco- 
nomic dispatch over the set of available units [2] and to 
evaluate the thermal generation cost to meet the load 
demand. In other words, we aggregate all the available 
thermal units into one equivalent unit and construct its 
generation cost function. Then, in hydro scheduling, we 
try to find the best way of substituting hydro for thermal 
energy based on this function so that the system gener- 
ation cost is minimised. To do this, the study period (one 
day for the present work) is divided into N stages 
( N  = 24 in the present case) and the hydro scheduling 
problem is then formulated as follows. 

24  

minimise C = 1 COSTt(GTHERMAL,)  (1) 
t = 1  

zdu'e 

subject to 

(i) the generation-load balance equations 

GTHERMAL,  + 1 Pi(Xi,) = L, t = 1, . . . , 24 (2) 

(ii) the water balance equations 

i = 1, ..., I 

t = 1, ..., 24 (3) 
(iii) bounds on water releases 

Xi, min G Xi, G Xi. m m  and Si, min G Si, G Si. max 

i = 1, ..., I (4) 

(iv) bounds on a reservoir storage 

y.min< K c <  x.max i =  1 ,..., I ( 5 )  

To deal with the optimisation problem some conven- 
tional approaches such as dynamic programming and 
linear programming can be employed. In the present 
work we use the ANN approach. 

3 Proposed artificial neural network approach 

The proposed artificial neural network approach is a 
three-stage process as shown in Fig. 1. The input data for 
the hydro scheduling problem include N ( N  = 24 in the 
present work) hourly loads L, ( t  = 1, 2, ..., 24) and I 
(I = 10 in the present work) daily peak natural inflows 
for the reservoirs Ri ( i  = 1, 2, . . . , 10). Given these hourly 
loads and inflows, our purpose is to determine the 
amount of water released for hydro generations Xi, for 
each unit i such that the total fuel cost of thermal units is 
minimised. Of course, all practical constraints as 
described in eqns. 2-5 must be satisfied. 

Let U be the input vector which comprises the 24 
hourly loads and 10 inflows, i.e. 

U = [Ul  U, . ' .  U Z 4  u2* U Z 6  ' . .  U34]T 

= [ L ,  L ,  . . .  L 2 ,  R I  R ,  . . .  (6) 

Let's also define Z as the output vector which comprises 
the volume of water released from each reservoir for 
hydro generation X i ,  (i = 1, 2, .. ., 10, t = 1,2, .  . ., 24) 

2 = [z, 2 ,  " '  Z240]T 

= [ X I ,  _ ' '  X i 0 . 2 4 1 ~  (7) 

Fig. 1 
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The basic idea behind the proposed ANN approach is 
that the output vectors . Z ,  and Z ,  for two days with 
similar input vectors U ,  and U ,  tend to be similar to 
each other. In other words, it is very natural for system 
operators to adopt similar hydro schedules for two days 
with similar loads and inflows. Thus, we propose to 
adopt a clustering ANN at the first stage to identify those 
days with similar input patterns (similar hourly loads and 
inflows). These days with similar input patterns are said 
to of the same day type. 

One important issue which must be addressed in iden- 
tifying the day types using the clustering ANN is how 
many day types should be used. In the present work, the 
operators' experience is employed as a guideline in 
choosing the number of day types for the clustering 
ANN. Through an interview with the experienced oper- 
tors at Taiwan Power Company, it is recommended that 
the following four types of days should be included. 

type 1 : weekdays with heavy inflows 
type 2: weekdays with normal inflows 
type 3: weekends (including holidays) with heavy 

inflows 
type 4: weekends with normal inflows 

Details of the clustering ANN are described in Section 4. 
Now, the days of the same-day type are expected to 

have similar input patterns. To reach a preliminary 
hydro schedule for a day with given hourly loads and 
inflows, we propose to design a multilayer feedforward 
ANN for each day type. Therefore, we have a total of 
four feedforward ANNs with each ANN being capable of 
yielding the desired hydro schedules for the days of a 
certain day type. The inputs to any ANN are the 24 
hourly loads and I O  inflows and the outputs contain the 
preliminary volumes of released water X , .  The multi- 
layer feedforward ANN is briefly described in Section 5. 

