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Abstract 
Using the concept of infinite eigenstructure assign- 
ment in generalized systems, explicit formulas for 
calculating the polynomial generalized Bezout iden- 
tity is proposed. The degree of the polynomial ma- 
trix is directly related to the length of the longest 
infinite eigenvector chain of the associated general- 
ized state-space representation. Hence, the method 
of infinite eigenstructure assignment can be used to 
find adjustable-degree solutions of the doubly co- 
prime matrix fraction descriptions. 

Keywords : Generalized systems, Infinite eigen- 
structure assignment, Polynomial generalized Be- 
eout identity. 

1 Introduction and 
Formulation Problem 

The left matrix fraction description of a lin- 
ear time-invariant system is usually described by 
D ' ( s ) X ( s ) .  We suppose that D(s) E RlsImxm 
and N ( s )  E R[sImxr are left coprime and D(s) is 
row reduced, where R(sInxm and R[s]mxr indicate 
the set of all m x m and m x r real coefficient poly- 
nomial matrices respectively. A simple approach is 
proposed here to  determine six polynomial :matrices 
X ( s ) ,  F(s), D ( s ) ,  N ( s ) ,  X ( s ) ,  and Y ( s )  of appro- 
priate dimensions to  satisfy 

-- 

- 

(1) 
Throughout the development of this paper, we first 
assume m 5 r and { &,X(s)  5 &,D(S), for i = 
1 ,2 , . .  . , m  }, where 6riI.l stands for the ith row 
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degree. Note that the assumptions of m 5 r can 
be released in the subsequent development. Q u a -  
tion (1) usually called as the polynomial generalized 
Bezout identity, which plays a key role in the syn- 
thesis and analysis of compensators for linear time- 
invariant systems in frequency domain [2,8,9]. The 
computational algorithms for solving the equation 
can be found in the literature, such as linear alge- 
braic methods in (121, and the state-space methods 
in [3,4,6]. However, the adjustable-degree solutions 
in (1) have rarely been investigated in previous re- 
se arches . 

While the bulk of published papers have been fo- 
cused on solving the polynomial generalized Bezout 
identity, the use of infinite eigenstructure assign- 
ment in generalized systems to attack this subject 
is still lacking. The degree of a polynomial matrix ( 
which is defined as the greatest degree of the polyno- 
mials appearing as entries in the polynomial matrix 
(101 ) is directly related t o  the length of the longest 
infinite eigenvector chain. Thus, if we can assign 
the infinite eigenstructure under the state feedback 
gain selection, then the adjustable-degree solutions 
in (1) could be found. In the following, we describe 
the infinite eigenstructure assignment method for 
controllable generalized systems first, which is sim- 
pler than that of 151. 

2 Infinite Eigenstructure 
Assignment 

We consider a controllable time-invariant general- 
ized system 1131 of the form: 

(2) E i ( t )  = A z ( t )  + Bu(t ) ,  

where z ( t )  E R" is the state vector, u ( t )  E R' is 
the input vector, E,A and B are real constant ma- 
trices of appropriate dimensions. We assume that 
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E is singular and its rank is g which is less than n. 
Furthermore, we assume that S E  - A is a regular 
pencil ( i.e. IsE - AI f 0 ) such that system (2) is 
solvable. 

Our purpose is to find a state feedback gain ma- 
trix K such that the closed-loop system 

A 
Ei(2 )  = A,z ( t ) ,  where A ,  = A + B K  ( 3 )  

contains infinite eigenvalues only. Let algebraic and 
geometric multiplicities of infinite eigenvalues are n 
and 9 respectively, then 9 = nullity E = n - g .  We 
denote up; be the rank 0 infinite eigenvectors of (3), 
then EuEj = 0, ,9. Also, denote U:; 

be the rank k infinite eigenvectors, then Eu$ = 
A,&'), k = 1,2,-..,(p,j - 1). Since (3) has 
n infinite eigenvalues, we have n(= C,"=, p,j) lin- 
early independent infinite eigenvectors U:; [ll]. 
The nonsingular matrix V, is constructed as fol- 
lows : 

j = 1,2,. 

