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ABSTRACT

This paper concerns two-dimensional (2-D) polyphase filter
banks for 2-D subband signal processing systems. New 2-D
polyphase filter banks with arbitrary number of subband channels
are presented. The concept of nonsymmetric frequency band
allocation for the construction of subband bandpass filters
is extended to 2-D case. The subband bandpass filters required
in both analysis and synthesis filter banks are then constructed
from the frequency translations of a 2-D prototype lowpass
filter. The constraints of perfect aliasing cancellation and signal
reconstruction are derived for both cases of separable and
nonseparable 2-D prototype lowpass filters. Simulation results
which confirm the theoretical analyses are also provided.

I. INTRODUCTION

Subband signal processing systems employing polyphase
filter bank have been successfully used in splitting a signal into
N subbands and allowing the resynthesis of the signal from the
subbands. Originally, their applications are mainly in the areas
of short-time spectral analysis [1], subband coding of speech
signals [2], etc. Recently, the application of subband systems
has been extended to two dimensions, for example, the subband
coding of images [3] and 2-D short-time spectral analysis [4].
However, the 2-D polyphase filter banks of [4] are the direct
extension of the well-known results of 1-D case described in [1].

In this paper, based on our previous work on the develop-
ment 1-D polyphase filter bank [5], we further present a new
2-D polyphase filter bank for 2-D subband signal processing
systems with subband channels N, xN,, where N, and N, are
arbitrary integers and represent the numbers of subband channels
in each dimension. The concept of nonsymmetric frequency
band allocation for the construction of subband bandpass filters
presented in [S] is extended to 2-D case. The subband bandpass
filters for both analysis and synthesis filter banks are then
constructed from four filters. Each of them is a frequency-shifted
version of a 2-D prototype lowpass filter.

This paper is organized as follows. Section II describes the
formulation of 2-D subband filter banks. In Section III, effi-
cient structure consisting of polyphase network and fast Fourier
transform for the 2-D subband filter banks is presented. Com-
puter simulations confirming the theoretical analyses are given in
Section IV.

II. FORMULATION OF 2-D SUBBAND FILTER BANKS

Consider the 2-D subband system with channels N, xN,
shown in Figure 1. The (i, j)th subband bandpass filter
Hi,j (w ,w, ) in the analysis filter bank is given as

ISCAS’88

Hi,j(wlywz) = Gi,j(‘"l""’2)+Gi,2N,-1-j("""“”)+
GaN,14,5(@ 1 @2) + Goy g an, 15 (@r2)
. a

where G. (w,, w3) 2 G (w,-in/N;, ws-jn/N;), i=0, 1,..,N, -1
and j=0,i,....., N,-1. G(w,, w,) is a 2-D prototype lowpass
filter with frequency response shown in Figure 2. The (ij)th
subband bandpass filter in the synthesis filter bank is given as

HiJ(wl w2 )= Gi’j(wl w2 ) - Gi,ZN,-l-j(wl swy)t
GZN -l-i,j(wl ,wa) — G2N -l-i,m,-l-j(wl ,wa)
1 1 (2)

Hence, we can see that the H;; and H;j; are the nonsymmetric
frequency-shifted versions of G(w,, w3 ).

For the (ij)th subband channel, the input signal X(w; ,w,)
is filtered by Hjj(w,, w,) to give the (i, j)th subband signal
Xj,j(wy, wz). The decimated subband signal U;j(w,, w,) can
be expressed as

Ni»l Nz‘;-l ) )/N
N, xN; p=0 4=0 xi,j((wl =<mp)/Ny,

(w,-27q)/N,) 3)

Ui,j(?-’l y W)=

For the (i,j)th subband channel of the synthesis filter bank,
the channel signal is first interpolated by N, xN, to produce

1 N,-1N,-1
Vi,j (Wi, wz)= le-_Nz pz=:0 qu xi,j(w1'21rP/N1,
(w2-27q/N;) “
~ A

After filtering Vj;(w;, «,) by Hjj(w,, w,) to produce X;;
(wy, wy), we then add X j(w,, w,) to give the reconstructed
signal

ey
R@r,02)= 23 Rij(wr,ws)
(%))
1 NN,
= 2 2 X(w;-2np/Ny,w,-27q/N;)
N;xN; p=0q=0

Fp,q(wy,w;) (5)

where
N-1N,-1 .
Fpglwi,w)= 2 2 ('1)l+]Hij(w1‘2"P/N1,
i=0 j=0 s ~
w:'Z"Q/Nz)HiJ (W, w2) 6)

forp=0,1,...... ,N;-land ¢=0, 1,...,N,-1.
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From (5), we can see that the Fp q(w,, w,) must be zero for