Since some practical constraints as described in eqns. 
2-5 may be violated in the preliminary hydro schedules, a 
heuristic rule based search algorithm is proposed to 
modify the preliminary schedules to reach the resultant 
feasible solutions. Details of the search algorithm is 
described in Section 6. 

4 Clustering ANN for  day type identification 
In the design of the clustering ANN, a set of 240 input 
vectors with each vector described by eqn. 6 are first 
compiled. This set of input vectors are referred to as the 
training set. Note that each input vector contains the 24 
hourly loads and I O  inflows for a particular day. Let the 
ith input vector U ,  (i = 1. 2, . . . , 240) be denoted as 

U ;  = [ U i l  U;, . ' .  U i k  . '  ' U;. dT (8) 
To identify these days with similar input patterns, define 
the Euclidean distance measure d ,  between two vectors 
Ui and U ,  as 

d i j  = llL'4 - Ujl1 = J [ ( U ,  - Uj:,'(Ui - U,)] 
3 4  112 

= ( k = l  (u ik  - u j k ) 2 )  (9) 

If dij is less than a threshold d,, the two input vectors U i  
and U ,  are said to be of the same cluster and the two 
days with the two input vectors are said to be of the 
same-day type. Note that the threshold d,  must be deter- 
mined via a trial-and-error to classify the 240 input 
vectors into four clusters with each cluster containing the 
input patterns for those days of a particular day type as 
described in Section 3. The clustering algorithm is 
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described as follows. 
Step I: Start with no cluster prototype vectors 
Step 2: Let I = (i l ,  i,, . , . , i,) be the next input vector 
SteD 3: If there are anv Drototvoe vectors. find 

T = ( t , ,  t, ,  . _ . l  
(C (t. - in)')'/* 

Step 4 :  If d ( T ,  

< .  < &  

t.) to minimise d(T,  I )  = 11 T - Ill = 

I )  > d,, a specified threshold or if there 
are no cluster prototype vectors yei, create a new cluster 
with prototype vector I .  Output the index of this cluster. 
Then go to Step 2 

Step  5 :  Otherwise, update T as T = (1 - A) 
x T + I x 1. Output T ' s  index. Go to Step 2. 

In the clustering algorithm, a threshold d, is first as- 
signed. Each pattern belongs to only one cluster. Over- 
lapping is not allowed in this algorithm. 

After the clustering process is completed, there are 
four clusters of input patterns. The input patterns for 
those days of the same-day type are put in the same 
cluster. Now, for an input vector U which is not in the 
training set, compute the Euclidean distance measure 
between this vector U and the patterns in the four clus- 
ters. The cluster with minimal distance is assigned to the 
vector U .  The day type for the input vector U can then 
be identified. 

5 

It is observed from Fig. 1 that four multilayer feed- 
forward artificial neural networks ANNI, ANN2, ANN3, 
and ANN4 are needed for the input patterns which 
belong to day types 1, 2, 3, and 4, respectively, to reach 
preliminary hydro schedules. 

The nodes in the input layer receive input signals from 
the outside would and directly pass the signals to the 
nodes in the next layer. In this paper, the 24 hourly loads 
L, ( t  = 1, 2, . . . , 24) and 10 natural inflows Ri (i = 1, 2, . , ., 
10) are taken as the inputs of the neural networks. 

The nodes in the output layer provide the desired 
hydro generation schedule which is characterised by the 
volumes of water released from the reservoirs Xi, .  There- 
fore 240 output nodes are needed. In addition to the 
input layer and output layer, one or more hidden layers 
are needed. The nodes in the hidden layer take signals 
from the nodes in the input layer and send their outputs 
to the nodes in the next layer when computations within 
the nodes have been completed. In the present work, only 
one hidden layer is employed. 

