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Abstract 

T h e  covariance ma t r i x  of a rotationally s y m m t r i c  
shape i s  a scalar ident i ty  ma t r i x .  In this paper, w e  
apply this property of covariance m a t r i x  t o  deskew the  
skewed shape of rotational s y m m e t r y .  T h e  parameters  
of the deskew t rans format ion  m a t r i x  are solved by let- 
t ing the  covariance ma t r i x  of t he  t rans formed shape be 
equal t o  a scalar ident i ty  matr ix .  T h e n ,  t he  rotation- 
ally s ymmet r i c  shape can  be recovered by the  deskew 
t rans format ion  ma t r i x .  T h e  method does n o t  rely o n  
continuous contours,  since only  second-order m o m e n t s  
of the inpu t  shape are required t o  be computed. Exper- 
imenta l  results are also presented. 

I. Introduction 

Many researchers on the area of image analysis 
have pay attention to  the importance of rotational 
symmtry property of planer shapes. Lots of methods 
have been proposed to normalize the rotationally sym- 
metric shapes (abbreviated as RSS henceforth) [1]- 
[ 5 ] .  However, none of them has dealt with the skewed 
shape of rotational symmetry. 

In real applications, the view direction is not usu- 
ally perpendicular to the plane containing RSS, it re- 
sults in a skewed RSS on the image plane. Thus, the 
complete normalization procedure must include the 
deskewing stage. 

The term skewed s y m m e t r y  was first defined by 
Kanade [6]. 

"It means a class of 2-D shapes in which the sym- 
metry is found along lines not necessarily perpendic- 
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ular t o  the axis, but at a fixed angle to  it." 
A more detailed explaination is given by Friedberg [7]. 

"Skew symmetric figures are planar figures in the 
image space that are generated from planar symmetric 
figures by either of two processes: 

1. rotation in three dimensions followed by ortho- 
graphic projection onto the image plane; 

2. oblique coordinate transformation followed by ro- 
tation in the image plane." 

The term s y m m e t r y  in these definitions refers to re- 
flectzve symmtry .  We can define the skewed rotional 
s y m m t r y  by modifying the definition given by Fried- 
berg. 
Difinition. Skewed rotionally s y m m e t r i c  shapes are 
p lanar  shapes in the  image  space tha t  are generated 
f r o m  p lanar  rotationally s ymmet r i c  shapes by e i ther  
of t w o  processes: 

1. 

2. 

ro ta t ion  in three d imens ions  followed by ortho- 
graphic projection o n t o  the  image  p lane;  

oblique coordinate t rans format ion  followed by ro- 
ta t ion  in the  image  plane. 

The problem of deskewing reflective symmetry and 
deskewing rotational symmetry are somewhat similar. 
In fact, the set of reflective symmetric shapes overlaps 
with the set of rotationally symmetric shapes. The re- 
lation of these two sets are shown in Figure 1, where a 
typical shape is given for each subset. Higher-order re- 
flective symmetric shapes[S] are rotationally symmet- 
ric shapes. However, not all of the RSS are reflective 



symmetric shapes, an example is shown in Figure 1. 
In this paper, the previous work in the area of 

analyzing the skewed shapes of reflective symmetry is 
discussed. Then, a moment-based method for deskew- 
ing the skewed RSS is proposed. Several experimental 
results are also presented. 

11. Previous work 

Before proposing the method for deskewing the 
skewed RSS, let us review previous work in the area 
of analyzing &wed shapes of reflective symmtry. The 
Kanade’s work. in solving the gradient ambiguity is 
introduced[6], where the problem of analyzing skewed 
symmetry was first presented. Then, two moment- 
based methods for finding the axis of skewed symme- 
try are discussed[7][8]. 

Kanade solved the gradient of the plane includes 
the reflectively symmetric shape. Of course, the three- 
dimensional process is chosen as the model of skew 
generation process. In his work, the skewed-symmetry 
axis and the skewed-transverse axis are assumed to  
be given. For an assumed gradient, the symmetry 
axis and the transvers axis can be recovered by us- 
ing the skewed-symmetry axis, the skewed-transverse 
axis, and the gradient. The gradient is solved by the 
equation that the inner product of the symmetry axis 
and the transverse axis is equal to  zero, since they are 
perpendicular to  each other. However, there is still a 
trouble that it results in an infinite number of possible 
solutions, that  is, there is an ambiquity in determining 
the gradient. Kanade suggested that the least slanted 
gradient may be the most reasonable selection. No- 
tice that, he solved the gradient ambiquity but did 
not give a method for finding the skewed-symmetry 
axis and the skewed-transverse axis. 

