
A Simple Tree Pattern Matching Algorithm for Code Generator

Tzer-Shyong Chen, Feipei Lai, and Rung-Ji Shang
Dept. of Electrical Engineering

National Taiwan University, Taipei, Taiwan, R.O.C.
E-mail: flai@cc.ee.ntu.edu.tw

Abstract

This p a p e r descr ibes 4 s i m p l e t r ee p a t t e r n m a t c h -
i n g a l g o r i t h m f o r t h e code g e n e r a t o r of compi l e r s .
T h e i n t e r m e d i a t e code (R e g i s t e r T r a n s f e r L a n g u a g e)
is m a t c h e d with t h e tree-rewri t ing ru le s of t h e i n s t r u c -
t i o n d e s c r i p t i o n w h i c h describe t h e t a r g e t archi tecture
t o genera te t h e a s s e m b l y code. T h e hash ing f u n c t i o n is
u s e d in o u r s y s t e m t o t r a n s f o r m 4 t r ee p a t t e r n m a t c h -
i n g p r o b l e m i n t o 4 s i m p l e n u m b e r c o m p a r i s o n . Com-
pared with GNU C c o m p i l e r (gcc), t h e t r ee p a t t e r n
m a t c h i n g t i m e c a n be reduced by 69% a n d t h e c o m p i l e r
t i m e by 6%, a n d t h e space o f t h e i n s t r u c t i o n descrip-
t i o n s c a n be reduced by 4.10 t i m e s o n DLX a n d 2.14
o n SPARC. T h e s i ze of t ab le , w h i c h is n e c e s s a r y f o r
code genera tor , i s qui te s m a l l in o u r m e t h o d .

1 Introduction

Code selection can be done by the tree pattern
matching. Through instruction patterns, target in-
structions are first described, then the tree pattern
matcher searches for a cover [5] of the input tree. How-
ever, if there are several possible covers in a given in-
put tree, this process usually becomes indeterminat-
ed. The cost of the instruction patterns indicates the
quality of code such as execution time or code size. By
choosing the code according to the cost, the ambiguity
of code selection is resolved.

There are several methods to select the cover of
the minimum cost. Graham and Glanville [12] pro-
pose a concept about the use of LR parsing. In this
method, instruction patterns are written in prefix or-
der and interpreted as a context free grammar. More-
over, through the modified LALR(1) parser which is
constructed by the above grammar, the cover can be
found by parsing the input tree. Because the essence of
the grammars is ambiguous, some heuristics and sim-
plifications are offered to resolve the ambiguity. Using
general tree pattern matching method to avoid ambi-

0730-3157/95 $04.00 0 1995 IEEE
162

guities is guaranteed to select the cover of the mini-
mum cost. For instance, the general methods which
use a dynamic programming algorithm are used in
TWIG [l].

Our experience with the tree-rewriting rules has
shown that such a method is easy t o use and the speci-
fication of the instruction patterns is independent from
the actual tree pattern matching algorithm. Howev-
er, at the early time of the architecture development,
the architecture will be changed sometimes. Thus, a
flexible compiler is necessary for the architect design-
ing a new architecture. For the need of an architect,
how to retarget a compiler to different machines is an
important issue.

The goal of our research, A r d e n (Architecture de-
velopment environment) compiler, is design a flexible
compiler to help the architect retarget the compiler t o
a new instruction set. A r d e n compiler uses a simple
and efficient tree pattern matching method to produce
an efficient code generator. By traversing a template
of tree-rewriting rule from the bottom up, it can be
hashed to a charac te r i s t i c n u m b e r which can represent
the rule. Then, the tree pattern matcher can generate
the cover sets by comparing the charac te r i s t i c n u m b e r
of a subtree in an RTL tree with those of tree-rewriting
rules from the bottom up. In order to output efficient
codes, the action phase will choose a cover set of a
minimum cost instructions for each RTL tree. Thus,
the tree pattern matching problem will become a sim-
ple number comparsion. By changing the instruction
descriptions, we can retarget the code generator to d-
ifferent instruction sets more easily.

In the next section, we illustrate the flowchart of
A r d e n compiler. Instruction description is discussed in
section 111. Section IV describes a simple tree pattern
matching algorithm. Section V will show the experi-
mental results, and conclusions are given in the final
section.