The design of an artificial network involves two major 
phases: training and testing. In the training process, we 
try to determine the connection weights using a set of 
input-output patterns in the training set. Once the con- 
nection weights have been worked out, the performance 
of the neural network is tested using patterns both within 
and outside the training set. The speed and accuracy of 
the test results are evaluated to decide whether modifi- 
cation of the neural network structure (number of hidden 
layers and hidden nodes per layer) or further training of 
the neural network is necessary. Once the speed and 
accuracy of the ANN meet the requirement of the present 
application, it can be employed to evaluate hydro gener- 
ation scheduling in real-time situations. 

The first step in neural network training is to compile 
the training patterns in the training set. In the present, 
each training pattern comprises 34 input variables and 
240 output variables. For each input pattern U ,  the cor- 
responding hydro generation schedule Z is obtained off- 
line by using differential dynamic programming (DDP) 
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technique [7]. A major advantage of the D D P  algorithm 
is that the curse of dimensionality in conventional D P  
algorithm can be avoided while the system dynamics can 
still be exploited explicitly. But it suffers from computa- 
tional inefficiency. The efficiency can be improved by the 
proposed ANN approach. Two DDP algorithms have 
been developed for problems with linear constraints 16, 
181. Note that all computations in creating the training 
patterns are performed off-line. Therefore time is not a 
crucial factor at this stage. 

With these training patterns at hand, one can proceed 
to work out a proper set of connection weight that can 
best fit the input-output patterns in the training set. A 
commonly used approach is the generalised delta rule [SI 
which is used in this paper. 

After the connection weights have been determined, 
the ANN can be employed to determine a preliminary 
hydro schedule for a given load pattern and natural 
inflows. Four neural networks are required as we have to 
determine hydro schedules for input patterns which are 
classified to four different day types. 

6 

In the preliminary schedule reached by the multilayer 
feedforward ANN, some practical constraints such as 
water release bounds and available water limits may be 
violated. In this case, the following heuristic rules can be 
applied to refine the preliminary schedule and to reach 
the final hydro schedule. 

Heuristic rule based search algorithm for 
determination of final schedule 

(i) Heuristic rule on water release bounds 
Let X ,  = Xi, m ~ x  if X i ,  > X , ,  mel 

Let Xi, = X i . m i n  if Xi, < Xi,,,;" ( i  = 1, 2, ..., 10, t = I. 

(ii) Heuristic rule on water available limits 
Reduce a small amount of released water from Xi, 

during off-peak period until Xi, = Qi  (i = I, 2, . . . , 
10) if Qi where Qi is the total available water 
volume for reservoir i over the study period. Increase a 
small amount of released water from Xi, during peaking 
hours until I:?, Xi, = Qi (i = 1 ,  2 ,  . . . , 10) if Xi, < 
Qi . 

2, . . . , 24) 

X ,  

7 Example 

To demonstrate the effectiveness of the proposed ANN 
approach, hydroelectric generation scheduling is per- 
formed on Taiwan power system which consists of four 
Ta-Chia River cascaded plants, three Cho-Shui River 
plants (including a large pumped storage plant and two 
cascaded hydro plants) and three hydraulically independ- 
ent plants. The schematic diagram of hydro plants along 
both Cho-Shui River and Ta-Chia River is shown in Fig. 

Table 1 : Hvdro svstern data 

2. For the case of the one hour time increment considered 
in this work, there is no significant delay in water reach- 
ing a reservoir from its immediate upstream neighbour. 

Cho -Shut River To-Chia River 

KE, Sun-Moon g - g T o - K u a n r - c h '  $;: 
Chu- Chin- Shm 

Kuny 

Ku-Kuan A + 
0 natural intlow 

Tien - Lun reservoir 

0 power house 

+ 
Fig. 2 Schematic diagram of Cho-Shui River and Ta-Chia Riv i i  

The hydro system data and reservoir operating param- 
eter used for the present work are presented in Table 1 
and Table 2, respectively. 