(p,9)#(0,0) and Fg g(w,, w2 ) must be of the form
Foo(w;, w2)=N;Naexp (—j (@, Q1 +w2Q2)), Q)

where Q, and Q, are integers,ﬁin order to obtain perfect recon-

struction of X(w,, w, ) from X(w,, w,). From (7), we see that
the following constraints must be satisfied

1G(w;,ws) =0 for |wy!> a/N; and | wz > n/N,.
M;-1=Q, =N; (2L, +1) and M,-1=Q,=N, (2L, +1)
2N, -1 2N,-1
2 2 1G(wi-17/Ny,w,-La/Ny) 2

=N;N;. (8)

2,20 2,=0

if the 2-D prototype lowpass filter has its linear phase frequency
response given as

G(w,,w2)=1G(w;,w,) | exp { 9 (0, (M;-1)/2 +

w2 (M-1)/2)} . Q)]
The reconstructed signal of (5) then becomes
A
X(wy,w2) =X (w1, w2)exp { J(w M- D+
ws (Mz-1)} - 10

which is just a delayed version of the input signal.

Now if the G(w,, 3)2) is assumed to be separable, then each of
Hj j(w;, w;) and H;jj(w,, w, ) is a product of two 1-D bandpass
filters, i.e., H,-,j(w 1, We) = Hi(wl )Hj(wz) and Hi’j(wl , Wy )=
ﬁi(w ' )ﬁj (w3 ). Thus, Fp q(w;, w,) is also separable and given as

Fpq (@1, @)= Fp(w:1) F(w2) an
where a N1 . a
Fpw)® 2 1) Hi(w,-2np/N,) Hicor) (12)
a Nl
and Fo(wn)® 2 (1) By (- 2na/Ny) i) a3)

Therefore, the resulting 2-D subband system is reduced to a
cascade of two 1-D subband systems of [5]. Hence, each of the
associated 2-D polyphase networks of the analysis and synthesis
filter banks can be formed as a cascade of two 1-D polyphase
networks with respect to w, and w,, respectively. On the other
hand, if G(w,, w, ) is nonseparable, then substituting (1) and (2)
into (6) yields
N,-1 N,-1
Fpa(wi, @)= 2 2 D™ [Gyj (w4 2mp/Ny

w2-21q/N;) + Gj oN,.15(w01 -27P/Ny
w2-21q/N; ) + Gan 15,5 (w1 - 27p/Ny,
w2-27q/N; ) + Gon, 10N, 15 (@, -27p/Ny,
wz-21q/Ny )} -[Gjj(wi, w2) - GiaN, -1+
(@i, w2)-GoN e (@1, w2 ) + Gan, o1,
2N, 15w 15 w2)] 14)

Concerning the possible aliased terms in (14), we should discuss
the following two situations. The first one is p#0 and q=0,
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or p=0 and q#0. Since the G(w,, w;) is of finite bandwith as
shown in Figure 2, the product terms of nonoverlapping filter
responses in (14) are zero. Examine the first product term of
(14) with p#0, g=0, the aliasing exists when i=N, -p-1 or i=N, -p.
If i=N, -p-1, then the first term of (14) becomes -(-1)(N -p-1)+j
G(w-(N; +p-1)/N; ,w, §7/Nz ) - G(w; - (N, +p)n /Ny, w,47/Nz ).
If i=N, -p, it becomes -(-1)MiP*) G(w,- (N;+ p}n/N,, w,- jn/
N;) * G(w;- (N;+ p-1)n/N;, w,- jn/N; ). Thus, we can see that
they cancel each other automatically. Next, examine the second
term of (14) with p#0 and gq=0. The aliasing due to this term
exists when =N, -p or N, -p-1, j=0 or N;-1. For i=N; p and j=0,
this term becomes

DR Gw,- N3+ /Ny, wr) Glw,- (N + p-Dn/Ny,
w2 '(2N2'1)‘"/Nz ).

For i=N,-p-1 and j=0, it becomes (-)™:1P1) G(w,- (N;+
p-1)n/Ny, wa) - G(w,- (N + p)r/N;, w,- (2N, -1)7 /N, ). Thus,
we see that they cancel each other if the following additional
constraint on the frequency response G(w , w, ) is satisfied

G(w;-217/Ny, @3- 221/Ny ) G (wy - (2, +Da /Ny,

wz- (2, + D/Ny)