A Voo = [Vml, Voo~, * * *  3 Vmj, . * Vmqlt (4) 

vmj g [p; ,  . . . , v ( ? ,  . . . u ( p ? J - l ) ] ,  
001 001 

where j =  1 , 2 , . . . , 9 a n d  k=0,1,2,.-.,(p,j-l). 
Let us set 

f'? m1 = K u Y ,  ( 5 )  

then E R' will help us to find K later. Using 
the infinite eigenstructure proposed in [ll], we can 
obtain 

rank 2 I 0 1  X 

for k = 1,2, ..-,pmj - 1, j = 1,2, . . . , q .  

Note that [ E  i -B] is full row rank, since (2) 

is controllable. Also, U:; I L = O  being in the null 
space of E ,  those U:; and fE1-') can be computed 
interactively as 

0 

for k = 1,2,--.,p,j - 1, 
where (.)+ represents the matrix generalized in- 
verse of the designated matrix (.). From (7), 
f:;, f:;, . . . , fzTJ-2) can be solved. The selection 
of &"J-') should satisfy the requirement listed in 
Remark 1. Then we can construct 

I ' rank 2 0 X 0 
rank 3 0 1  

FOoj e [f:j,f:;,. . .,I:;, . . . , f:TJ-''], 
where j=1,2,..-,9andk=0,1,2,...,(p,j-l) . 
From (4), (5) and (8), we have KV, = F,, the 
feedback gain K then becomes 

K = F,V&l. (9) 

The columns of V,, U:], are infinite eigenvectors 
of the closed-loop system, hence they are linearly 
independent. When (7) is used to create V, and 

should be a basis of the 
null space of E. Also, different approaches to find 
U:; may cause the different combinations of chain 
lengths. For example, we can search the crate by 
rows along the procedure tabulated in Fig 1. ( Sim- 
ilarly like [8], p 427. ) Note that if (2) is controllable 
then all finite eigenvalues can be assigned to infinite 
ones [5]. 

F,, {U: ; ,  u p ; ,  . . . , umq}  ( 0 )  

eigenvectors 
chain 
rank 0 
rank 1 

I J 

I I 

I einenvectors DremultiDlied bv E I v 

chain I E v g ;  I ... I Et& 
rank 1 I X I  X I  X 

I I I 
rank 4 

I I I 

rank p I I 
Fig 2. Sequences of independent 

vectors examinatiop 

Remark 1 : Since S E  - A,  contains infinite eigen- 
values only, S E  - A, must be unimodular. The de- 
terminant of S E  - A ,  is a nonzero constant and 
equals to I - A,I. Thus, A ,  = A + BK = A + 
BF,V;' would be nonsingular [5]. Both A, and 
V, are nonsingular, their product A , V ,  is nonsin- 
gular as well. From (6) and A, = A + BF, V g l  we 
see that 
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AcVm 3 Solutions of the 
=[A c ml," ' ,  A c y(P-l'2);Ay(P-l'1) 001 + Bf2rl-1) . I  : . . .: Polynomial Bezout Identity 

Act&, . . , A,@$q' AV(p-v'l) 009 + B/gP$"-'))l In this section, we shall introduce an efficient 
. method to realize a time-invariant descriptor sys- 

001 . . " *  tem whose input-output relationship is given by =[,lj!vc),, . . . , EvgyI-'), At~(P-1-l) +&Prl-l): . 
Ev2 i , .  . . , E t J ( P - = v - l ) ,  + Bf(F'-'1-1))] 

wri 009 mr) 

The requirement of nonsingular A,V, is equivalent 
to the following: 

(i) Let s e { ~ v g ) , , ~ t J : ) ,  ,..., ~ v ( ~ f 1 - 1 )  :...I . .  
Evmc,, (1)  EWE), , . e ,  E&;P"-')), then S is an in- 
dependent set. We should examine the inde- 
pendence of S as shown in Fig. 2 by the similar 
procedures listed in Fig. 1. 

(ii) Let T {AUb'y1-') + BfZyl-l:I :...: . .  
Auk;"-') + Bf&"-l)}, then the c.hoices of 
fzrj-l) for j = 1 , 2 , .  . . , rj should satisfy the 

U condition of [S ! T ]  being nonsingular. 

As a summary of the previous results, we have 
the following theorem. 