Table 2 :  Reservoir operating Dararneter 

Reservoir Initial Final Natural Natural 
volume volume inflow inflow 

km' km3 m3/s m3/s 
Sun-Moon 89640 89640 30.55 29.39 
Storaae Pond 8316 8316 0 0 

(case 3) (case 7) 

Chu-iung 72 72 0 0 
Te-Chi 184107 184107 40.3 41.5 
Chin-Shan 540 540 0 0 
Ku-Kuan 5400 5400 13.7 13.2 
Tien- Lun 144 144 0 0 
Li-Wu 144 144 26 26.2 
Lung-Chien 54 54 8.5 8.4 
I-Hsing 180 180 30.5 30.1 

In the training process, 60 training patterns for each 
day type are selected from the operating record of 
Taiwan Power Company (TPC) to determine the connec- 
tion weights of the neural network. To examine the con- 
vergence characteristics of the training algorithms, the 
root mean squared error (RMSE) in the learning process 
are depicted in Fig. 3. The training conditions of the four 
different feedforward neural networks are summarised in 
Table 3. The convergence criterion is defined as 
RMSE < 0.0001 for each ANN. From the results in Fig. 
3 and Table 3, it is observed that it takes longer time for 
ANNl and ANN2 to converge than i t  takes for ANN3 
and ANN4. This is due to the fact that ANNl and 

Reservoir Storage Storage Plant Water release Water release 
lower bound upper bound lower bound upper bound 

km3 km' m3/s m'/s 
Sun-Moon 13269 155685 Ta-Kuan 2 -249 380 
Storage Pond 1565 9407 Ta-Kuan 1 0 50 
Chu-Kung 1.6 105 Chu-Kung 0 45 
Te-Chi 89886 243120 Te-Chi 0 217.5 
Chin-Shan 26 647 Chin-Shan 0 174.8 
Ku-Kuan 101 6563 Ku-Kuan 0 133.6 
Tien- Lun 90 560 Tien-Lun 0 68 
Lii-wu 0 340 Li-Wu 0 36.7 
Lung - C hien 0 202 Lung-Chien 0 13.2 
I-Hsing 0 1343 I-Hsing 0 31.7 
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ANN2 are employed to deal with hydro scheduling for 
weekdays when the load patterns experience large Ruc- 
tuation between peaking hours and off-peak period. In 

The hydro generations over the 24 hour scheduling 
period from three different approaches, i.e. the DDP 
approach, the proposed ANN approach and the nearest 
neighbour approach, are compared in Figs. 5 and 6 for 

15001 A 

i'----- - - -  
0 - - / - I  

0 10 20 30 40 50 60 70 80 
number of iteration 

Fig. 3 R M S  errors atfirst 80 iterations 
- ANNl 

ANN2 
ANN3 
ANN4 

_ _ ~ ~  
-~ 

Table 3: Training conditions of four different feedforward 
neural networks (RMSE < (Y.OOO1) 

Feedforward Learning Momentum Number of Learning 
neural network rate rate iterations time 

S 

ANNl 0.9 0.7 12375 58345 
ANN2 0.9 0.7 11250 54132 
ANN3 0.9 0.7 925 4375 
ANN4 0.9 0.7 609 2895 

this case, the generated powers for hydro units and 
thermal units change significantly from off-peak period to 
peaking hours. Therefore it takes larger time to train a 
neural network with suclh patterns. All our numerical 
computations are performed on a Sun workstation. 

Once the ANN has been trained, the efficiency and 
accuracy of the proposed approach can be evaluated by 
examining the hydro generation schedules for 10 hourly 
load-inflow patterns. The :system's hourly load curves for 
two of the 10 cases (cases 3 and 7) are depicted in Fig. 4. 

Fig. 4 
__ case3 

case 7 

Daily system load profiles 

-~~~ 

456 

I ___--I- 
10 1'1 L (1 

-1000 i- 
5 

time, h 

Fig. 5 
~ -~ DDP 
~ ~- proposed approach 
. . . . . . . 

Comparison ofhydro generation schedules Jiir case 3 

nearest neighbour approach 

1200 r 

Fig. 6 
~ ~ ~ ..- DDP 
~ . proposedapproach 
. .  . . . .  nearest neighbour approach 

Comparison of hydro genmarion scheduleshv case 7 

cases 3 and 7, respectively. The total fuel costs of thermal 
units for these schedules and the CPU time required by 
the three approaches are summarised in Table 4. 