=G(wy- 2 71/N;, wa- @2+ 1) 1/N;) Glw,- @, +1D)7 /Ny,
wy-2,7/N;) (15)

for 2,=0,1,......, 2N; -1 and 2,=0,1,..., 2N, -1. Checking the other
product terms of (14) with p#0, g=0, we find that (15) is the
only additional constraint for aliasing cancellation. Similar results
can be obtained for the case of p=0 and g#0. The second
situation is p#0 and q#0. For the first product term of (14),
again, we can see that the possible aliasing exists when i=N, -p-1
or N,-p, j=N,-g-1 or N;-q. If i=N, -p-1 and j=N; -g-1, the pro-
duct term becomes (-1)N+ P-D*(N2-6-1) G, - (N, + p-D /N, ,
wy- N+ ag-Da/Ny) » Glew,- (N + p)r/Ny, wa- (N + Q)n/N;).
For i=N,-p and j=N,-q-1, then it becomes (-1)(N:-P)*(N.-a-D)
G (w;- (N, +p)a/Ny, w,- (No+ g-Dn/N;) « G(w,- (N, + p-a/

N;, ws- (N,+ @)n/N;). Thus, we see that they cancel each
other if (15) is satisfied for £, =N, +p-1 and 2, =N, +q-1. Similar
results can be obtained for the other cases.

In order to achieve perfect signal reconstruction, (7) must
be satisfied. From (14), Fjo(w,, w,) is given as

N,-1 N,-1 N 2
= - ) -
Foo@wi,w)= 2 L DM G (w1, 02) - Gay
2 2
(wl’w2)'GZN‘-l-i,j(“’l’w2)+G2N,-l-i,2N,-l-j(“’l""”)
+2G; j(@1, @2) Gy i on a5 (@1 w2)

- ZGLZN,-I-]((‘J" w3) Gle 1-ij (Wlswz)] . (16)
Examining (16), we note that the last two terms cancel each
other if the constraint of (15) is satisfied. Furthermore, from the
assumption of (9), (16) can be rewritten as
2N, -1 2N, 1 s
Fo,o("‘)l ,W2)= 220 E=0 ('l)y'ﬂz’ Ggpgi(wl ,wz)

2N, -1 2N, 1
=z ('lf‘ﬂ'exp {j"[gl(Ml'l)/Nl"'
2,=0 2,=0

M, -DIN }IGy o @1, 03)

exp {4 [w, (M- +w, (M.-DI}  (17)



Hence, if conditions of (8) are met, then the final reconstructed
signal will be the same as that of (10).

Because the frequency band allocation of subband band-
pass filters are nonsymmetric, the channel signals will be
complex. This can be solved by multiplying the input and the
recovered signals with 2-D exponential factors as shown in
Figure 3. However, these multiplications are incorporated into an
efficient structure for realizing the above 2-D subband system.
It will be derived in the next section.

111. THE 2-D POLYPHASE FILTER BANKS

In this section, we consider the efficient structure for the
realization of the proposed 2-D subband system with nonsepar-
able 2-D prototype lowpass filter. From Figure 1, we note that

x; 5 (n1,n2) = x (0, 02 )**h; ;(ny, nz) (18)
where h, .(n,, n,) denotes the impulse response of H; ;(w,, w3 )
and ** t'ixe 2-D discrete convolution. Let g(n;, n,) {>e the im-
pulse response of G(w,, w ), then g, j(n, , Ny ) can be written as

8 ¢, (M1, n2) =81, 1) exp G (021 7/Ny + 0,2, 7/N; )

19)
The convolution x(n, , n, )** 8, 0, (n,, n; ) of (18) is given as
2N,-12N,-1
x(ny, np )** & .2, (ny,n,)= kE-O k,E'O exp((k, (2, +¥2)n/N,

Ll
+ha @t/ ). 2

z, hz;’o gk, + 2N, ko + 2N, 1)

DT x(ng -k - 2Ni 1y, 0y K, - 2N, 1y ) (20)

We see that the last two summations in (20) are in 2-D con-
volution form. Next, define the (k, , k, )th polyphase component
of g(n,, n;) as

g“: X, (n,m)= | g, n) 1)5*%, n =k +2Ny 1y,
n,=k, +2N,r,

0 , otherwise. 2n
The the last two summations of (20) can be expressed as
Ll LZ
20 20 gk +2N;1y, Ky + 2N, 1) (1) *5 x(n, -
II= 12=

(ki +2N;1,), nz- (k2 + 2No12)) = X (0, n** g"(pkz (ng,ny)

a
Sexy y (n,ng) @2)
Substituting (22) and (20) into (18) yields
2N;1 2N;1 )
T I A R LL T
1 2

k, (j+1/2 k (2N, %) , wka@N;-j-%) k, (i+%)
Wiy Y+ WM W +Won,

Kk, (2N, -§-%) kg (2N, -i-%) Kk, (i+%
wzﬁ, - "'Wzﬁl i . wzﬁz ) ) (23)

where W,y éexp (j2a/2N). From (3), (23) and the property of
complex conjugate, we obtain
2N,-1