2 Flowchart of Arden Compiler

The compiler of Arden consists of the gcc front -end,
the tree pattern matcher, the instruction description,
and the action phase. The front-end of gcc takes c
program as input, and outputs the intermediate code
(RTL tree). A template of tree-rewriting rule in in-
struction description which is used to describe the
target instructions can be hashed to a c h a r a c t e l i s t i c
n u m b e r , and this character i s t ic n u m b e r is used to rep-
resent the tree-rewriting rule which includes this tem-
plate. The cover sets of an RTL tree are generated by
the tree pattern matcher, which compares the charac-
t e r i s t i c n u m b e r of a subtree in an RTL tree with those
of the tree-rewriting rules from the bottom up. The
subtree, matched with a tree-rewriting rule, will be
replaced by the corresponding replacement node the
replacing process will continue until the root of the
RTL tree is encountered. The action phase outputs
the assembly code which has a minimum cost among
the cover sets for the target machine.

C program

1

Cover sets

Assembly code

Figure 1: Flowchart of Arden compiler

3 Instruction Description

3.1 Insitruction Description

In order to generate the machine assembly code,
the instruction description of a target machine can be
represented by the tree-rewriting rules which contain
macro expression, a replacement node, a template,
and sets of condition expressions, cost, and action.
A tree template, composed of a replacement node and
a template, represents a computation which is per-
formed by one or more machine instructions. A set

of condition expression is used to select a proper ac-
tion. After a template has been matched with a sub-
tree in an RTL tree, the condition expression must be
checked. The syntax of a tree-rewriting rule in an in-
struction description is described as the following:

%defineinsn
0 Macro expression Q
{ Replacement +- Template }
Q Condition expression1 Q
Q Cost2 Q
{ Action1 1
Q Condition expression2 Q
Q c o s t 2 Q
{ Action2 }

0 Condition expressionN Q
Q CostMQ
{ ActionN}
%

The entry between two @s is optional.

M a c r o e x p r e s s i o n defines the macro strings which
will be expanded in template, condition expres-
sion, or action.

R e p l a c e m e n t is a replacement node, and t e m p l a t e
is the representation of an RTL tree.

C o n d i t i o n e x p r e s s i o n will settle some constraints
for the operands in the template and will be
checked by the tree pattern matcher when the
template is matched with a subtree in an RTL
tree.

C o s t is the execution cycle time of the action code.

A c t i o n returns the assembly code for the rule.

For example, add and sub instructions in SPARCar-
chitecture can be defined in cane rule by the following
macro expression.

%defineinsn
@ VAR macroaperator = {”plus” ,”minus”}

& macro-opcode = {”add”,”sub”) 62
{ (I SI 0) c (macro-operator:SI (r SI 1)(I SI 2))}
@ %i2 < 4096 and %i2 2 -4096 62
@cost=l@
{ macro-opcode %rl , %i2, %rO }
Q %i2 2 4096 or %i2 < -4096Q
@cost=3@
{ ”sethi hi(%i2), gl; or 10(%0;2), gl, gl;

macro-opcode %rl , gl, %rO;” }
%

The above a c t i o n is just a piece of SPARCassembly

163

code. In this m a c r o express ion , macro -opera tor is ei-
ther plus or minus, and macro-opcode is either add or
sub. The applicablilty of the rule will be settled by
a set of condition expression. The operands contain
strings like %m and %in where n is the order of the
operands in the tree template. For example, a target
register operand is represented by the string %TO, and
the immediate value of the second operand by %22.
When the template is matched with a subtree in an
RTL tree, the tree pattern matcher will check the sec-
ond operand %i2. If the value of %i2 is between -4096
and 4095, the code of a c t i o n 1 will be outputed; other-
wise, the code of a c t i o n 2 will be output. The action of
the tree-rewriting rule is outputed in the action phase
and consists of statements which are assembly codes
or assembler modules. For example, if macro-opera tor
is replaced by p l u s in the template, the macro-opcode
will be replaced by add. This rule indicates that the
target register is equal t o the result of the first source
register plus the immediate value. For example, if the
RTL tree is “reg 3 +reg4 + 30”, “(r SI O)+-(plus :SI (r
SI 1)(I SI 2))” can be matched in the tree-rewriting
rules, and thus the instruction “ a d d r4, 30, TJ’ is out-
puted.