In Table 4, input patterns (hourly load-inflow 
patterns) in case 1 and case 2 are within the training set. 
After the clustering algorithm is used for a d,  of 0.35, it is 
found that the case 1 and case 2 belong to day type 2 and 
day type 4, respectively. As a result, the multilayer feed- 
forward ANN2 and ANN4 are employed to determine 
the preliminary schedules. Table 5 gives the water release 
of Te-Chi hydro plant from the ANN for the preschedule 
and the ANN heuristic algorithm (ANN-HA) for the final 
schedule. It is observed from Table 5 that the violations 
in the preliminary schedule are small, but the solution is 
infeasible. 

We apply the simple heuristic rules to reach a feasible 
solution. Detail of the released water schedule for each 
hydro plant are not given. It is observed from the results 
in Table 4 that the fuel costs for the schedules from the 
proposed approach are very close to those for the 
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Table 4 :  Comuarison of results 

Case Solution by DDP Solution by nearest Solution by 
neighbour approach proposed approach 

CPU time Fuel cost CPU time Fuel cost cost CPU time Fuel cost cost 
diffnrence difference 

s NTS S NTS 
1 126.89 125200584 0.43 125200584 - 
2 112.37 95177008 0.42 95177008 - 
3 137.46 125 001 848 0.43 125092 256 0.072 33%) 
4 142.57 124975637 0.43 125061 748 0.06890% 
5 152.21 123325048 0.43 123417243 0.07476% 
6 150.28 123 783 681 0.42 123 858470 0.06042"X 
7 118.42 94997264 0.43 95065061 0.071 37% 
8 122.81 95068673 0.42 95 158 572 0.094 56"h 
9 113.75 95186936 0.41 95 268 581 0.08577OA 

10 115.37 95572579 0.42 95 636 937 0.067 34% 

Cost difference = x100?4 
(cost of schedule) - (cost of DDP algorithm) 

cost from DDP algorithm 

Table 5: Water release of Te-Chi hydro plant f r o m  A N N  
(preschedule) and ANN-HA (f inal schedule) 

hour ANN ANN-HA 

h m31s m 3 k  
1 2.7 0.0 
2 -3.2 0.0 
3 2.2 0.0 
4 -2.2 0 0  
5 -4.1 0.0 
6 1.3 0 0  
7 2.9 0.0 
8 -0.8 0.0 
9 30.2 27.9 

10 52.8 52.6 
11 53.9 54.1 
12 52.4 52.3 
13 45.3 43.2 
14 67.7 68.9 
15 77 2 79.3 
16 76.7 77.9 
17 58.3 59.3 
18 41.2 38.5 
19 43.3 41.7 
20 52.1 51 8 
21 43.0 41.4 
22 31.2 27.7 
23 26.0 21.8 
24 9.4 4.1 

optimal schedules from the DDP approach. It is con- 
cluded that the ANNs have been trained very well in this 
application. It is also observed that the nearest neighbour 
approach gives exactly the same schedule as that 
obtained by the DDP approach in case 1 and case 2 since 
the two cases are within the training set and the solution 
from the DDP approach will be picked out by the 
nearest neighbour approach. 

The input patterns in cases 3-10 in Table 4 are not 
within the training set. It is found from the results in 
Table 4 and Figs. 5 and 6 that the fuel costs of the sched- 
ules from the proposed approach are closer to those from 
the DDP approach than those from the nearest neigh- 
bour approach. In other words, the proposed approach 
can give better results than the nearest neighbour 
approach. However, the two approaches require much 
less computer time than the DDP approach. In fact, a 
major advantage of the ANN approach is that the 
desired solution can be reached by the ANN in a very 
efficient manner for on-line operation. 

