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Abstract .  Fuzzy s u p p o r t  vector machines (FSVMs) provide a 
inethod to classify data with noises or outliers. Each data point 
is associated w i t h  a fuzzy membership that can reflect their rela- 
t ive degrees as meaningful data. I n  th i s  paper, we investigate and 
compare two s t ra tegies  of automatically setting the fuzzy member- 
ships  of data points. It makes the usage of FSVMs easier in t h e  
application of reducing t h e  effects of noises or outliers. The exper- 
iments  show that the generalization error of FSVMs is comparable  
to other methods o n  benchmark datasets. 

INTRODUCTION 

The theory of support vector machines (SVMs), that is based on the idea of 
structural risk minimization (SRM), is a new classification technique and has 
drawn much attention on this topic in recent years [3][4][9][10]. The good 
generalization ability of SVMs is achieved by finding a large mwgin between 
two classes [1][8]. In many applications, the thcory of SVMs has been shown 
to provide higher performance than traditional learning machines [3] and has 
been introduced as powerful tools for solving classification problems. 

Since the optimal hyperplane obtained by the SVM depends on only a 
small part of the data points, it may become sensitive to noises or outliers 
in the training set [2][13]. To solve this problem, one approach is to do some 
preprocessing on training data to remove noises or outliers, and then use 
the remaining set to learn the dccision function. This method is hard to 
implement if we do not have enough knowledge about noises or outlicrs. In 
many real world applications, we are given a set of training data without 
knowledge about noises or outliers. There are some risks to remove the 
meaningful data points as noises or outliers. 

There are many discussions in this topic and some of them show good 
performance. The theory of Leave-One-Out SVMs [ll] (LOO-SVMs) is a 
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modified version of SVMs. This approach differs from classical SVMs in that 
it is based on the maximization of the margin, hut minimizes the expression 
given by the bound in an attempt to minimize the leave-one-out error. No 
free parameter makes this algorithm easy to use, but it lacks the flexibility 
of tuning the relative degree of outliers as meaningful data points. Its gen- 
eralization, the theory of Adaptive Margin SVMs (AM-SVMs) [12], uses a 
parameter X to adjust the margin for a given learning problem. It improves 
the flexibility of LOO-SVMs and shows better performance. The experiments 
in both of them show the robustness against outliers. 

FSVn4s solve this kind of problems by introducing the fuzzy memberships 
of data points. The main advantage of FSVMs is that we can associate a 
fuzzy membership to each data point such that different data points can 
have different effects in the learning of the separating hyperplane. We can 
treat the noises or outliers as less importance and let these points have lower 
fuzzy membership. It is also based on the maximization of the margin like 
the classical SVMs, but uses fuzzy memberships to prevent some points from 
making narrower margin. This equips FSVMs with the ability to train data 
with noises or outliers by setting lower fuzzy memberships to the data points 
that are considered as noises or outliers with higher probability. 

The previous work of FSVMs [6] did not address the issue of automati- 
cally setting the fuzzy membership from the data set. We need to assume 
a noise model of the training data points, and then try and tune the fuzzy 
membership of each data point in the training. Without any knowledge of 
the distribution of data points, it is hard to associate the fuzzy membership 
to the data point. 

In this paper. we propose two strategies to estimate the probability that 
the data point is considered as noisy information and use this probability to 
tune the fuzzy membership in FSVMs. This simplifies the use of FSVMs in 
the training of data points with noises or outliers. The experiments show 
that the generalization error of FSVMs is comparable to other methods on 
benchmark datasets. 

FUZZY SUPPORT VECTOR MACHINES 

Suppose we are given a set S of labeled training points with associated fuzzy 
memberships 

Each training point x, E RN is given a label yz E {-1,1} and a fuzzy 
membership U I s, I 1 with z = 1. . . , 1 ,  and sufficient small U > 0, since the 
data point with st = 0 means nothing and can be just removed from training 
set without affecting the result of optimization. Let z = p(x) denote the 
corresponding feature space vector with a mapping ~p from RN to a feature 
space 2. 