3.2 Tree-rewriting Rules

The front-end of A r d e n translates source programs
into an intermediate representation (RTL). The RTL
program is a series of expression trees which are then
transformed into postfix order for the bottom-up com-
parison. Fig. 2 shows the RTL of an assignment
a:=b+l in which both a and b are local variables; one
is stored at offset 4, and the other at offset 8 for the
stack pointer which is stored in register sp. The m e m
operator will return the content of a memory location.
In translating an RTL tree, there are two steps:(l)

/:= \
mem

I

SP

SP

Figure 2: Intermediate representation of a:=b+l

traversing the tree in postfix order and (2) producing
code for each individual node. Each nonterminal node
in the template represents an intermediate result cal-
culated and will be replaced by a replacement node in
tree-rewriting rules. Fig. 3 shows the tree-rewriting
rules needed to translate the RTL tree of Fig. 2. The

instruction add of rule1 in Fig. 3 is to add the con-
tent of a memory location (addressed by the sum of
stack pointer and an offset) and a register, and returns
the result into a register. By repeatedly searching, a

Rewrite rule cost Action

Rule 1 :
regi - ,+,

J I add rt, rj, ri I 5

/+\
sp const

Rule2:
reg,- const 1 mov const, ri I

Rule3:

/:=\
null C-

/+\
sp const

Figure 3: Tree-rewriting rules for a:=b+l

cover set=(2,1,3}
n

U
rule1

Figure 4: The cover tree for a:=b+l

subtree in an RTL tree can be reduced to a replace-
ment node, and the RTL tree can be rewritten by the
tree-rewriting rules. After tree pattern matching, the
nodes of an RTL tree will be marked with cover sets
which include all the possible matching combination-
s of the replacement rules, and the subtrees will be
replaced by replacement nodes. The labeled tree is
called a cover tree [5]. Fig. 4 shows how to transform
an RTL tree into a cover tree.

164

4 A Simple Tree Pattern Matching Al-
gori t hm

+

The target assembly code is generated by tree pat-
tern matching in which an RTL tree is reduced into
a replacement node by repeatedly searching for the
subtree in the RTL tree. The subtrees, matched with
template, will be replaced by the corresponding; re-
placement node. By using the hashing function from
the bottom up, each node of the template can get it-
s own c h a r a c t e r i s t i c n u m b e r , then the tree-rewriting
rule can be marked with the character i s t ic n u m b e r of
the root in the template. The cover sets of an RTL
tree are generated by the tree pattern matcher which
compares the c h a r a c t e r i s t i c n u m b e r of a subtree in an
RTL tree with those of the tree-rewriting rules from
the bottom up. Then, the action phase will choose
a minimum cost instructions for the output assembly
code. The hashing function is defined as F(root, left ,
right)=(root+left*right) mod p r i m e - the root is the
root of the tree, le f t is the left subtree of the root, r ight
is the right subtree of the root, and the p r i m e number
is 17041. Hence, we will represent each operator and
terminal node with a different number. Below is an
example of operator/terminal node representation.

operator/terminal 1 different number
ree I 203

302
I mem I 204 I

Rewrite rule Cost Action Characteristic number -
Rulel:

1 add rj, rk, ri 7429 reg,- +
/ \

reg, regk

Rule;?:
reg,-)- + Id m[rj], rt

3 addrt,rk,ri 14759 / \ ym reg2

Figure 5: Tree-rewriting rules represent some instruc-
tions of a target machine

After applying the hashing function F into tree-
rewriting rules, we can get the character i s t ic n u m b e r
for each tree-rewriting rule in Fig. 5. The processes of
character i s t ic n u m b e r calculation are depicted as the
following:
The first rule: F(+, reg,, regk)=(302+203*203) mod 1704k7429

The second ruh: F(mem, reg,, null)=(204+203*1) mod 17041=407

F(+, mem[regj], regk)=(302+407*203) mod 1704k14759
The third rule: F(+, regj, regk)=(302+203*203) mod 17041=7429

F(mem, regj + ‘egk, nul1)=(204+7429*1) mod 17041=7633

RTL tree

(Characteristic number=7429)

Rule 2
(Characteristic number=14759)

(Characteristic numbe~7633)

