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Abstract - This paper presenfs the research and 
development of a daily imaging scheduling sysfem for a 
low-orbit, earth observation satellite. This satellite daily 
imaging schedulingproblem belongs lo a class of single- 
machine scheduling problems wifh salient features of 
sequence-dependent setup effects, job-assembly 
characteristics, and time window constraints. If  is NP- 
hard in camputational camplexity. We adopt 
Loqangian relaxation and linear search techniques lo 
solve this problem. Numerical resulfs demonstrate that 
this approach is eficienf in applicotions to the real 
problems. It  is .very effecfive to generafe a near-optimal, 
feasible schedule for the. imaging operations of the 
satellife. 
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1 Introduction 
This paper deals with the research and development 

of an imaging scheduling system for a low-orbit, earth 
observation satellite (€OS), ROCSAT-II [IO]. Each day, 
ROCSAT-II will take three to four strips of images in 
approximately I O  minutes when it traverses the Taiwan 
island. It takes time and power to maneuver the satellite 
from its previous position to the desired aspect angle for 
the new imaging operation. The maneuvering time and 
power depend on the positions and postures of the two 
consecutive imaging operations. For a given imaging 
area, the solution to the position and posture of the 
spacecraft is not unique. There are preferences for the 
possible combination of positions and postures. They are 
represented in a form of “window of opportunity,” 
specified by a suitability function [9]. This scheduling 
problem becomes to generate an imaging schedule, while 
considering the priority of imaging requests, the coverage 
of clouds, the resource availability of the spacecraft like 
power, space for data storage, and the physical limitation 
of camera tuming angles. An imaging request may 
involve more than one imaging operation to fulfill the 
request. 

*This work is supported in par t  by National Space 
Project Ofiice, R.O.C., under grant of NSC91-NSPO 
(A)-PC-FAl2-01. 

0-7803-7952-7/03/$17.00 0 2003 IEEE. 

Da-Yin Limo 
Information Management Department 

National Chi-Nan University 
Puli, Nantou 545, Taiwan, R.0.C 

dyliao@im.ncnu.edu.hv 

Yung-Yao Lee 
System Engineering Division 

National Space Programs Office 
Hsinchu 300, Taiwan, R.O.C. 

yylee@nspo.com.tw 

This satellite imaging scheduling problem belongs 
to a class of single-machine scheduling problems 
featured by sequence-dependent setup effects, job- 
assembly characteristics, and time window constraints, 
which is NP-hard in computational complexity [6] .  The 
study of scheduling problems with sequence dependent 
setup has attracted quite an amount of attention for years 
[6] .  For problems of such a high complexity, dynamic 
programming and exhaustive search techniques are either 
too time-consuming or impractical to solve for the 
optimal solution. Rule-based or heuristics approaches 
can reduce the computation time drastically. How,ever, 
the resultant optimality is not guaranteed. 

Agnese et a1 [ I ]  deal with the daily photograph- 
scheduling problem of an earth observation satellite 
system like SPOT [12]. This problem can be viewed as 
an instance of the valued constraint satisfaction problem 
framework, which can solved by the exact methods like 
the depth-first branch-and-bound or pseudo dynamic 
search, or by approximate methods, like greedy search or 
Tabu search. Vasquez and Hao [SI formulate the daily 
photograph-scheduling problem of SPOT as a 
generalized version ofthe knapsack model and solve by a 
dedicated Tabu search algorithm. Wolfe and Sorensen [9] 
define and use the “window-constrained packing” 
problem to model the NASA‘s earth observation system 
domain scheduling problem. They propose three 
algorithms: a dispatch algorithm, a look-ahead algorithm, 
and a genetic algorithm, which can only be applied to a 
limited and static part of the EOS problem. 

