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Abstract

This paper presents a generalized Ellacott-Williams (GEW) al-
gorithm for the design of recursive digital filters in the complex
domain. Two design procedures which are two modified versions
of the original Ellacott-Williams algorithm are first developed.
At each iteration, linear complex Chebyshev approximation prob-
lems are formulated based on the least square error criterion to
find the solutions for the numerator and denominator. The ap-
proximation problems can be solved by using a weighted least
squares (WLS) algorithm recently proposed by the authors. This
provides an efficient desi%n technique since the heavy compu-
taltiox&a.l burden of using linear programming algorithm can be
solved.

The main differences between these two design procedures are
as follows. At each iteration, the first procedure finds the numer-
ator and denominator simultaneously. It ensures the stability of
the designed filter by adjusting the increments of the numerator
and denominator simultaneously to locate the poles of the filter
inside the unit circle. The second procedure finds the numerator
and denominator separately and only adjusts the increment of
the denominator to ensure all the poles of designed filter inside
the unit circle. The proposed GEW design algorithm is then a
combination of the two procedures. Computer simulation results
show that the proposed GEW algorithm has better design capa-
bilities than existing methods.

I. Introduction

In many applications of digital filters, we consider not
only the filter's magnitude response, but the filter’s phase
response. For example, digital filters with constant group
delay phase other than exactly linear phase are usually re-
quired in the design of digital phase network. Therefore, a
complex approximation problem arises when we design dig-
ital filters to approximate arbitrary magnitude, phase, or
group delay. Several algorithms have been proposed to solve
this problem for recursive digital filter design in the complex
domain. The most successful one among them is proposed
by Chen and Parks in [2]. However, they employ a com-
plex linear approximation tool presented in 3] to modify the
Ellacott-Williams (EW) algorithm [g and then use a con-
ventional linear programming method to solve the resulting
linear complex approximation problem. This method does
not guarantee that the best approximation solution can be
obtained even in the local optimal sense. Moreover, it is not
an efficient way to use any linear programming method to
solve the resulting linear complex Chebyshev approximation
problem.

In this paper, we present a generalized Ellacott-Williams
(GEW? algorithm to enhance the original EW algorithm’s
capability for this design problem. The novel WLS approach
proposed in [4] is utilized in conjunction with the GEW
algorithm to provide a systematic way for iteratively ad-
justing the required error weighting function during the de-
sign process. It has been reported in the literature that
the WLS technique will produce equiripple design if a suit-
able least squares frequency response weighting function is
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used. Therefore, the linear programming method originally
required in [2] for solving the resulting linear Chebyshev ap-
proximation problem can be avoided by using the proposed
algorithm.

II. The Proposed Design Method

Let the transfer function of the recursive filter with order
M/N (i.e., M zeros and N poles) be given as

_ p(z)

a4 E%:o an2™" (1)
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Then the design problem is to find the filter coefficients {a,,
b, }, such that the stable filter H(z)|,=.;» will optimally
approximate a desired complex frequency response D(e?) in

the Chebyshev sense. That is, we want to find p(z), ¢(z),
such that

H(z) , with by = 1.

p(e™)
D(e) — — 2
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will be minimized, where || - || denotes the Chebyshev norm.

In the literature, there is no systematic approach for find-
ing the best approximation solution for (2). Several authors
resorted to find a local best approximation (LBA) solution
instead of the global best approximation (GBA) solution.
In the following, we describe the proposed design method
briefly. The detailed theoretical results will be presented in
a forthcoming paper. It has been shown that the Ellacott-
Williams (EW) algorithm of (1] is useful for solving the ra-
tional Chebyshev approximation problem in the complex do-
main. By using this algorithm, an LBA solution can always
be guaranteed. We modify the EW algorithm to enhance its
capability for solving the above design problem.