Since the fuzzy membership s, is the attitude of the corresponding point 
x. toward one class and the parameter 6 can be viewed as a measure of error 

(Yl,Xl,Sl),. . . >  (YI,Xl>~l). (1) 
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in the SVM, the term siti is then a measnre of error with differeh weighting. 
The optimal hyperplane problem is then regraded as the solution to 

1 minimize - w . w + ~ C s i < i ,  1 

i=l 
2 

subject to yi(w. zi + b)  2 1 - t i ,  i = 1:. . . , 1 ,  1 

ti 2 0 ,  i = l ,  . . . ,  l ,  

where C is a constant. I t  is noted that a smaller si reduces theleffect of the 
parameter ti in problem (2) such that the corresponding point x, is treated 
as less important. 

The problem (2) can be transformed into 

maximize 

subject to yiac = 0 
i= l  

0 5 ai 5 sic, 2 = 1,. . . , l .  

and the Kuhn-Tucker conditions are defined as 

a ; ( y i ( w . Z i + b ) - 1 + f i )  = 0,  i = l ,  ..., 1> I (4) 
(sic-a;)Fi = 0,  2 = I , . .  . , 1 .  (5) 

The only free parameter C in SVMs controls the tradeoff between the 
maximization of margin and the amount of misclassifications.. A larger C 
makes the training of SVMs less misclassifications and narrower margin. The 
decrease of C makes SVMs ignore more training points and'get a wider 
margin. 

In FSVhfs, we can set C to be a sufficient large value. It is'the same as 
SVMs that the system will get narrower margin and allow less miscalssifi- 
cations if we set all si = 1. With different value of s i ,  we can control the 
trade-off of the respective training point xi in the system. A smaller value 
of si makes the corresponding point xi less important in the training. There 
is only one free parameter in SVMs while the number of free parameters in 
FSVMs is equivalent to the number of training points. 

TRAINING PROCEDURES 

There are many methods to training data using FSVMs, depending on how 
much information contains in the data set. If the data points are already 
associated with the fuzzy memberships, we can just use this information in 
training FSVMs. If it is given a noise distribution model of the data set, we 

519 



can set the fuzzy membership as the probability of the data point that is not a 
noise, or as a function of it. Let pi be the probability of the data point zi that 
is not a noise. If there exists this kind of information in the training data, 
we can just assign the value si = pi or si = fp(pi) as the fuzzy membership 
of each data point. Since almost all applications lack this information, we 
need some other methods to predict this probability. In order to reduce the 
effects of noisy data when using FSVMs in this kind of problem, we propose 
the following training procedure. 

1. Use the original algorithm of SVMs to get the optimal kernel parameters 
and the regularization parameter C. 

2. Use some strategies to set the fuzzy memberships of data points and 
find the modified hyperplane by FSVMs in the same kernel space. 

As for steps, we propose two strategies: one is based on kernel-target 
alignment and the other is using k-NN. 

Strategy of Using Kernel-Target Alignment 

The idea of kernel-target alignment is introduced in [5 ] .  Let fK(xiryi) = 
E:.=, yiyjK(xi,xj). The kernel-target alignment is defined as 

(6) 
Et=, fK(Xi.Yi) 

AKT = 14- 
This definition provides a method for selecting kernel parameters and the 
experimental results show that adapting the kernel to improve alignment on 
the training data enhances the alignment on the test data, thus improved 
classification accuracy. 

In order to discover some relation between the fuzzy membership and the 
data point, we simply focus on the value f~(xi,y,). Suppose K(xi,xi) is 
a kind of distance measure between data points xi and xj in feature space 
3. For example, by using the RBF kernel K(xi,x,) = e-711xi-x~112, the data 
points live on the surface of a hypersphere in feature space 7 as shown in 
Figure 1. Then K(xi,x3) =  xi). ~p(xj) is the cosine of the angle between 
p(x;) and p(xj). For the outlier ip(x1) and the representative ~ ( x x ) ,  we have 

fK(X1,YI) = K(Xl,Xi) - K(Xl,Xi) 

fK(XZIY2) = K(xz,xd - K(X2,Xi). 
(7) 

Yi=Y1 Y i i Y l  

Yi=Y2 Y,#Y2 

We can easily check the followings 
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Figure 1: The value fK(x1;yl )  is Ion-er than fK(xz3yzj in the RBF kernel 

such that the value f ~ ( x 1 : y l )  is lower than f~(x2,yz). 
We observe this situation and assume that the data point xi with lower 

value of f ~ ( x < , y ~ )  can be considered as outlier and should make less con- 
tribution of the classification accuracy. For this assumption, we can build 
a relationship between the fuzzy membership si and the value of f ~ ( x { ,  yi) 
that is defined as 

iffK(xi,yi) > fg” 
si = if f d x i r y i )  < fkB (9) 

U + (1 - U)(f^.(xt,Yi)-f:B)d otherwise r f : E -  f is 
where fgB and f,$” are the parameters that control the mapping region 
between si and f ~ ( x i , y i ) ,  and d is the parameter that controls the degree of 
mapping function as shown in Figure 2. 