LANDSAT-7 [ l l ]  is the newest member of the 
LANDSAT family of remote sensing satellite. Porter and 
Gasch (71 propose an image scheduler for LANDSAT-7, 
which uses a multi-pass scheduling algorithm. Their 
scheduling algorithm employs rules based on optimistic 
resource allocation and look-behind preemption to adjust 
past decisions based on current knowledge. This 
algorithm is a linear finite deterministic model. The 
image scheduler is not an optimal scheduler because it 
fails to execute full backtracking to find the most cost- 
effective path solution. 
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Instead of pursuit for the optimal solution, in  the 
paper, a mathematic programming approach is adopted to 
achieve a near-optimal solution with allowable 
coinputation time, which is very effective for scheduling 
problems in large-scaled or time-critical practices. The 
daily imaging scheduling problem is first formulated as 
an integer-programming problem. We then use the 
Lagrangian relaxation technique to decompose the daily 
imaging scheduling problem into individual task-level 
scheduling subproblems. Given a set of Lagrangian 
multipliers, each subproblem is solved by a linear search 
method. .A dual function is formed to optimize the 
Lagrangian multipliers by a subgradient method [3]. A 
heuristic algorithm based on the dual solution is then 
developed to find a near-optimal and feasible solution. 

The remainder of this paper is organized as follows. 
Section '11 describes the mathematical modeling of the 
satellite daily imaging scheduling problem. Solution 
methodology and development of a feasibility adjustment 
heuristic are described in Section 111. Section IV 
conducts the numerical experiments and demonstrates its 
ability in the applications to ROCSAT-II image 
acquisition scheduling. Finally, in Section V concluding 
remarks are made with some future research directions. 

2 Satellite Scheduling Problem 
Formulation 
Define a task to be a basic operation of image 

acquisition over an area of the earth. Since an imaging 
request may need more than one tasks, let a job be the 
collection of all the tasks to fulfill the request. Some 
assumptions are made as follows. 

1. 
2. 

3. 

4. 

5 .  

A task can belong to a job only. 
A task can only be processed at most once during 
the scheduling time horizon. 
Only a task is being processed or being setup at a 
time. 
All the imaging requests are released and given at 
the beginning of the scheduling time horizon. 
There are N distinct areas with cloud coverage 
above them during the scheduling time horizon. 

T 
t 
J 
i 
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I 

i, k 
Pi 
Cb 
Sb 
M 

Let us define some notations for modeling the 
satellite daily imaging scheduling problem. 

: scheduling time horizon; 
: timeperiodindex,r=l, . . . ,E 
: collection of requested imaging jobs; 
: job index, j t J andJ= t J I ;  
: collection of tasks of jobj ;  
: collection of all tasks, I = U I j  : 

: task index, i, k d  and I=\q; 
: processing time of task i; 
: unit cost of set up from processing tasks k to i; 
: setup time from processing tasks k to i; 
: images storage capacity of SSR (Solid State 

j d  

Recorder); 

D : available power before the imaging operation 

mi : imaging mode of task i, mi E { Panchromatic 

: image size of task i: 4i 
Ui : power required for processing task i; 
vb : power required for setup from processing task 

lw:,nfe] : opportunity window oftask i, w: and nf are 

c(t) 
4 
Bi 

[wt.w:] : thenth cloudcoverage area, n=1 ....A! 
bi 

a, : a step function indicating that task i is 

begins; 

(PAN), Multi-Spectral (MS), PAN+MS}; 

ktoi :  

the time frame available for processing task i; 
: suitability of task i at time r, 
: penalty of incompleteness ofjob j ,  A j  2 0 ; 

: suitability benefit of task i, Bi t 0 ; 

: the time when task i starts its processing: 

1, VI  t bi . 
0, VI < bi ' processed, where ait = 

: a binary variable indicating that job j is 
complete, where 

= i I, otherwise 

6 
O , ~ ~ ; ( r - ~ ~ + , ) = l . V i € I j  . 

i?d! : decision variable for setup from processing 
l , V t t b i - s & ,  
0,otherwise ' tasks k to i, where ykir = 

Initial Setup Constraint: Assume that the initial state of 
the satellite is setup to a dummy task, 0. where, soi = 0, 
Coi = 0 ,  and voi = 0 ,  Vi E I. As there is one and only 
one task that can be Setup from task 0, we have 

I 

i=l 
D o i r  1. (1) 

Setup Constraints: An imaging operation cannot 
commence its processing before completing its setup. We 
have 

k t i  

Machine CaDacifv Constraints: Since there is only one 
camera equipped with the satellite, at any time, there is at 
most one task being processed or setup on the satellite, 
that is, 

Storope Capo& Constraint: The images acquired are 
first stored on board until they can be downloaded 
towards a ground station. As the total available memory 
on board is limited, this may impose constraints on the 
selection of images as well as their scheduling. The total 
size of images taken should be less than the available 
image storage capacity before imaging operations take 



place. Note that the coefficient q, is related to the adopted 
imaging mode. 