At the initial step, we use the denominator of an Nth
order Butterworth filter as the initial polynomial go(e’*) for
q(e’*). The minimization problem (2) can be turned into the
following problem

minZW(w)lD(ej‘“)qO(eju) — po(e™)%. 3)

Let D(e™)go(e™)
vector a=|ag, a1, ",
following

Ro(w) + jIo(w), then the coeflicient
ap|T of po can be found by solving the
oeplitz symmetry linear matrix equation

Ta=2

(4)

where the elements of T and Z are given as

2 W(w)eos((i —jJw) ,0<ij <M

iW(w)(Ro(w) cosiw — Ip(w)siniw) ,0 <7 < M.
(5)
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The WLS algorithm of [3] can be used to iteratively ad-
just the required error weighting function W(w) and pro-
vide a good approximation to the minimax solution. Next,
we present the design procedures for finding the coefficient
vector of p(e’*) and g(e’) at the kth iteration.

A. Procedure 1:

At the kth iteration, the oriiinal EW algorithm finds the
increment polynomials ép; and ég; such the Chebyshev error

Pe _ 9kbpr — pibk
|D - 2 _ 9u0Pe — Pilar ®)
Gk 9k
is minimized. We reformulate this problem as the equivalent
least-square problem
min > W(w)|D - Bey
w 9k
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where W(w) is the required error weighting function. p;
and ¢, denote the p and ¢ Polynomias at the kth itera-
tion, respectively. The {a/,,b]} represent the coefficients of
the increment ploynomials §p; and &g, respectively. Let

W(“")/|‘112}1 =b (W), E = Dgx —pr = Er + jEi, pe/gx =
€ abo

R+;1,t ve problem becomes
N
I,nib’,‘ S W'(w)|Er +JEi+ (R+ 1) b, cosnw — j
Amdm w n=1

N M M
> b sinnw) — (3 al cosnw — j 3 a, sin nw)|E8)
n=1 n=0 n=0

Taking the derivatives of the object function of (8) with re-

spect to a], and b, respectively, and letting the derivative
to be zero, we obtain:

M
E al(3"W'(w) cos(m — §)w)
N
- Zb{(z W!(w)(Rcos(m — i)w — I sin(m — i)w))

= Y W'(w)(Ercosmw — Eisinmw)

form=0,1,---.M 9)

and
M

Zaf(E(W’(w)R cos(n — t)w + I'sin(n — t)w))

=0 w

N
STH(S - W/(w)(R? 4+ I?) cos(n — i)w)

=1 w

Y W!(w)((ErR + Eil) cosnw — (Er1 — E{R) sinnw)

It

forn=1,---,N. (10)
Putting (9) and (10) in matrix form yield
[ C; G Al [k
C'zr C3 -B |7 | F.
where Cj is a Toeplitz symmetric matrix with size (M +1) x
(M + 1) and elements given as

(11)

—
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;= S W'(w) cos(i — j)w, (12)

Cz is an (M + 1) x N matrix with equal elements given as
=S W(w)(Reos(i — j)w — I'sin(i ~ j)w), (13)

on each diagonal. Cj is a Toeplitz symmetric matrix with
size N X N and elements as

;= L W(W)(R® + I*) cos(i — j)w, (14)
Fyis an (M + 1) x 1 vector with elements given as
fjl = ZW’(w)(Er cos jw — Eisin jw), (15)

F2 is an N x 1 vector with elements given as
=Y W(w)(ErR+ Eil) cos jw — (Erl — EiR)sin jw),
i (16)

where A and B are two vectors containing the coeffiecients
{a’,a’l,u-,aj}(} and {b,---,b)}, respectively. Therefore,
onfy 2M +2N +1 and M + N + 1 real numbers must be
computed to form the C matrix and the F vector, respec-
tively in (11) at each iteration. Again, the WLS algorithm
of [3] can be utilized to solve the minimization problem of
(8). After obtaining the increment polynomials ép; and &gy,
we perform a line search to find the best real parameter ¢,
such that the following Chebyshev error

