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Abstract

Using the concept of infinite eigenstructure assign-
ment in generalized systems, explicit formulas for
calculating the polynomial generalized Bezout iden-
tity is proposed. The degree of the polynomial ma-
trix is directly related to the length of the longest
infinite eigenvector chain of the associated general-
ized state-space representation. Hence, the method
of infinite eigenstructure assignment can be used to
find adjustable-degree solutions of the doubly co-
prime matrix fraction descriptions.

Keywords : Generalized systems, Infinite eigen-
structure assignment, Polynomial generalized Be-
zout identity.

Introduction and
Formulation Problem

1

The left matrix fraction description of a lin-
ear time-invariant system is usually described by
_D__l(i)ﬁ[s). We suppose that D(s) € R[s|™*™
and N(s) € R[s]™*" are left coprime and D(s) is
row reduced, where R[s|™*X™ and R[s|™*" indicate
the set of all m X m and m x r real coefficient poly-
nomial matrices respectively. A simple approach is
proposed here to determine six polynomial matrices
X(s), Y(s), D(s), N(s), X(s), and Y(s) of appro-
priate dimensions to satisfy

(1)

—N(s)
D(s)

I 0
o7

[ D(s) W(S)] [7(3)

=Y(s) X(s)|[Y(s)
Throughout the development of this paper, we first
assume m < r and { &,N(s) < 6,,D(s), for 1
1,2,...,m }, where §,[.] stands for the ith row
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degree. Note that the assumptions of m < r can
be released in the subsequent development. Equa-
tion (1) usually called as the polynomial generalized
Bezout identity, which plays a key role in the syn-
thesis and analysis of compensators for linear time-
invariant systems in frequency domain [2,8,9]. The
computational algorithms for solving the equation
can be found in the literature, such as linear alge-
braic methods in [12], and the state-space methods
in [3,4,6]. However, the adjustable-degree solutions
in (1) have rarely been investigated in previous re-
searches.

While the bulk of published papers have been fo-
cused on solving the polynomial generalized Bezout
identity, the use of infinite eigenstructure assign-
ment in generalized systems to attack this subject
is still lacking. The degree of a polynomial matrix (
which is defined as the greatest degree of the polyno-
mials appearing as entries in the polynomial matrix
{10] ) is directly related to the length of the longest
infinite eigenvector chain. Thus, if we can assign
the infinite eigenstructure under the state feedback
gain selection, then the adjustable-degree solutions
in (1) could be found. In the following, we describe
the infinite eigenstructure assignment method for
controllable generalized systems first, which is sim-
pler than that of [5].

2 Infinite Eigenstructure
Assignment

We consider a controllable time-invariant general-
ized system [13] of the form:

Ei(t) = Az(t) + Bu(t), (2)

where z(t) € R™ is the state vector, u(t) € R" is
the input vector, E, A and B are real constant ma-
trices of appropriate dimensions. We assume that



E is singular and its rank is g which is less than n.
Furthermore, we assume that sE — A is a regular
pencil (i.e. |sE — A| # 0 ) such that system (2) is
solvable.

Our purpose is to find a state feedback gain ma-
trix K such that the closed-loop system

Ei(t) = Acz(t), where A. 2 A+ BK  (3)

contains infinite eigenvalues only. Let algebraic and
geometric multiplicities of infinite eigenvalues are n
and 5 respecuvely, then = nullity £ = n—g. We
denote v be the rank 0 infinite eigenvectors of (3),
then Ev‘ ). =0, j=1,2,-- )
be the ra.nk k infinite eigenvectors, then Evgj =
Acv((:j_l), k=12 ,(poj — 1). Since (3) has
n infinite eigenvalues, we have n(= E;-’___l Pooj) lin-
early independent infinite eigenvectors vgg [11].