(4) 

Power Consumofion Consfrainf: The total power 
consumption for imaging and setup operations should be 
less than the available power, D. 

Window of Cloud Coveraees: The mission of ROCSAT- 
I1 is to acquire substantially cloud-free images. We 
accomplish this by employing cloud coverage prediction 
data sets from the weather forecast data of Center 
Weather Bureau (CWB). Any task that intends to take 
images of an area with cloud coverage is assumed invalid. 

Binorv Conshainfs: As the variables n, ,l3, and y are all of 
either 0 ' s  or l's, the following binary constraints should 
be satisfied. 

air c { 0,1], vi E ~ , t .  (7-1) 
f l j  €{0,1], V J E J .  (7-2) 

ykl E{O,I] ,  V k . i E I , f .  (7-3) 

Our objective of the imaging scheduling problem 
has three folds: the first one is to minimize the weighted 
number of incomplete jobs, as defined as follows: 

J 
1 A j P j .  

j=l 

Another objective considers the suitability benefits 
of imaging within the window of opportunity, 
I w. P, w. r l  VI.  For a task, different-level of performance 
can be achieved at the different location within its 
window of opportunity, due to satellite dynamics and its 
aspect angle to the target of interest. A suitability 
function, ri(t), is thus defined for the suitability of 
executing task i over the time horizon. An example of 
the suitability function is shown in Fig. I .  The operation 
period represents for the imaging period. 

Fig. I .  Suitability Function C{f) 

~ 
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For task i, its resultant suitability is 

Our objective is to maximize 
T 

, = I  
ZBiTi(t)[ail 
. .  
the total weighted suitabilities of all the tasks, i.e., 

The other objective of the scheduling problem is to 
minimize the total setup costs incurred, 

The satellite imaging scheduling problem is then to 
schedule imaging operation that minimizes the weighted 
number of incomplete jobs and the total operational setup 
costs, and maximizes the total suitability benefits of all 
the tasks while satisfying all the constraints. 
Mathematically, it is formulated as 

subject to constraints (1) to (7) 

In (P), the first term is for the weighted number of 
incomplete jobs, the second for preferences for 
placements within the window of opportunity, and the 
final for the costs incurred by setup operations. 

3 Solution Methodology 
The scheduling problem (P) formulated in Section 

II is an integer linear programming problem of NP-hard 
computational complexity [6] .  As there are couplings of 

tasks in A j P j ,  which make the difficulties in solving 
3 

i=l 

the problem, thus we develop an approximation to this 
term that yields a lower bound to (p). 

Let 2 ; = A i . V i ~ I j ,  and let ? i=II j I ,V iEI j  

We then have the following two lemmas. 

J 
Lemma 1: 

Proof: As a task can belong to a job only, we have 

J 
= 1 Aj 

j = I  



Proof: From the definition of p j ,  

Since x- l<~x]<x,VxxE'H,  we have 

Therefore, 

Proof: From lemmas 1 and 2. 

From theorem 1, define a new mathematical 
program (P') as 

k d  

subject to constraints (I) to (7) 

Note that solutions to (P') provide a lower bound 
to those of (P). 

We then adopt the Lagrangian relaxation approach 
along with the linear search technique to solve problem 
(P'). Solution development is then detailed as follows. 

3.1 Decomposition by Lagrangian Relaxation 

In problem (P') , we first apply the Lagrangran 
relaxation technique to initial setup constraint ( l ) ,  
machine capacity constraints (3). storage capacity 
constraint (4), and power consumption constraint ( 5 )  with 
Lagrangian multipliers k, { A , , V f }  , A , and q , 
respectively, where 5 E R and A, 2 0, V i  , A Z 0 .  q Z 0. 
We form a Lagrangian function @(e, 1, A, q) for problem 
(P') and decompose into task-level subproblem 
D ~ ( C , A , A , ~ ) .  vix  as follows: 

The dual problem (D) to (P') after Lagrangian 
relaxation can be defined in the following 

subject to 

3.2 Solution Methodology for Subproblems 

The problem (P') has been decomposed into I 
subproblems. Each subproblem (Pi) then becomes to 
determine bfi , } ,Vk,f ,  in order to minimize the 
objective function @ i ( { , l , ~ , q )  of (P;) , while 
satisfying constraints (2), (6 ) ,  and (7). As for a given 
task, say i, there exists only one solution to yfi, =I, for 
some k and 1. Therefore, a linear search method is 
adopted to find the solution, which yields O(IT) of 
computational time. 