_ Pt tibpx
gk + tebqs

D I (17)

is minimized. To solve the minimization problem of (17)
without constraint on the value x, we use the Nelder-Meade
simplex algorithm [5] which is basically a nonlinear optimiza-
tion algorithm and performs very well for single variable non-
linear function. From our experience, the Nelder-Meade al-
gorithm can find the optimal ¢, efficiently. At this point,
the procedure is similar to the original EM algorithm except
that the problem of rational Chebyshev approximation prob-
lem in the complex domain is reformulated as an equivalent
weighted least square approximation problem. Therefore,
an LBA solutioncan always be guaranteed as shown in [1].
Moreover, the required suitable error weighting function can
be systematically sought by our WLS algorithm. This leads
to the advantage of saving computational complexity over
gl]e method of using linear programming algorithm, such as
Considering the stability of the designed filter at the kth
iteration, we shall find such a ¢; that all the zeros of the
Qk+1 = gk + tkbgx lie inside the unit circle. A simple ap-
proach to achieve this purpose is to test the zeros’ positions
of gky1 = qr + tkbqr. Then we set ¢, to ¢,/2 if there exists
any zero outside the unit circle. The testing procedure is
repeated until all the zeros are inside the unit circle. Next,
we consider the descent property of the controlling process

of zero’s position. From (17), the real parameter ¢, is found
such that
1o

Since the fact that

_ et {4 0Py

gk + tebgx (18)
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p +0(tk) as tp — 0, (19)
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we have from (18) that
Spi — pid
1D~ B - LS PEE —oa)| < 10 - B2 (20)
9k 9k Gk

This leads to the result that

P tr qebpr — pid t
1D - o8 - FEEEE oD <D - (21)

That is,

P + (86/2)6pe Pk
D—-———F—"—"=——| <||D- . 22
Ip- B <D=y @)
22) reveals that the controlling process of zero’s position

oes not affect the descent property of the original EW al-
gorithm.

Since an extremely small ¢; receals that there is nearly
no change between the solutions of the kth iteration and the
(k+1)th iteration, The Procedure 1 can be stopped if the
value of t; is less than a preset number. In our computer
simulation, we use 10~° as the preset number. From the
design process of Procedure 1, it should be noted that the
controlling process of zero’s position adjusts the value of #.
Therefore, the value of ¢, which provides a stable designed
filter would not equal the optimal value of ¢; obtained from
the line search. This affects the optimality of the designed
fﬁlltler. To alleviate this effect, we propose the Procedure 2 as
ollows.

B. Procedure 2:

At the kth iteration, we set the ép; to 0 in the mini-
mization problem of (6) and reformulate this problem as the
following equivalent least-square problem

min SW@ID — B 4 B+ apyeip. (23)
n W k k

to find the optimal gy first. Let W(w)/|g}| = W'(w), E =
Dgx — pr = Er + jEi, pr/qx = R + j1, the above problem
becomes

N
rr;‘iln ;W’(wﬂEr +jEi+ (R+ 1)) ¥, cosnw —

=l
N

7Y b, sinnw)|? (24)
n=1

Taking the derivatives of (24) with respect to ], and setting
the derivative to zero, we obtain the following equations

- f?b:(z W/(w)(R? + I") cos(n — i)w)
= EW’(:)((ErR + Eil)cosnw — (Erl — EiR)sin nw)
’ forn=1,---,N. (25)
In matrix form, (25) can be written as
-C3B =F, (26)
where Cg,B,F3 are the same as those of (11). Therefore,

the minimization problem can also be solved by using the
WLS technique of [3]. After obtaining the increment poly-

nomials §qx, we perform line search using the Nelder-Meade
algorithm to ﬁmfthe optimal parameter t; such that g4 =
gx + tr6qx satisfies that

Pk
D-———— 27
I qr + tk6gk I @)

is minimized. This procedure proceeds with solving the fol-
lowing least-square problem to find the required dp; with
fixed git1

. Pk 1 ’ ’ —jw 1 —iMwy|2
min Y W(w)|D————(ag+aje?“+ - +apye™’ |2
uiﬂ - (@] Tert qu( 0T M )

(28)

Again, we let W(w)/lgi,,| = W(w), E = Dgra —pe =
Er + jEi, then (28) becomes

Ci1A =T, (29)

where C1,B, and F; are the same as those of (11). There-
fore, the minimization problem of (28) can also be solved by
using the novel WLS technique of [3]. After obtaining épx,
we set pryy = P + 6pi. Next, the ¢, is adjusted as in the
Procedure 1 to ensure that all the zeros of iy = g + tkbqx
lie inside the unit disk. Finally, we compute the Chebyshev
error e(k+1) associated with the polynomials psi1 and gita.
The procedure 2 will be stopped if (e(k)-e(k+1))/e(k) is less
than a preset number. In our computer simulation, the pre-
set small number is 1073,