The nonsingular matrix V, is constructed as fol-
lows :

-, 1. Also, denote v

Voo 2 [Vao1, Veoz, -3 Viojs -y Veonds  (4)

A o0j =
Veos = ["c(:g}"" vgJ)' : vg: M,
where j =1,2,---,nand k =0,1,2,---,(pooj — 1).
Let us set ®) )
Jooj = Kvgjs (5)

then f(k) € R will help us to find K later. Using
the mﬁmte eigenstructure proposed in [11], we can
obtain

Av(k 1)+Bf(k 1)’
(6)

Ev(k) A’U(k ')+BK (" 1) _

fork=1,2,"‘,Pooj"1, j=1a2:"'7”

Note that [E —B] is full row rank, since (2)

is controllable. Also, (k)- lt=o being in the null

space of E, those v(k) and fgj_l) can be computed
interactively as
(k)
Vooj - . (k 1)
[ (:?1)] = [E : —B] Avi (D)

for k = ],2,"',peoj_11

where (-)* represents the matrix generalized in-
verse of the designated matrix (-). From (7),

f(o) f(]) f(p“"’—z) can be solved. The selection

of fg;“’_l) should satisfy the requirement listed in
Remark 1. Then we can construct

FDOé[Foollpeo2a"'>Fooj1"',Foon], (8)

(Pm) -1 )]

[f(o) f(l) f(k) .
00j?

whereJ =12,---,nand k = 0,1,2, ,(pm, -1).

From (4), (5) and (8), we have KV = Fy, the

feedback gain K then becomes

K = F . V;L. (9)

The columns of V., .-2- are infinite eigenvectors
of the closed-loop system, hence they are linearly
independent. When (7) is used to create Vo, and

Foy, {vff,)l, ff,’,, ,u‘£2, should be a basis of the
null space of E. Also, different approaches to find
v:_: may cause the different combinations of chain
lengths. For example, we can search the crate by
rows along the procedure tabulated in Fig 1. ( Sim-
ilarly like [8], p 427. ) Note that if (2) is controllable
then all finite eigenvalues can be assigned to infinite

ones [5).

eigenvectors
- 3 13
chain (Qz ... uE,OB,
rank 0 x X x
rank 1 X X X
rank 2 0 x 0
rank 3 0
rank p
Fig 1. Sequences of independent
infinite eigenvectors examination
eigenvectors premultiplied by E
chain E'v“‘) Ev(k)
rank 1 X X X
rank 2 0 X 0
rank 3 0
rank 4
rank p

Fig 2. Sequences of independent
vectors examinatiop

Remark 1 : Since sE — A, contains infinite eigen-
values only, sE — A, must be unimodular. The de-
terminant of sE — A, is a nonzero constant and
equals to | — A.|. Thus, A, = A+ BK =
BFyVg! would be nonsingular [5]. Both A. and
Ve are nonsingular, their product A.V,, is nonsin-
gular as well. From (6) and A, = A+ BF,, V3! we
see that
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AV

=4, AT D, a4 B

A, ‘(,gzl, -,Acvg:""z),Avg;""l) +Bf°(g;’"_l)}]
=[Evga, ~-,Evg‘;""l), Avg?’-l) +Bfg,’f°"l)
Evg)ﬂ, ey Evg;""—]), Avg;’u-l) + Bfg‘;;cw“l)}]

The requirement of nonsingular A,V is equivalent
to the following:

@) Let S £ {Ev),Ev®, -, Eoe D i
Evl), Ev3), -+, EvEs> ™V}, then S is an in-
dependent set. We should examine the inde-
pendence of S as shown in Fig. 2 by the similar
procedures listed in Fig. 1.

(i) Let T 2 {4y~ 4 gyl

Av®e™Y 4 BflPer=} then the choices of

f""’"’ Y for 7 = 1,2,---,n should satisfy the

condition of [S : T being nonsingular. m]
As a summary of the previous results, we have
the following theorem.

Theorem 1 : Suppose (2) is a controllable gen-
eralized system, the closed-loop assignable chains of
infinite eigenvectors, vg}, can be written as

KV = Fpo or K = FmVozl

where V, and F, are shown in (4) and (8) respec-
tively. v(k)- and f(k) satisfy

o)
[f(k 1)] ‘([E

k=12,

(o)_ = 0, under the conditions of

_B])+Avgf”,

"‘1Pooj“1a j=172i"'77’y
where Ev
(1) Vo is nonsingular.
(i) [BvG), BvZ),

Bf(”“‘":) :Evﬁ,},,Evgﬁ!,, e
Av(p“"'— ) Bfg;T"-])] is nonsingular. ]

E (peol—l) Avgtrl-l) +
Evg#"_l)

’

The condition (i) is needed due to the require-
ment of eigenvectors being independent. The con-
dition (ii) is needed because of the requirement of A,
being nonsingular ( See Remark 1). Our approach
presented here is more straightforward and requires
less computation than that in [5]. The above result
also provides a useful approach to solve the polyno-
mial generalized Bezout identity.