3 3  Dual Solutions 

The dual value of @({, I,n,q) can be calculated by 
solving all the subproblems for a given set of Lagrangian 
multipliers, {{,I,n,q). Due to the integral requirements 
in subproblems, the dual function is polyhedral concave 
made up of many facets and is non-differentiable. 
Lagrangian multipliers {, ,& n and q are iteratively 
updated by the subgradient method (SG) [3] to solve the 
dual problem (D). SG is commonly adopted to solve the 
scheduling problem of realistic sizes [5] .  Compared with 
the other multiplier adjustment methods, SG requires the 
minimization of all the subproblems to obtain a search 
direction, which provides an approach for speeding up 
computation [ 5 ] .  
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3.4 Feasibility Adjustment Method 

Theoretically, even when the optimal solution to the 
dual problem (D) is obtained, it may still result in an 
infeasible schedule, i.e., some of the constraints ( I ) ,  (3), 
(4) and ( 5 )  cannot be satisfied by the dual optimal 
solution. This is because of the integer decision variables 
involved. However, the dual cost, the minimal cost of a 
relaxed problem (P‘) , does provide a lower bound to the 
optimal cost of (P’) . TO complete our solution 
methodology, an iterative heuristic algorithm is further 
developed to adjust the dual solution to a near-optimal, 
feasible schedule by taking advantage of the marginal 
cost interpretation of Lagrangian multipliers. 

The heuristic algorithm includes five major steps 
summarized as follows. The algorithm first resolves the 
violations on relaxed constraints based on the dual 
solution. After solving constraint violation and removing 
incomplete jobs, the processing sequence has been 
changed. New setup relationships are built. With the 
help of Lagrangian multipliers, only a complete job with 
the minimum cost is inserted into the final schedule list 
and those incomplete jobs are removed. This step 
continues until no more unscheduled job can be inserted. 
Finally, for better imaging quality of each scheduled 
imaging task, fine tune of the schedule is performed to 
achieve its best feasible solution within its opportunity 
window. 

This heuristic guarantees the feasibility of the final 
solution but not the optimality. Once a feasible schedule 
is obtained, the corresponding cost of the objective 
function is an upper bound on the optimal cost, while the 
dual cost serves as a lower hound. The difference 
between the optimal cost and the lower bound is known 
as the duality gap, which provides a measure of the 
optimality of the feasible solution; the smaller the gap, 
the closer the feasible schedule to the optimal. 

4 Numerical Experiments 
Numerical experimentation i s  conducted in this 

section to assess the feasibility, ophmality, and features 
of the proposed satellite daily imaging scheduling 
algorithm. Features of job assembly, setup operation 
effects, cloud coverage areas, and opportunity windows 
are considered in the test cases. The algorithm is first 
applied to a toy example of only two jobs of three tasks 
with time horizon of six periods, whose optimal schedule 
can be obtained by using the exhaustive search method 
Second, a projected daily imaging scenario of ROCSAT- 
I1 to demonstrate its applicability to the realistic problem. 
The scheduling algorithm is implemented in C language. 
All the experiments are conducted in an AMD Athlone- 
1600TM PC with memory size of 256MB. All the 
Lagrangian multipliers are initialized as zero. 

4.1 

Consider a simple test case where there are only 
two jobs. Job 1 has only one imaging task while job 2 

Test of A Toy Example 

has two. All the test data of these two jobs are shown in 
Table 1. The suitability function for each task is 
illustrated, respectively, in Fig. 2, where the cloud 
coverage conditions (in dashed slots) are shown as well. 