Considering the descent property of this design proce-
dure. We note that

Pi + tibpx Pk Spe,, | —Pkbgk )
——— = — 4t + 5t +O0(Lt,) +
g + tibgr Gk a - a (t:ti)

o(t},) + o(tx) as tx and t}, — 0. (30)

Hence, the descent property will not affected by controlling
process of the zero’s position. Moreover, we neglect the term
O(tit}) to obtain a linear approximation during the opti-
mization process of finding the increment polynomials épj
and 6qx. As a result, the interaction between the numera-
tor and denominator during the optimization process is also
eliminated. This affects the optimality of the designed filter.

To enhance the capabilities of the above two design pro-
cedures, we present a generalized Ellacott-Williams (GEW)
algorithm for designing recursive digital filters in the com-
plex domain. The proposed GEW algorithm is summarized
as follows.

Step 1: Using Procedure 1 to find a soluion.

Step 2: Using the solution of Step I as an initial guess
and performing Procedure 2 to obtain a design solution.

Step 3: If the solution of Step 2 satisfies the stopping
criterion of Procedure 1, then the design process terminates.
Otherwise, using the solution of Step 2 as an initial guess and
performing Procedure 1 again to obtain an improved design
solution.

Step 4: If the solution of Step & satisfies the stopping
criterion of Procedure 2, then the design process terminates.
Otherwise, using the solution of Step 3 as an initial guess and
performing Procedure 2 again to obtain an improved design
solution.

Step 5: Go to Step 3.

The proposed GEW design algorithm can be viewed as a
combination of Procedure 1 and Procedure 2. The descent
property: of both design procedures ensures the convergence
of the GEW algorithm. Moreover, our computer simulations
show that satisfactory design results can be obtained after
several iterations.
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III.

In this section, a simulation example is presented for il-
lustration and comparison. The design example is the same
as the Example 1 of [2]. A low-pass filter of degree 4/4 with
a passband [0,0.1], a stopband [0.2,0.5], and a desired group
delay of five is designed using the proposed algorithm. The
denominator of a forth order Butterworth filter is chosen as
the initial denominator go. It takes five iterations for conver-
gence (on a 117 Mhz 80486 personal computer). The Cheby-
shev error at each iteration are in Table I. Figure 1 shows the
magnitude and group delay response of the designed filter.

The resultusing the proposed algorithm and algorithm of {2]
are listed in Table 2 for comparison. We note from the sim-
ulation results that the propose algorithm outperforms the
algorithm of [2].

Computer Simulations

IV. Conclusion

In this paper, we have presented a generalized Ellacott-
Williams (GEW) algorithm for the design of recursive dig-
ital filters in the complex domain. The GEW algorithm is
basically a combination of two design procedures which are
two modified versions of the original Ellacott-Williams algo-
rithm. At each iterations, linear complex Chebyshev approx-
imation problems are formulated based on the least square
error criterion to find the solutions for the numerator and
the denominator. The approximation problems can be solved
by using a weighted least square (WLS) algorithm recently
proposed by the authors. This provides an efficient design
technique since the heavy computational burden of using lin-
ear programming algorithm can be avoided. Considering the
stability of the designed recursive filter. We employ a pole
controlling mechanism to ensure all the poles of the filter in-
side the unit circle. Finally, the computer simulations show
the effectiveness of the proposed design method.
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TABLE I The Chebyshev Error at Iteration for the De-
sign Example

Tteration Number
0 (Initial point)
1

Chebyshev error |
0.1264
0.0690
0.0352

00222
0.0216
0.0216
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TABLE II Simulation Result for Comparison

Proposed Algorithm | The Algorithm of [2
Chebyshev Error 0.0216 0.0420
Chebyshev Error in dB -33.3 dB -21.5 dB
Group delay n Between 4.79 Between 4.65
Passbnad and 5.64 and 6.34
Maximum Deviation of 0.64 1.34
Passband Group Delay
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Figure 1 The Magnitude and Group Delay Response
of The Designed Filter
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