Treerewriting rules

Figure 6: Simple tree pattern matching by the hashing
function

The tree-rewriting rules in Fig. 5 represent some
instructions of a target machine. Each rule is marked
with a character i s t ic n u m b e r computed by the hash-
ing function. In tree pattern matching, the assembly
instruction of the target machine will be generated by
the action of a tree-rewriting rule. To illustrate, let
us traverse the RTL tree by tree pattern matching.
The process is shown in Fig. 6. After the character -
i s t i c n u m b e r s of the three rules have been generated,
the tree pattern matcher will traverse the RTL tree
from the bottom up. The tree pattern matcher will
compute the character i s t ic n u m b e r of a subtree in the
RTL tree - F(+, reg4 , reg5)=’7429. Then, Comparing
the character i s t ic n u m b e r 7429 with those of the tree-
rewriting rules, we find that rule1 matches with the
subtree of the RTL tree. The template of the first
rule in which j=4 and k=5 matches with the leftmost
leaf of the RTL tree. If we use this rule, the subtree
“reg4+reg5” of the RTL tree will be replaced by ~ e g 7 ,

and the instruction “ a d d r4, r5, r7’ will be generated.
The second rule in which i=3, j=7, and k=6 matches
with the root of the RTL tree. If we choose the second
rule, the RTL tree will be replaced by a single node
regs; then both instructions “ld m[r7], r8” and “add
r8, r6, r3” will be generated. The code which gener-
ated by the tree pattern matcher to translate the RTL
tree are shown as the following:

add r4, r.5, r7
2d m[r7], rR
add r8, 7-6, 7-3

The tree pattern matching algorithm includes two
phases: 1. the preprocessing phase. 2. the tree pat-
tern matching phase. The preprocessing phase parses
the instruction description, and calculates the char-
ac te r i s t i c n u m b e r for each tree-rewriting rule. For a
specific target instruction set, the preprocessing phase
only needs to be done once. As for the tree pattern

165

matching phase, an RTL tree can be parsed by con-
sulting the character i s t ic numbers of the tree-rewriting
rules t o produce the cover sets.

4.1 Preprocessing Phase

The use of macro strings is for the reduction of tree-
rewriting rules which are used to describe the target
instructions. Then, in preprocessing phase, the macro
strings will be expanded by the tree pattern matcher
for each tree-rewriting rule. The tree pattern match-
er first expands macro strings for each tree-rewriting
rule. Next, the tree pattern matcher computes a char-
ac ter i s t ic number for each template, and then sorts
the templates again according to their character i s t ic
numbers.

4.2 Tree Pattern Matching Phase

There are two steps to traverse an RTL tree in the
tree pattern matching phase. The first step is to tra-
verse the RTL tree in postfix order. Then, each node
in an RTL tree will get a character i s t ic number, and
the tree pattern matcher will compare this character -
i s t i c number with those of the tree-rewriting rules. If
the character i s t ic number of a subtree in an RTL tree
is equal to that of a tree-rewriting rule and one of the
condition expressions in this rule can be satisfied, the
tree pattern matcher will record the information of
match node in the match parsing stack. The match n-
ode is the root of the subtree in an RTL tree which can
be replaced by a replacement node. The second step is
to replace each match node by a replacement node in
the match parsing stack until the root is encountered.
After that , the tree pattern matcher outputs the cov-
er sets. If there exist multiple cover sets, the action
phase will choose a one of minimum cost. The cover
sets which are generated from the traversal of an RTL
tree are shown in Fig. 7.

For the match node “mem”, this subtree can be
matched by the template of rules, then we can rewrite
this subtree as a single replacement node reg7. Next,
“reg7+reg6” can be matched by the template of ru le l ,
and the cover set[l]={3, 1) will be output. As for the
match node “+”, this subtree can be matched by the
template of rule1 and this subtree can be rewritten as
a single replacement node reg7. Then, the rest of the
RTL tree can be matched by the template of ruZe2.
At last, the cover set[2]={1, 2) will be output. There
are several different combinations of rules which are
matched into an RTL tree. If several different cover
sets are matched into the root of an RTL tree, the one
of the minimum cost will be selected.

reg,+- a, match node = mem
cover s e t [~ l = (~) reg, - a & reg, _ _ _ _ _ _ * / \

matchnode=+ reg, reg,
cover set[11=(3,1)1

1
RTL tree

f match node = +
f cover set[2]=(1) reg,

t match node = +
cover set[2]=(1, 2)

y m reg,

reg7

Figure 7: The cover sets of an RTL tree

5 Experimental Results

We have implemented two code generators for DLX
and SPARC. The comparison of number of rules and
size of instruction descriptions between gcc and Ar-
d e n is shown in Table 1. Compared with gcc, Arden
use fewer rules t o describe a target architecture. In
addition, the preprocessing phase takes 0.2 second for
DLX and 0.6 second for SPARC. The tables generated
by preprocessing phase occupy 29 KB for DLX and 6 5
KB for SPARC. The program size of the tree pattern
matching phase is 87 KB. Table 3 summarizes the tree
pattern matching time of the SPEC [13] benchmarks
compiled by gcc and Arden. Compared with gcc, the
average matching time can be reduced by 69%. In Ta-
ble 4, only the compiler time is included in the three
comparisons with the manufacturer’s C compiler (c-
c), gcc, and Arden. The compiler time in Arden is
less than in gcc and cc. Arden runs 1.06 times faster
than gcc on average. All the above measurements are
carried out on a SPARC 10 workstation.