Friedberg ]proposed a moment-based method to 
find the paramleters cr and ,b’ of the deskew coordinate 
transformation matrix. The two-dimensional process 
is chosen as the model of skew generation process. He 
used the property that the covariance matrix for a 
symmetric shape is a diagonal matrix, that is, the 
moment mll is necessarily equal to  zero. For a set 
of assumed parameters a and p of the deskew co- 
ordinate transformation matrix, the moment mll of 
the deskewed shape can be written as a function of 
the set of parameters and the second-order moments 
of the skewed shape. Let the moment mll of the 
deskewed shape be equal to zero, resulting in a con- 
straint on the set of parameters QC and 0. Stated an- 
other way, a can be described as a function of ,b’ and 

vice versa. The constraint reduces the search space 
from a two-dimensional parameter space to  a one- 
dimensional parameter space. The sector symmetry 
evaluator is applied to  search desired solutions along 
the one-dimensional parameter space. This method 
is computationally expensive, since a search process 
is required. In addition, it does not guarantee to  get 
exact solutions. 

Gross also chose the two-dimensional process as the 
model of skew generation process. He decomposed the 
skew transformation matrix into a shear matrix fol- 
lowed by a rotation matrix. Therefore, the deskewing 
process was decomposed into two steps: the recovering 
of rotation and the recovering of shear. The rotation 
parameter a is solved by letting the moments of in- 
verse rotated shape satisfy the constraint n1,1no,, = 
no,Zn1,,-1) where n is the degree of symmtry. Then, 
the shear parameter ,L? is solved by substituting the 
moments of the inverse rotated shape into the equa- 
tion co tp  = n1,1/no,2. This method assumes that 
the degree of symmetry is given, which is not usually 
the case in real applications. For higher-order symme- 
tries, numeric methods need to  be used and the com- 
putational complexity is increased. Furthermore, this 
method is not applicable to  deskew the skewed RSS, 
since the RSS may not have a axis of symmetry and 
the constraints n o d d , j  = 0 and nl,lno,, = T Z O , ~ ~ I , ~ - I  

are no longer valid. 

111. Proposed method 

A. Constraints 

Let us assume that the given shape S, = { q k  I Ic = 
1,2 ,  ..., n. } is a skewed version of the RSS S, = 
{ p k  1 Ic = 1 , 2  ,..., n. }. All coordinates of the im- 
age points are measured relative to  the centroid of the 
shape, that is, translation invariance is assumed. The 
(i,j) moment of S, is defined by mij = Ck xiyj!, where 
[zk,yklT = p k .  The covariance matrix of the RSS S, 
is defined by 

1 -  m20 mll 

k 

It can be proved[l] that the covariance matrix of an 
RSS is a scalar identity matrix. That is, there are two 
constraints on the RSS mll = 0 and m20 - m02 = 
0. In comparison with the method proposed by 
Friedberg[7], an additional constraint m20 - m02 = 0 
is available, since the given shape is an RSS instead 
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of a reflectively symmetric shape. Of course, the solu- 
tion space to be searched is reduced by the additional 
constraint. 

B. Solut ion 

In this paper, the two-dimensional process is cho- 
sen as the model of skew generation process. Since 
the given shape S, is a skewed version of the RSS S,, 
they can be related by q k  = T p k ,  k = 1 , 2 ,  ..., n, where 
T is the skew transformation matrix and is defined by 

COSQ coscrcotfl - sina 0 5 a < T ,  
T =  [ s ina  s i n a c o t p + c o s a  1 ’ 0 < 0 < 7r. 

The angles a and p are the degrees of rotation and 
shear, respectively, in the skew generation process. 
Then, the covariance matrices of the RSS M and the 
skewed RSS N are related by 

k k 

It can be rewritten as 

After manipulations, the two constraints can be 
ten as 

[& - m o n o 2  + n:l] tan4 a + [-4n20nll] tan3 cy 
+[6nPl] tan2 Q + [-4nllno2] tan Q 

+ n&] = 0. +[-?I207202 + 

2. Compute the two distinct real solutions of the 
following quartic equation in terms of t a n a  by 
using explicit formula. 