The training points are divided into three regions by the parameters fg” 
and fk”. The data points in the region with f ~ ( x i ,  yi) > fgB can be viewed 
as valid examples and the fuzzy membership is equal to 1. The data points 
in the region with f ~ ( x , , y < )  < fk” can be highly thought as noisy data 
and the fuzzy membership is assigned to U. The data points in rest region 
are considered as noise with different probabilities and can make different 
distributions in the training process. 

Strategy of Using k-NN 

For each data point x i ,  we can find a set Sf that consists of k nearest neigh- 
bors of xi. Let ni be the number of data points in the set Sf that the class 
label is the same as the class label of data point x i .  It is reasonab;le to assume 
that the data point with lower value of ni is more probable as noiFy data. But 
for the data points that are near the margin of two classes, the value n, of 
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Figure 2: The mapping between the fuzzy membership s, and fK(x , ,y , )  

these points may be lower. It will get poor performance if we set these data 
points with lower fuzzy memberships. In order to  avoid this situation, we 
introduce a parameter kUB that controls the threshold of which data point 
needs to reduce its fuzzy membership. 

For this assumption, we can build a relationship between the fuzzy mem- 
bership s. and the value of n, that is defined as 

if ni > kuB 
U + (1 ~ otherwise 

si = 

where d is the parameter that controls the degree of mapping function as 
shown in Figure 3. 

1- 

U- - ni 
0 kuB 

Figure 3: The mapping between the fuzzy membership si and ni 
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EXPERIMENTS 

In these simulations, we use the RBF kernel as 

(11) K(xi,x.)  - e-’IIx’-xll12 
3 -  

We conducted computer simulations of SVMs and FSVMs using the same 
data sets as in [7]. Each data set is split into 100 sample sets of training 
and test sets’. For each data set, we train and test the first 5 sample sets 
iteratively to find the parameters of the best average test error. Then we use 
these parameters to train and test the whole sample sets iteratively and get 
the average test error. Since there are more parameters than the original al- 
gorithm of SVMs, we use two procedures to find the parameters as described 
in the previous section. In the first procedure, we search the kernel parame- 
ters and C using the original algorithm of SVMs. In the second procedure, 
we fix the kernel parameters and C that are found in the first stage, and 
search the parameters of the fuzzy membership mapping function. 

To find the parameters of strategy using kernel-target alignment, we first 
fix fg” = maxifK(xt,yi) and fi” = minifx(xi,yi), and perform a two- 
dimensional search of parameters a and d. The value of a is chosen from 0.1 
to 0.9 step by 0.1. For some case, we also compare the result of U = 0.01. 
The value of d is chosen from 2T8 to 2’ multiply by 2. Then, we fix U and 
d, and perform a two-dimensional search of parameters f:” and A”. The 
value of f;” is chosen such that 0%, lo%, 20%, 30%, 40%, and;50% of data 
points have the value of fuzzy membership as 1. The value of fi” is chosen 
such that 0%, lo%, 20%, 30%, 40%, and 50% of data points have the value 
of fuzzy membership as U .  

To find the parameters of strategy using k-NN, we just perform a two- 
dimensional search of parameters U and k .  We fix the value kuB = k / 2  and 
d = 1 since we don’t find much improvement when we choose other values of 
these two parameters such that we skip searching for saving time. The value 
of U is chosen from 0.1 to 0.9 stepped by 0.1. For some case, we also compare 
the result of U = 0.01. The value of k is chosen from 2’ to 2’ multiplied 
by 2. Table 1 lists the parameters after our optimization in the’simulations. 
For some data sets, we cannot find any parameters that can ‘improve the 
performance of SVMs such that we left blank in this table. 

Table 2 shows the results of our simulations. For comparison’with SVMs, 
FSVMs with kernel-target alignment perform hetter in 9 data sets, and 
FSVMs with k-NN perform better in 5 data sets. By checking the aver- 
age training error of SVMs in each data set, we find that FSVh4s perform 
well in the data set when the average training error is high. These results 
show that our algorithm can improve the performance of SVMs when the 
data set contains noisy data. 