N,-1
Y (ny,n)= Re( k,2=0 k,z=0 28Xk“k1 (n; Ny, n; N, )

k(i) , Wk (i+%) k (i+%) .
(WZN, sz, * wzﬁ,
Won (e d%0)) @4

where Re(.) denotes the real part of (.). Let
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BXC 4 (n,,n,)= %, (n,,n, )/cos(k,n/2N,)
cos (k,n/2N,) fork, # N, , k,# N,.

gxo, y, (i, mp)=gx, (0, ) cos (, 7/2Ny),
fork, # N,.

gxey, i, (0., 1,) = gxy o (0.0 )/cos (ko 7/2N2),
fork,# N,.

gXey, N, (n,,n)=0. 25)

Then substituting (25) into (24) and performing some mani-
pulation gives
2N,-12N;-1
w .(n;,n)=%).Re( £ =T X n,N;,n,;N,) -
1J( viz) = (2) (k,=0k,=0 g ck,,k,(1 1,02 N2)

k, #N,k,#N,

-k, i -k, (i+1) . -k,j -k, (2N,-j-1) -k, (2N,-j)
W+ Won G+ W+ W PRI Wi BT

+W (26)

-k, (j+1)
N, )
From (26), it can be seen that the input signal x(n,, n, ) is first
convolved with the (k,, k; )th polyphase component gk. Xk, (0,
n,). The result is then divided by the cosine factors to give
gxg  (ng,n;)as shown in (25). Finally, the output from the
1 %2

polyphase network is decimated by N, x N, and then used as the
input of a 2-D FFT operation. u i("‘ ,n; ) is obtained by
summing all the eight outputs of the 2-D FFT and taking the real
part of this summation.

Next, we describe the derivation of the efficient structure
for the synthesis filter bank. From Figure 1, we have

Q@7

R -~
X; (1, m) =V, (ny, np )** by L(ny, 0p)
Hence
’ 2N,-1 2N,-1

A
Xx(n,m)= I I v}
=0 j=0

o (M) g, o (myn;) (28)
where v (n1,02)=Van | g; o, a5 (Mol )=(-1*v, j(n;,n;) and
V1,2N 2.l.j(nl »1 )=v’2N. .l_i,j(nl Nz )=-(-1 )H"Vi,j(nxsnz ) for i=0,1,
..,N,-1 and j=0,1,..., N,-1. Next, substituting (19) into (28)
and performing some manipulation yields

N IN-1 2N,
x(n,,n,)= X 2=:0 kE'O gl’(|’kz (ny, n, )**Pk,,k, (n;,n;) (29)
1 LI
where
/2 K, /2
By g, (o) = 4N, N; (DL DWRSZ - Wi
2N,-12N,-1

(AANDN) 22 v @na) Wt W3, (30)
We note that the double summation in (30) represents the 2-D
IFFT of v,z“ﬂ:(nl ., ). Furthermore, from (30), we can also
that  Poy i, 2w, , Mom2)=Poy g, (M1,m2)=
LK, (n, ,n,)." Therefore, it can be seen that in the synthesis

show

Py

filter bank, the (i,j)th input channel signal vi’j(nl,n,) is first
multiplied by (-1)i*J (or -(-1)*J) to produce the (i,j)th and the
(2N, -1-i, 2N, -1-j)th (or the (i, 2N,-1-)th) and the (2N, -1-i,j)th)
inputs of the2-D IFFT. Then the (k, ,k;)th output of the 2-D
IFFT is multiplied by 4N, N, (-1)(T+*La* D) exp ( (k,#/2N, +
k, /2N, )). After interpolated by (N; x N, ), it is convolved with
the (k,, k, )th polyphase component. Finally, the outputs from
the polyphase network are summed together to produce the
reconstructed signal.



IV. EXPERIMENTAL RESULTS

Several computer simulations were performed to illustrate
the theoretical development of the proposed 2-D polyphase
filter bank. Figure 4 shows the original 2-D image as the input
2-D signal. The reconstructed 2-D image using the proposed
polyphase filter banks with N;= N,=2 when G(w,, w;) is a
separable zero-phase FIR filter of size 69x69 is shown in Figure
5. Comparison to the original shows it to be virtually identical.
Next, we performed the simulation using nonseparable G(w; ,w,)
with magnitude response satisfying the additional constraint of
(15). Figure 6 shows the obtained reconstruction. Again, the
simulation result confirms our theoretical development. Some
more detailed analyses conceming the characteristics of the
proposed 2-D polyphase filter banks will be presented in a
forthcoming paper.
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