[.io - 72207202 + n;,] tan4 a 
+[-4n20n11] tan3 Q 

+[6nf1] tan’ a + [-4nI2noz] t a n a  
+[-n207202 + ?& + ?xi2] = 0. 

3. For each resulting t a n a ,  solve its corresponding 
tan P by substituting into the following equation. 

[-rill tan2 Q - ( n z o  - n02) tan a + rill] tan p 
+[-nzo tan a + 2nll t a n a  - no2] = 0. 2 

4. Apply the pair of parameters containing the P 
within (0,7r/2), which is unique, to  construct the 
deskew transformation matrix T- l .  

cos Q + sin a cot p sin cy - cos a: cot p 
- sin Q cos a 

5 .  Deskew the given skewed RSS by using the 
writ- deskew transformation matrix. 

pk = T - l q k ,  k = 1 , 2 ,  ..., n. 

It can be proved that  solving the univariate quartic 
polynomial, in terms of t a n a ,  in Equation (2) gives 
exactly two distinct real roots. Substituting the two 
roots into Equation (3), there exists exactly one solu- 
tion such that 0 < p < 7r/2. 

C .  Algor i thm 

We propose the deskew algorithm as follows 

1. Compute the covariance matrix N of the given 
skewed RSS s, = { q k  I k = 1 , 2 ,  ..., 72. }. 

IV. Experimental results 

The algorithm is programmed in MATLAB lau- 
guage and executed by workstation. The CPU time 
required is within one second for each case. In fact, 
it is the fastest moment-based algorithm for deskew- 
ing the skewed RSS. Because once the moments of 

(2) 

(3) 

the skewed shape are achieved, the parameters of the 
deskew transformation matrix can be computed di- 
rectly by applying the explicit formula. 

The input skewed RSS of our first experiment is 
shown in Figure 2(a). To understand how we get 
the solution, the loci of parameters corresponding to 
our two constraints are plotted in Figure 2(b). Each 
point on a locus represents a possible solution under 
its corresponding constriant. The loci are plotted by 
equally sampling on the a space and solving p for each 
given value of a. The locus corresponding to  the con- 
straint mll = 0 is represented by solid line and the 
locus corresponding the constraint m20 - m02 = 0 
is represented by crosses. Because the constraint 
m 2 0  - moa = 0 is a quadratic equation in cot p, there 
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are two P values for each Q value or is no solution 
sometimes(when the two cot P values are complex con- 
jugates). The intersections of the two loci are solutions 
of the problem. The two deskewed shapes correspond- 
ing to  the two intersections are shown in Figure 2(c) 
and (d). In fact, applying our algorithm gives the ver- 
sion shown in Figure 2(c). The shape of Figure 2(d) 
is a rotated versiion of Figure 2(c) and can be ignored. 

An additional experiment is shown in Figure 
3. Notice that, the deskewed shape shown in Fig- 
ure 3(b) is a RSS and also a reflectively symmetric 
shape(higher-order symmetry[8]). 

V. Conclusion 

In this paper, we propose an O(n)  algorithm to 
deskew the skewed RSS. The moment-based algorithm 
does not rely on smooth or continuous contours. We 
do not intend to finding the axis of symmetry, because 
a given RSS ma.y not have any axis of reflective sym- 
metry. However, it does have ayes, several kinds of 
axes are proposed by previous researchers[l]-[4]. 

The experimental result confirms our derivations 
of constraints and shows availability of our algorithm. 
The algorithm gives accurate estimation of the skew 
parameters a and p. 

After applying our algorithm. any of the algo- 
rithms proposed in [1]-[5] can be used to normalize 
the deskewed RSS and thus the whole normalization 
procedure is completed. 
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Figure 2(b) The loci of our constraints. The locus corresponding :o 

the ConStraifll nil = o  is represented by solid line and the locus 

COrreSPOnding to the constraint mzo - Qz=O is represented by 

crosses. 

Figure Z(c) The deskewed version of the shape shown in (a). 

Figure 2(d) The deskewed version of the shape shown in (a). It is a 

rotated version of (c). 

Figure 3(a) The skewed versian of a rotatianally symmetric shape 

It  IS also a reflac:lvely symmelrlc shape. 

Figure 3(b) The deskewed version of the shape shown in (a). 
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