We also list in Table 3 the other results for single RBF classifier (RBF), 
AdaBoost (AB), and regularized AdaBoost (ABR), that are obtained from 

‘These are available at http://ida.first.gmd.de/-~aetsch/data/be”~hm~~ks. htm. 
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TABLE 1: THE PARAMETERS USED IN S V h ' I S ,  FSVhIs USING STRATEGY OF KERNEL- 
TARGET ALIGNMENT (KT),  AND FSVh'h USING STRATEGY OF K-NN (K-NN) ON 
13 DATASETS. 

Banana 
B. Cancer 

sm4s K T  k-NN 
c y o d U B L B  U k 

316.2 1 0.01 64 10% 0% 0.1 32 
15.19 0.02 0.5 8 20% 0% 0.01 64 

Diabetes 

Heart 
Image 

F. Solar 
Splice 
Thyroid 

Twonorm 
Waveform 

German 

Ringnorm 

Titanic 

1 0.05 0.7 8 10% 0% 0.6 4 

3.162 0.00833 0.3 16 30% 30% 0.2 32 

le+9 0.1 
1.023 0.03333 0.5 T4 20% 0% 0.3 256 
1000 0.14286 - 

3.162 o.ni818 0.6 8 20% 30% 0.8 4 

500 0.03333 0.3 T3 10% 0% - 

10 0.33333 0.7 2-6 0% 0% 
100000 0.5 0.5 32 30% 0% 0.2 12s 

3.162 0.025 0.01 128 10% 0% 0.01 128 
1 0.05 0.01 2-* 50% 0% 
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Banana 
B. Cancer 
Diabetes 
German 
Heart 
Image 
Ringnorm 
F. Solar 
Splice 
Thyroid 
Titanic 
Twonorm 
Waveform 

TR SVMs KT k-NN 
6.7 11.5 10.4 11.4 

18.3 26.0 25.3 25.2 
19.4 23.5 23.3 23.5 
16.2 23.6 23.3 23.6 
12.8 16.0 15.2 15.5 
1.3 3.0 2.9 
0.0 1.7 

0.0 10.9 
0.4 4.8 4.7 

19.6 22.4 22.3 22.3 
0.4 3.0 2.4 2.9 
3.5 9.9 9.9 

32.6 32.4 32.4 32.4 



TABLE 3: COMPARISON OF T E S T  ERROR OF SINGLE RBF CLASSIFIER, ADABOOST 
(AB), REGLAREED AD.4BOOST (ABn), SVhIS, LOO-SVMS (LOOS), FSVRIS 
USING STRATEGY OF KERNEL-TARGET ALIGNMENT (KT). AND FSVhlS USING 
STRATEGY OF K-NN ( K - N N )  ON 13 DATASETS. 

I RBF AB ABB SVMs LOOS KT k-NN 
Banana 1 10.8 12.3 10.9 11.5 10.6 10.4 11.4 
B. Cancer 
Diabetes 
German 
Heart 
Image 
Ringnorm 
F. Solar 
Splice 
Thyroid 
Titanic 
Twonorm 
Waveform 

27.6 30.4 26.5 
24.3 26.5 23.8 
24.7 27.5 24.3 
17.6 20.3 16.5 
3.3 2.7 2.7 
1.7 1.9 1.6 

34.4 35.7 34.2 
10.0 10.1 9.5 
4.5 4.4 4.6 

23.3 22.6 22.6 
2.9 3.0 2.7 

10.7 10.8 9.8 

26.0 
23.5 
23.6 
16.0 
3.0 
1.7 

32.4 
10.9 
4.8 

22.4 
3.0 

26.3 25.3 25.2 
23.4 23.3 23.5 
N/A 23.3 23.6 
16.1 15.2 15.5 

N/A 2.9 

N/A 32.4 32.4 
N/A - 

5.0 4.7 
22.7 22.3 22.3 
N/A 2.4 2.9 

N/A - I _  

9.9 N/A 9.9 ' - 

experiments show that the performance is better in the applications with the 
noisy data. 

We also compare the two strategies for setting the fuzzy membership in 
FSVMs. The usage of FSVMs with kernel-target alignment is more com- 
plicated since there exist many parameters. It costs much time to  find the 
optimal parameters in the training process but the performance is better. 
The usage of FSVMs using k-NN is much simple to use and the results are 
close to the previous strategy. 
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