3 Solutions of the
Polynomial Bezout Identity

In this section, we shall introduce an efficient
method to realize a time-invariant descriptor sys-
tem whose input-output relationship is given by
the m x r polynomial matrix fraction description

D (s)N(s) with 6:N(s) < 6.:D(s). Let a; =
8.,D(s) + 1. We first define
010 -0
001 ---0
E= block diag | : U ,
- 000 1
0 0O axa,
i=1,2..-,m
(10)
and
C= block diag [1 0 O 0];xo, s
i=1,2,.
(11)
We set V(c:) = C* ( the transpose of C ), then
Ve
= [-(0) , —(U) v(o)]
block dla.g [1 0 o 0]} ke, »
i=1,2,.

(12)

Note that {#0),i = 1,2, -,m} forms a basis for

oot

the nullspace of E.

If we set M(s) = (sE — I), then M(s) is a uni-
modular matrix. (sE — I)~! can be represented as

M) = (sE-D?
={I+Es+ E*?+ ...+ E?"1s971},
(13)
where ¢ £ max {o;, fori = 1,---,m}. This can
be further expressed as
(sE-D7'=
1 s s}
01 =2
block diag{— | : -, : }
00 s
0 0 | S
i=12....m
(14.a)
and
CE-N"1=
block diag {—[1 s A I 3
i=1,2,-,m

(14.b)
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Lemma 1 : Let us consider the m x r polyno-
mial matrix fraction description -ﬁ_j](s)ﬁ(s) with
6.iN(s) < 6,;D(s). _Assume D(s) and N(s)
are left coprime, and D(s) is row reduced. De-
fine the highest-row-degree coefficient matrix of

[D(s) : N(s)] be denoted as [Dy, : Na,].

Suppose m < r and set B,s, € R™*" be an arbi-
trary full row rank matrix and D, = —D,';,I(Bo;., -
Nj.). Under these settings, if we choose L and
B, satisfying D(s) = I + CM~(s)L where C, E
and M (s) are shown in (10), (11) and (13), respec-
tively, and N(s) = D, + CM~*(s)(B, + LD,), then

D' (5)N(s) = Do+CW(s)~' B,, where A 2 I-LC
and W(s) = (sE — A). Furthermore, the quadruple
{E, A, B,,C} are controllable and observable. O

Remark 2 : In Lemma 1, L, B, are read directly
from the coefficients of D(s)— I and N(s) - D(s)D,
since C(sE — I)~! has the form shown in (14.b).
Thus, the realization is simplified. D

In the previous section, different independent vec-
tor searching schemes for determining K will result
in different infinite eigenstructures of controllable
generalized systems. The computed state feedback
gain matrix K will make A, nonsingular and create
a unimodular matrix H(s), where H(s) = sE—A. =
sE— A— B K. (sEx — Acxo) is the staircase form
of (s£ — A.), this can be obtained under unitary
transformations in [1] which is a numerically reli-
able algorithm.

Q(E-A)Z =(sFEx — Aco)-
Hence, (sEoc ~ Acoo)™! can be represented as

(SEDO - Accn)_l

= (s[(Aeww) ™ Boo] = 1) [(Aeeo) ']

= {1+ [(Accs) ' Eco)s + [(Acoo) ' Ecc)?s® + - - -
+ [(Acw)—le]qc-lsqc—l}[(Acw)q]‘

where ¢. = nmilpotent index [(Aceo) ' Eco]. The
highest degree H~!(s) is determined by the length
of the longest infinite eigenvector chain denoted
as g.. With this idea in mind, we will develop
adjustable-degree solutions of the polynomial gen-
eralized Bezout identity (1) using state-space ap-
proach. For example, if we adopt the schemes shown
in Fig. 1 and 2, the length of the chained eigenvec-
tor will be less.