6 Conclusions

In the paper, we have presented a simple number
comparison method for tree pattern matching to pro-
duce a code generator. Our experiment shows that
this method can reduce the tree pattern matching time
by 69%, and the instruction descriptions size of gcc is
3.92 times more than Arden on average. Moreover,
this method can get an optimal instructions for an
RTL tree. Because table generated through prepro-
cessing phase is very small, the space which code gen-
erator needs is greatly reduced. In other words, the
tree pattern matching time and the complexity of s-
pace get a significant reduction. Furthermore, if we
want to retarget the code generator t o different ma-

166

I . . , Annual Symposium on Principles of Programming

Arden
.05

.05
-08
.06
.05

.oa

Languages, 1987, pp. 168-177.

[4] Davison, J. W., and Fraser, C. W., ”The Design
and Application of a Retargetable Peephole Opti-
mizer,” ACM Trans. Program Lang. Syst., Vol. 2,

Table 1: Instruction descriptions size for gcc and .Ar- No. 2, Apr. 1980, pp. 173-190.

den [5] Emmelmann, H. S., and Landwehr, F. W., ”BEG
- A Generator for Efficient, Back Ends,” Proceed-
ing of ACM Conference on programming Language
Design and Implementation, Vol. 24, No. 7, June
1989, pp. 227-237.

[6] Fraser, Christopher W., and Hanson, David R., ”A
Code Generation Interface for ANSI C,” Software-
Practice and Experience, Vol. 21, No. 9, Sep. 1991,
pp. 963-988.

Table 2: Tree pattern matching time for C SPEC
Benchmarks in seconds

chines, what we need is only to change the instructi.on
descriptions. Such a characteristic can help the archi-
tect to design a new architecture more easily.

References

[l] Aho, A. V., Ganapathi, M., and Tjiang, S. W.
K., ”Code Generation Using Tree Matching a:nd
Dynamic Programming,” ACM Trans. Pr0gra.m
Lang. Syst., Vol. 2, No. 4, Oct. 1989, pp. 491-561.

[2] Cattell, R. G. G., ”Automatic Derivation of Code
Generators from Machine Descriptions,” ACM
Trans. Program Lang. Syst., Vol. 2, No. 2, Apr.
1980, pp. 173-190.

[3] Chase, David R., ”An Improvement to Bottom Up
Tree Pattern Matching,” Proceedings of the 14th

[7] Hennessy, J . L., and Patterson, D. A., ”Computer
Architecture: A Quantitative Approach,” Morgan
Kaufmann Publishers Inc., San Mateo, 1990.

[8] Hoffman, C. W., and O’Donnell, M. J., ”Pattern
Matching in Trees,” Journal of the ACM, Vol. 29,
No. 1, January 1982, pp. 68-95.

[9] Lai, Feipei, Tsaur, F., and Shang, R., ”ARDEN -
ARchitecture Development ENvironment,” IEEE
TENCON 92, NOV., 1992, pp. 181-185.

[lo] Proebsting, Todd A., ”Simple and Efficient
BURS Table Generation,” Proceeding of ACM
SIGPLAN’92 Conference on Programming Lan-
guage Design and Implementation, June 1992, pp.
331-340.

[ll] Stallman, R. M., ”Using and Porting GNU CC
(for version 2.2),” Free Software Foundation, Inc.,
Cambridge, Massachusetts, U.S.A, May 1992.

[12] Glanville, R. S., ”A Machine Independent Algo-
rithm for Code Generation and its Use in Retar-
getable Compilers,” Ph.D. Thesis, University of
California, Berkeley, 1978.

.13] Standards
Benchmark

Performance
Suite Release

Evaluation Corp.
2.0, Jan. 1992.

SPEC

Table 3: Compiler time for C SPEC Benchmarks -in
seconds

167