Theorem 1 : Suppose (2) is a controllable gen- 
eralized system, the closed-loop assignable (chains of 
infinite eigenvectors, U::, can be written as 

KV, = F, or Ji' = F,Vgl 

where Vm and F, are shown in (4) and (8) respec- 
tively. t~:; and fcj satisfy 

k = 1 , 2 , . * * , ~ , j - 1 ,  j= 1 , 2 , * * . , 7 ,  

where E?& = 0, under the conditions of 

(i) V, is nonsingular. 

The condition (i) is needed due to the require- 
ment of eigenvectors being independent. The con- 
dition (ii) is needed because of the requirement of A, 
being nonsingular ( See Remark 1). Our approach 
presented here is more straightforward and requires 
less computation than that in [ 5 ] .  The above result 
also provides a useful approach to solve the polyno- 
mial generalized Bezout identity. 

the m x r polynomial matrix fraction description 

&, D(s )  + 1 .  We first define 

-1  D -(s)R(s) with C r i F ( S )  5 C r i B ( s ) .  

0 1 0 . . .  0 

Let a i  = 

E =  1 block diag [ 0 0 ':: i] ,I 
0 0 0 . . .  
0 0 0 ... 

i =  1 , 2 , . . . , m  
o , x o ,  

(10) 
and 

block diag [ 1 0 . . .  
i =  1 , 2 , . - . , m  

(11) 
4 0 )  We set V, = C' ( the transpose of C ), then 

4 0 )  
"m 

= [pi . , .p! . . . -(O) ] 
mi 

= { block diag [ l  0 ... 
i =  1 , 2 , . . . , m  

(12) 
Note that { i jE{ , i  = 1 , 2 , . . . , m }  forms a basis for 
the nullspace of E. 

If we set M ( s )  = (SE - I), then M ( s )  is a uni- 
modular matrix. ( S E  - I ) - '  can be represented as 

M ( s ) - l  = (SE - 1)-1 

= { I  + Es + E's2 + . . . + EQ-'sQ-' 1 3  

(13) 
A 

where g = max {ai ,  f o r i  = l , . . - , m } .  This can 
be further expressed as 

and 
C(sE - I ) - 1  = 

block diag {- [ 1 s . . .  s o ~ - 2  
i = 1 , 2 , . . . , m  

(14.b) 

491 



Lemma 1 : Let us consider the m x r polyn+ 
m i d  matrix fraction description E'( s )F(s )  with 
&iF(S) 5 &iO(S).  Assume D ( s )  and F(s) 
are left coprime, and n(s) is row reduced. De- 
fine the highest-row-degree coefficient matrix of 

[D(s) i F(s)] be denoted as [Dhr i N h r ] .  
Suppose m 5 r and set Bohr E Rmxr be an arbi- 

trary full row rank matrix and Do = -Di:(B,h, - 
Nhr). Under these settings, if we choose L and 
Bo satisfying O(s) = I + CM-' ( s )L  where C, E 
and M ( s )  are shown in (lo), (11) and (13), respec- 
tively, and w ( s )  = D,+CM-' ( s ) (B ,  +LD,), then 
D ( s )F(s )  = D,+CW(s)- 'B, ,  where A 2 I-LC 
and W ( s )  = ( S E  - A ) .  Furthermore, the quadruple 
{E, A ,  Bo, C }  are controllable and observable. 0 

Remark 2 : In Lemma 1, L, Bo areread - directly 
from the coefficients of D(s)  - I and N ( s )  - D(s)D,  
since C(sE - Z ) - l  has the form shown in (14.b). 
Thus, the realization is simplified. 0 

In the previous section, different independent vec- 
tor searching schemes for determining K will result 
in different infinite eigenstructures of controllable 
generalized systems. The computed state feedback 
gain matrix K will make A, nonsingular and create 
a unimodular matrix H ( s ) ,  where H ( s )  = SE-A,  = 
S E  - A - B O K .  ( S E ,  - A c m )  is the staircase form 
of ( S E  - A c ) ,  this can be obtained under unitary 
transformations in [ l ]  which is a numerically reli- 
able algorithm. 