An explicit formula to find solutions of the poly-
nomial generalized Bezout identity is proposed as
follows :

Theorem 2 : D(s) € R[s]™*™ and N(s) €
R[s]™*" are left coprime and D(s) is assumed to
be row reduced. Suppose m < r and 6, N(s) <
6r,D(s), the controllable and observable realization
of D' (s)N(s) = Do + C(sE — A)~! B,, remain the
same as in Lemma 1. The following eight polyno-
mial matrices satisfy (1) :

D(s)=I1+CM~(s)L,

N(s) = D, + CM~(s)(B, + LD,),
D(s) = (I+ KH™1(s)B,),
N(s)= D, + (C + D,K)H™(s)B,,
X(s) =1-(C+DoK)H™(s)L,
Y(s)= KH Y(s)L,
X(s)=1- KM™(s)(B, + LD,),
Y(s) = KM~(s)L.

where M(s) = sE — I, F is found from (10) and
H(s) =sE—-A-B,K, K is obtained from Theorem
1 which is infinite eigenstructure assignment. ]

To consider the case of m > r in doubly coprime
matrix fraction descriptions, we give the following
comments.

Lemma 2 : Suppose that D(s) € R[s]™*™ and
N(s) € R[s]™*" are left coprime. It can be eas-
ily shown that as m > r and X’(s) is an arbitrary
polynomial matrix, the following results hold:

(i) If D(s) and N(s) are left coprime then D(s)

and [N(s) : [0]mx(m—r)] are left coprime.

(i) 1 BT () + [0 Omecn-r) | 100 =7
then D(5)X(s) + N(s)Y(s) = I.

(i) 1 D(s)-N(s)X(s)]) + [N(5)[0}mx(mor)]
[D(S) 3'(3)] = [0 0] then —D(s)N(s) +

_X(s) A(s)
N(s)D(s) = 0.
e [YO ] L [X) 0 1T
() ”[ x(s) ]X () + [X(s) x(s)] [X(i) =
0

0] then =Y (s)X(s) + X(s)Y(s) = 0.

™) 1f[“;’((:))] [-N(s) X(s)]+ [ﬂg X(()s)]

(26 201 2 [ 9] sr vioweo »

X(s)D(s) = 1.
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(vi) if

[ -D_(s) [—ﬁ(s) [O]mx(mTr)].
-Y(s) X(sy O
X(S)] X(s) X(s)] |
X(e). [=N6) X&) 1) o
[Ze] 2 x| = o 1]
X(s) X(s) X(s) . (1-5)

then

D(s) N(s) X(s) -N(s)] _[1 0]

~Y(s) X(s)||Y(s) D(s) ™ |0 1)

(vii) D(s) and [N(s) : [0]m x(m~r)] are left coprime,
the polynomial generalized Bezout identity can
be written as

[ —D-(s) [N(s);[()]mx(m-r)]]

—Y,(s) Xe(s)

Xe(s) =Ne(9)]_[1 0

6 o=l 1w

The form of ﬁ(s)v [ﬁ(s)s[olmx(m-r)]) Ye(s)v
Y.(5), De(s), Ne(s), X.(s) and Y.(s) are de-
fined as those indicated in Theorem 2. (n]

Following the Algorithm listed below, (16) ca

be written as (15), where the form of X,(s ) is
X(s) O
X(s) X (5)]'

Algorithm : The computation algorithm for solv-
ing equation (1) is given below.

Step (i): On the basis of the generalized state-
space representation, use Lemma 1 to realize

ﬁ-l(s)[ﬁ(s)f[o]mx(m-,.)]. In the realization pro-
cedure, set B,,, € R™*™ be a full row rank
matrix and (Bos, — Ni,) is nonsingular. Obtain
D, = -D;rl(Bohr ~ Ni,) which will be nonsingular
as well. (B, + LD,) can be read directly from the

coefficients of [N(5):[0)mx (m-r)] = D

Step (ii): Select rank 0 infinite eigenvector as V¥ =
—(0 —(0
V( )Do where V(m)

f(O) = [[Ollxrg[zj]lx(m-r)lt where r < j < m and
Z; are the arbitrary constant matrices. Use The-
orem 1 for infinite eigenstructure assignment, then
apply Theorem 2 and Lemma 2 to obtain the desired
solution. u]

is the same as (12) and select

In the follow, we want to prove the special form of

=(0)  =(0)
X(s). We have AV =(I-LC)W =V, ~L,

Bi 2 By + LDy = Bo— AV D, + VD,

and

By = VDo = Yaxr Ox(mry)s  (15)

where )Y is an arbitrary constant matrix. We

know AV( )Do = ~[Vaxr: [0],,)((,,. ] + Bo. Define

FO & (0. £ VD 2 o) .olh) and

—(0
éc?) 2 [vgg; .. -vf,i.’Z,,] = V;)Do then

(1)