In the present work, the input patterns are classified 
into four clusters according to the types of day. Four dif- 
ferent feedforward neural networks (ANNI, ANN2, 
ANN3 and ANN4) are designed to reach hydro schedules 
for the input patterns of day types I ,  2, 3 and 4, respect- 
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s 
0.55 
0.56 
0.56 
0.55 
0.54 
0.56 
0.55 
0.54 
0.56 
0.56 

NTS 
125 214435 
95 177 951 

125 028 447 
124 996 451 
123 345 239 
123 805 673 

9501 1 032 
95 080 783 
95 199 725 
95 586 469 

0 01 1 06% 
0 000 99% 
0 021 27% 
0 01 6 65% 
0 01 6 37% 
0 01 7 77% 
0 01 4 49% 
0 01 2 74% 
0 01 344% 
0 01 4 53"h 

ively. It is interesting to examine how the resultant sched- 
ules will be changed if we do not classify the input 
patterns into four clusters and use only one feedforward 
AWN to generate the preliminary schedules. We refer to 
this approach as the modified approach. The fuel costs of 
the schedules from the modified approach are compared 
with those from the DDP approach and the proposed 
ANN approach in Table 6. 

Table 6: ComDarison of fuel costs 

Case DDP approach 

1 125200584 
2 95177008 
3 125001 848 
4 124975637 
5 123325048 
6 123783681 
7 94997264 
8 95068673 
9 95186936 

10 95572579 

NTS 

Prooosed aooroach 

NTS 
125214435 
95 177 951 

125028447 
1 24 996 451 
123 345 239 
1 23 805 673 
95 01 1 032 
95 080 783 
95 199 725 
95 586 469 

Modified approach 

NTS 
125 289 837 
95 302 092 

125 094 691 
125 068 543 
123 430 369 
123 885 752 

95 121 850 
95 181 673 
95 327 883 
95712685 

It is observed from the results in Table 6 that the fuel 
costs from the modified approach are higher than those 
from the proposed ANN approach. It is concluded that 
the modified approach will generate a hydro schedule 
which is different from the optimal schedule generated by 
the DDP algorithm while the proposed ANN will gener- 
ate a schedule which is close to the optimal schedule. The 
main reason why the proposed ANN approach is 
superior to the modified approach is that the ANN in the 
proposed approach needs to deal with similar input pat- 
terns of the same day type only while the ANN in the 
modified approach must treat different input patterns of 
all day types. 

8 Conclusions 

A novel technique using artificial neural networks has 
been proposed for short term hydroelectric generation 
scheduling of a power system. A clustering ANN is devel- 
oped to classify all days to be scheduled into four clusters 
based on the hourly load and inflow pattern of the day. A 
multilayer feedforward ANN is designed for the days in a 
cluster. The feedforward ANN takes the hourly loads and 
inflows as its input and generates a preliminary hydro 
generation schedule. The schedule is refined by a heuris- 
tic rule based search algorithm to reach the final hydro 
schedule which satisfies all practical constraints. 

To demonstrate the effectiveness of the proposed 
ANN approach, hydroelectric generation scheduling of 
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Taiwan power system is performed. It is concluded that 
the hydro schedules generated by the ANN approach are 
very close to the optimal schedules reached by the differ- 
entia1 dynamic Programn.ling method. A major advant- 
age of the ANN approach is that it takes much less 

8 RUMELHART, D.E., HINTON, G.E., and WILLIAMS, R.J.: 
‘Learning internal representations by error propagation’, in ‘Parallel 
~ ~ , t ~ P s U ~ ~ 2 P r o c e s s i n g ,  Vol. 1’ W I T  Press, Cambridge, MA. 19861 

9 LIPPMANN, R.P.. ‘An introduction to computing with neural 
nets’,IEEEASSPMay., 1987.pp.4-22 

c-mputer tirne for the ANN approach to get the gener- 
ation than the dynamic pro- 
gramming method. 

I O  PAO, Y.H.: ‘Adaptive pattern recognition and neural networks’ 
(Addision-Wesley, Reading, MA, 1989) 

I 1  HSU. Y.Y., and YANG, C.C.: ‘Design of artificial networks for 
short-term load forecasted, Parts I and II’, I E E  Proc. C, 1991, pp. 
407-418 
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