Table 1 : Test Data of The Toy Example 
lob No, 2 a k  PInah Sullab,llw “@a Pen& LW T l m  and Cat  (ib GI 

(pll Tarkt T a l 2  T a L l  

I 1 4 0 0 5  2 (0.0) (1.1) (2 .1 )  

2 2 2s 20 I (1.1) (0.01 (1.0.5) 

2 3 25 10 L ( 2 . 2 )  (1.0.5) (0.01 

0.5 +y kirm-c , :&;5L 
O I I 1 4 5 6 7  0 1 1 3 1 5 6 1  0 1 1 1 4 1 6 7  

Fig. 2.  Suitability Function and Cloud Coverage of The 
Toy Example 

It takes less than one CPU second for the algorithm 
to generate a daily imaging schedule as shown in the 
Gantt chart of Fig. 3, which is also the optimal schedule 
obtained by the exhaustive search on the entire solution 
space. The resultant feasible cost is -58.5 while the dual 
cost is -59. The duality gap, defined as (feasible cost - 
dual cost)/dual cost loo%, is 0.847%. The non-zero 
duality gap is caused by the same penalty function for 
task 2 and task 3, where Lagrangian relaxation is weak to 
resolve such a tie. In this case, even though the dual 
solution converges to the dual optimal, the duality gap 
still exists. 

Task 1 

I Task2 1 I 

Fig 3. Optimal Solution for The Toy Example 

4.2 Daily Imaging Scheduling of ROCSAT-II 

A daily imaging scheduling problem of ROCSAT-11 
is designed as depicted in Fig. 4. There are five imaging 
jobs, Jobs 1-5, which are composed of nine tasks. These 
five imaging jobs simulate the conditions of widespread 
tasks (Job I), large-area tasks (Job 2) ,  separate-hut-in-a- 
same-strip tasks (Job 3), cross-stripped tasks (Job 4), and 
consecutive tasks (lob 5) ,  respectively. The time 
window of each task is determined by the geographical 
limitation of the task. The setup time between any two 
tasks is assumed to be proportional to their geographical 
distance, and the setup cost is assumed to be twice the 
value of the corresponding setup time. The scheduling 
time horizon is of 100 time periods. Two cloud coverage 
areas are assumed with totally 4 time periods of invalid 
imaging operations. Three test cases of light, heavy and 
overloaded loadings are designed with their overall 
imaging loadings of 61, 80 and 93, respectively. 
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20 1 I ,  I 
114 116 118 120 122 124 126 

Locqmhlde (deg E) 

Fig. 4. A Projected Case of 5 Jobs and 9 Tasks in 100 
Time Periods 

Numerical results of these three test cases are 
summarized in Table 2. The duality gaps in both cases of 
light and heavy loadings are less than 2%. which can he 
considered near optimal. However. the duality gap in the 
overloaded cme becomes unaffordable large. In fact, 
solutions to the overloaded case are infeasible. That is, 
there exists no feasible schedule where all the tasks can 
be scheduled within the time horizon. In addition to the 
duality gaps, we adopt the performance measure of PSTC 
(percentage of setup time consumption) [4] to study the 
significance of setup time effects on the overall 
scheduling problem. PSTC is defined as the percentage 
of total time consumptions for setup against the total 
available machine time of the time horizon. From Table 
2, the PSTCs are less than 10% for both the light and 
heavy cases. 

Table 2: Experiment Result of 5 Jobs, 9 Tasks in IO0 
Time Periods 

5 Concluding Remarks 
In this paper, we present the development of a daily 

imaging scheduling of an earth observation satellite, 
ROCSAT-11. The satellite daily imaging scheduling 
problem belongs to single-machine scheduling problem 
with sequence-dependent setup effects, job-assembly 
characteristics, and time window constraints. We utilize 
Lagrangian relaxation to decompose the problem into 
independent subproblems, each of which can be easily 
solved by the efficient linear search method. A heuristic 
algorithm is developed to find a near-optimal, feasible 
schedule for daily imaging operations of the satellite. 
Numerical results demonstrate that our approach is quite 
effective to the application to the real problem. 

Future research may extend the algorithm to include 
realistic issues such as seasonal refreshment and 
coordination between multiple satellites. On the other 
hand, the developed algorithm deals with the scheduling 
problem assuming no machine failure effects and 
absolute cloud filters. Extensions to this research involve 

the development of solution methodologies to handle 
these stochastic issues. 
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