)
[Féé”]

. —(0

= [EZB.,]+AVE,°)DO
= [EEBo]".{'[yn xrz[o]nx(m-r)] + Ba}-

Since [E:B,]* B, = [[0)mxn Imxm]!, we can easily
prove that rank[V(”] < r. We can also choose K for
the desired infinite eigenvectors whose chain have
structures as 3 \_; Pooi = n— m+ 71 and peo; =
1(r < j £ m). The vectors f(o) (1<j<r)can
be solved by (7) and the values of f(o) (r<j<m)
are determined under the requlrement of Algorithm
step (ii) listed above. From (5), we may proceed to
obtain

Kv® = Av D,,_F(O)
= [f° (0) (0) f(o)

- err {Olrx(m-r) ],
Z(m-r)xr Z(m—r)x(m-r)

where Z are the arbitrary constant matrices. From
(13), (15) and X.(s) = I — KM~Y(s)(B, + LD,),
since the constant term of X, (s) is

I+ K(B,+ LD,)
. . ~(0)
=1+ K{[Yaxr{0ax(m-r]+V Do}

=1+ [I{ynxrz[olmx(m—r)] + Fg)
and the s' term of X,(s) is
KE'(Bo + LD,)

i : 7ol
= KE' {[ynxr5[0]nx(m—r)] +V DO}

= [A’E*ynx,E[O]mx(m_,)], where 0 < i< g1,

the resulting form of X.(s) = I — KM~1(s)(B, +

1o)is [ 360 x|
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4 Example 5 Conclusions

Given The major contributions of this note are as follows
— 2 :
D(s) = [s +§s+2 s’i 1] '
(i) A controllable and observable generalized state-
— 241 s space realization method for polynomial matrix
N(s)= fraction descriptions is constructed.
0 24541 raction description
find the desired eight polynomial matrices D(s), (ii) An efficient algorithm to treat infinite eigen-
N(s), X(s), Y(s), D(s), N(s), X(s), and Y (s) that structure assignment problems is developed.

satisfy the following equality (1ii) To reduce the lengths of closed-loop infinite

Di ~ X -N 10 eigenvector chains, we provide row search se-
[_Y((sg) Xé:;] [7((3 D(S)] = [0 1] quences as shown in Fig. 1 and Fig. 2.

(iv) Explicit formulas for solving the polynomial
Solution : generalized Bezout identity are derived. Since
the chain lengths of closed-loop infinite eigen-
vectors are considered during the state feedback
gain computation procedures, we can find the
adjustable-degree solutions based on the gener-
alized state-space approach.

The closed-loop infinite eigenvector chain lengths
are Peoy = 3 and pe2 = 3, then

D) = ~0.110% $0.22¢ - 0.22 0.36¢2 -~ 0.11s 4 1.11
~0.561% 4 0.00s - 0.56 1.76¢% 4 0.00s +1.78 | '

N@) = [‘“'"" - 0.00¢ ~ 0.11 +0.56s% — 0.00¢ + u.ss]

—~0.56s2 - 0.44s = 0.36 +1.78:%7 4+ 1.220 4 1.78 | ' The developed method allows us to use the

existing software packages (e.g. MATRIXyx,
] MATLAB etc.) to compute the solution.

X(o) = —0.115% = 0.40s 4+ 0.09 0.5652 4 0.40¢ 4 0.36
—0.56¢% - 0.845 — 0.36 1.78+42 4 2.620 +2.58 |

Ty = | +° 1162 4 0.186 4+ 0.82 -0.56s2 - 0.29s = 0. 71
40.56:7 4 0400 4 0.36 —1.78:% — 1400 - 1.58] "
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