- 1  

A 

where qc = nilpotent index [(ACm)-IEm]. The 
highest degree H-'(s )  is determined by the length 
of the longest infinite eigenvector chain denoted 
as g,. With this idea in mind, we will develop 
adjustable-degree solutions of the polynomial gen- 
eralized Bezout identity (1) using state-space ap- 
proach. For example, if we adopt the schemes shown 
in Fig. 1 and 2, the length of the chained eigenvec- 
tor will be less. 

An explicit formula to find solutions of the poly- 
nomial generalized Bezout identity is proposed as 
follows : 

- 
Theorem 2 : D(s )  E R[sImxm and F ( s )  E 
R[sImxr are left coprime and D ( s )  is assumed to 
be row reduced. Suppose m 5 r and h,,F(s) 5 
b,,B(s), the controllable and observable realization 
of D ' ( s ) F ( s )  = Do + C(sE - A)- 'B0,  remain the 
same as in Lemma 1. The following eight polyno- 
mial matrices satisfy (1) : 

- 
D(s )  = I + C M - ' ( s ) L ,  

D(s )  = (I + KH-'(s)B,) ,  

N ( s )  = Do + (C+ D,K)H-l(s)B, ,  

X ( 6 )  = I - (C + D,K)H- ' ( s )L ,  

Y ( s )  = K H - l ( s ) L ,  

X ( s )  = I - K M - ' ( s ) ( B ,  + LD,), 
Y ( s )  = K M - ' ( s ) L .  

- 
N ( s )  = Do + CM- ' ( s ) (B ,  + LD,), 

- 
- 

where M ( s )  = S E  - I, E is found from (10) and 
H ( s )  = S E - A - B O K ,  K is obtained from Theorem 
1 which is infinite eigenstructure assignment. 

To consider the case of m > r in doubly coprime 
matrix fraction descriptions, we give the following 
comments. 

Lemma 2 : Suppose that D ( s )  E R[sImxm and 
N ( s )  E R[sImxr are left coprime. It can be eas- 
ily shown that as m > r and X ( s )  is an arbitrary 
polynomial matrix, the following results hold: 

- 

(i) If D(s) and W(s) are left coprime then D ( s )  

and [ F ( s )  ! [ O ] , , ( , - , ) ]  are left, coprime. 

. ,  [:!:; = [ 0  01 then -D(s)A'(s)  - + 
- 
Iv(s)D(s) = 0 
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(vi) If 

(vii) D(s )  and [R(s) ! [O]mx(m-r)] are left coprime, 
the polynomial generalized Bezoiit identity can 
be written as 

1 [ f~(s) [ ~ ( s ) ! ~ ~ ~ m x ( m - , ) l  

-ye(.) X e  ( 8 )  

Following the Algorithm listed below, (16) can 
be written as (15), where the form of X,(s) is 

[;::; x:.,]. 
Algorithm : The computation algorithm for solv- 
ing equation (1) is given below. 
Step (i): On the basis of the generalized state- 
space representation, use Lemma 1 to realize 

D (~)[m(~)r[O]mx(m-,)].  In the realization pro- 
cedure, set Bohr € Rmxm be a full row rank 
matrix and (Bohr - N h r )  is nonsingular. Obtain 
Do = -Dh;'(Bohr - N h r )  which will be nonsingular 
as well. (Bo + LD,) can be read directly from the 

coefficients of [ I V ( S ) ~ [ O ] ~ . ( ~ _ ~ ) ]  - D,. 
Step (ii): Select rank 0 infinite eigenvector as V$" = 
4 0 )  4 0 )  V, Do where V ,  is the same as (12) and select 

f:; = [ [o] lxrr[z j ] lx(m-r) ] '  where r j _< m and 
Zj are the arbitrary constant matrices. Use The- 
orem 1 for infinite eigenstructure assignment, then 
apply Theorem 2 and Lemma 2 to obtain the desired 
solution. 0 

-1  

4 0 )  = [E!B,]+AV, Do 

= [E!Bo]+ { - [Yn x r i[O]n x (m-r I] + Bo).  

Since [EIB,]+B, = [ [ ~ I m x n ! ~ m x m ] ~ ,  we can easily 
prove that rank[Vg)] 5 r .  We can also choose A' for 
the desired infinite eigenvectors whose chain have 
structures as p m i  = n - m + r and poor = 
1 ( r  < j 5 m). The vectors f:) (1 _< j _< r )  can 
be solved by (7) and the values off$ ( r  < j 5 m) 
are determined under the requirement of Algorithm 
step (ii) listed above. From (5),  we may proceed to 
obtain 

4 0 )  K V C )  = K V ,  Do = F E )  
- - [pi . . . fg . . . p k ]  

m- r x r z ( m  [olrx(m-r) - r x (m - r 1 = [z,"x. 

where 2 are the arbitrary constant matrices. From 
(13), (15) and X , ( s )  = I - A'M- ' ( s ) (B ,  + LD,), 
since the constant term of X e ( s )  is 

I + K ( B o  + LD,) 
4 0 )  = I + ~ { [ ~ n x r i [ o ] n x ( m - r ) I  + v 

= I + [ ~ c ~ n x r ! [ ~ ] m x ( m - r ) ]  + F , '  

and the si term of X,(s) is 

KE'(B,  + LD,) 
4 0 )  = ~ ~ ~ { [ ~ n x r i [ o I n x , m - r , ]  + 0 0 )  

= [h'E'Y,xri[O],x(m-,)], where 0 < i 5 q - 1, 

the resulting form of X , ( s )  = I - I i 'M- ' (s)(B,  + 
LD,) is [ ;[:; 
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4 Example 5 Conclusions 
Given 

find - the desired eight polynomial matrices D ( s ) ,  
N ( s ) ,  x(s), L(s), D(s) ,  N ( s ) ,  X ( s ) ,  and Y ( s )  that 
satisfy the following equality 

Solution : 

The closed-loop infinite eigenvector chain lengths 
are pool = 3 and poOz = 3, then 

- 0 . 1 1 , 2  + 0 . 2 2 *  - 0.22 0.56.2 - 0.11. + 1.11 
D ( * )  = [ - 0 . S 6 r 2  + 0 .00 ,  - 0.56 I . 7 8 r 2  + 0.00. + 1 7.1 ’ 

The major contributions of this note are as follows 

(i) A controllable and observable generalized state- 
space realization method for polynomial matrix 
fraction descriptions is constructed. 

(ii) An efficient algorithm to treat infinite eigen- 
structure assignment problems is developed. 

(iii) To reduce the lengths of closed-loop infinite 
eigenvector chains, we provide row search se- 
quences as shown in Fig. 1 and Fig. 2. 

(iv) Explicit formulas for solving the polynomial 
generalized Bezout identity are derived. Since 
the chain lengths of closed-loop infinite eigen- 
vectors are considered during the state feedback 
gain computation procedures, we can find the 
adjustable-degree solutions based on the gener- 
alized state-space approach. 

- 0  I l r 2  - 0 0 0 s  - 0 11 +O 56,’ - 0 001 + 0 56 
N(’) [ - 0  56.’ - 0 44, - 0 56 + I  for2 + 1 221 + 1 761  ’ The developed method allows us to use the 

existing software packages (e.g. MATRIXx  I 
M A T L A B  etc.) to compute the solution. - 0  l l e 2  - 0 401 + 0 09 0 56,’ + 0 40s + 0 36 

F(*) = [ - 0  56,’ - 0 84, - 0 36 1 T 8 # 2  + 2 6’21 + 2 5 8 1  ’ 

+O 11,’ + 0 16, + 0 82 
+O 56,’ + 0 40s + 0 36 

- 0  56‘’ - 0 2 9 s  - 0 71 
- 1  78,’ - 1 401 - 1 58 

1 I ~ 2 - 4 4 , + 3 2  o , a + o , , - i a  
- 1 6 r + O 8  1 0 2 + 1 6 r - O a  

- 1  . 2 + 1 4 . + 0 6  - O # 2 + 0 6 a + 2 2  
y ( ’ ) r  [ O s a + 0 6 , + 3 4  - - 1 * 2 - 0 6 a - 0 2 ]  

If the infinite eigenvector chain lengths are pool = 
5 and pOo2 = 1, then 

-500.61 - 1003.2] , 
-150.6, - 3 1 7 . 2  

v ( r )  = [ - l . 0 # 2 - ~ 6 . 6 ~ + 8 1 . 6  5 0 1 . 6 r + 5 6 5 . 2  
-26.6.  + 26.6 159.6,  + 185.21 
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