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Abstract - Modified perturbation theory based on high 
order Taylor series expansion and congruence transforma- 
tion is applied to the finiteelement model order reduction to 
accelerate the analysis of waveguide eigen-mode problems. 
The limit of Taylor series by poles is overcome and the band- 
width of a single-point reduced-order model is greatly 
improved. Without transforming a Taylor series to a Pad6 
rational function, as in an AWE process, this method is more 
stable and has a wider bandwidth. 

Index Terms - Perturbation methods, model reduction, 
finite element methods, numerical analysis, microwave wave 
guides, microstrip. 

I. INTRODUCTION 

The characteristic of a waveguide or a transmission line 
over a wide frequency band is often desired in electro- 
magnetic design. Direct calculation of each frequency 
point in the desired band is time-consuming and some 
information may be lost due to insufficient frequency 
points. Several model order reduction techniques for fast 
analysis of waveguide eigen-mode problems have been 
proposed in the past. For example, hyper-perturbation 
theory [1][2], based on Taylor series expansion, was 
proposed and applied with the finite element method to 
obtain an explicit expression for the dispersion curve and 
the birecngence of an optical fiber with arbitrary index 
profile. 

Due to the limit of Taylor series by poles, the 
expression is in a segmented form with each segment 
valid in a narrow frequency range. Asymptotic waveform 
evaluation (AWE), originally developed for time-domain 
analysis of electronic circuits, was combined with the 
TVFEM for the electromagnetic analysis of dielectric 
waveguides [3]. In an AWE process, the Taylor series is 
transformed to a Pad6 rational function to increase the 
bandwidth of a reduced-order model, over which the best 
choice of the rational order is usually difficult to 
determine. 

Another way to obtain a reduced-order model can be 
found in [4], where several modal eigenvectors evaluated 
at many frequency points in the desired band are arranged 
column-wise and orthonomalized using the SVD. These 

singular vectors span a subspace containing approximate 
frequency-dependent modal eigenvectors, over which the 
original matrices are projected to yield a reduced-order 
model (much smaller matrices) by a congruence transfor- 
mation. Although kquency derivatives of an eigenvector 
can also be used, as mentioned in [4], multi-point 
evaluation is preferred. Since the eigen-solution process is 
the most costly step, evaluation points in the band are as 
fewer as better. 

In this paper, single-point model order reduction is 
investigated in order to fully exploit the information fiom a 
single-point calculation. The name "modified perturbation 
theory" is derived form [ 11, since our aim is to improve the 
reduced-order model obtained &om a single-point Taylor 
expansion. The proposed method will be called modified 
perturbation for model order reduction (MPMOR) in the 
following sections. 

II. MODIFIED PERTURBATION THEORY 

Assume that the original 2D FEM equation for a 
waveguide problem is given as 

A(k)x(k) = A(k)B(k)x(k) 

where both A(k) and B(k) are N x N finite-element 
system matrices and k is the wavenumber. The eigenvalue 
A(k) and the eigenvector x(k) are related to the 
propagation constant and the field distribution of a mode, 
respectively. 

By treating the wavenumber as a perturbation, A(k) , 
B(k) ,  A(k) and x(k) can all be expanded into Taylor 
series. The fiequency derivatives of A(k) and B(k) are 
known as soon as the matrix assembly process is complete, 
while those of A(k) and x(k) are remained to be 
determined. Suppose that both A(k) and B(k) have 
linear and quadratic dependence on k, derivatives of 
A(k) and x(k) over the wavenumber can be found 
recursively as 

1419 

0-7803-8331-1/04/$20.00 0 2004 IEEE 2004 IEEE MTT-S Digest 



P-I min 2,P-i) 

+ C Ai . Bjxp-i-j (2) 
i=l j = O  

where the subscripts represent the order of perturbation, 
and P is the maximum perturbation order. Detailed 
procedures can be found in [ 1-31. 
After the modal eigenvector xo and its frequency 

derivatives xi (i = 1,2,..., P) are obtained, they are 
orthonormalized to form an N x  L matrix E where 
L = P + 1 . Taking E as a congruence transformation 
matrix, we get a reduced-order model as 

AU=E*AE (3) 
E = E * B E  (43 

where both and 2 are L x L matrices, much smaller 
than the original ones, and the s m o l  * regresents the 
Hermitian operator. Note that A and B are still 
fkequeriy-depe_ndent. We can introduce a new fkequency 
k into A andB , and obtain a new eigen-problem. These 
reduced eigen-problems can be solved very quickly over 
the frequency band. If high order modes are desired, the 
above procedure can be repeated. We do not mange all of 
the desired modal eigenvectors and their frequency 
derivatives column-wise together, since this does not 
improve the bandwidth of a model significantly but costs 
more time instead. Thus each dispersion curve is traced 
respectively during the MPMOR process. 

It is worthy to mention the special cases of a metallic 
waveguide with homogenous material. In those cases, the 
eigenvector for a mode is theoretically fkequency- 
independent and hence its fkequency derivative will be 
zero. The reduced matrices become of rank one only and 
are ideal to extract the wideband characteristic of that 
mode. 'This contradicts the common conjectures that it will 
be better to construct the congruence matrix E by using 
the eigenvectors of more modes and at more frequencies. 

It is not a-riiial task to determine which eigenpair 
(x,F) of (A ,B)  is the desired mode, especially for 
higher order perturbation. The adopted scheme is to check 
both eigenvalues and eigenvectors at each frequency 
points. Starting from the expansion frequency point, 
where the solution can be viewed as an exact one, we 
compare the current eigenpairs with the one determined at 
the previous frequency point. Eigenvalues very different 

from the previous one are eliminated. It has been observed 
that some nonphysical spurious DC modes are also 
contained in the subspace spanned by E . They may lead 
to failure in tracing a desired mode near cutoff and must 
be filtered out. Since the form of these nonphysical 
solutions was described in [5] ,  we can calculate the inner 
products of current eigenvectors with 

(5 )  

where 
qt = [IJ, . ,llT /fi (transverse  unknown^) 

and qz = 0 (axial unknowns). (6) 

Eigenvectors whose inner products with below a 
certain criterion, say, are identified as spurious DC 
modes and are eliminated. Moreover, inner products of the 
current eigenvectors with the previous one are calculated, 
and the largest is selected. Note that it is not necessary to 
recover the approximate eigenvector of the original model 
bY 

to compute the inner products since E is an ortho- 
normalized matrix. 

x = E Z  (7) 

In. NUMERICAL RESULTS 

Three examples have been analyzed to validate the pro- 
posed method. An FEM solver is written in MATLABTM 
and implemented on a PC with Pentium III 1-GHz CPU 

A. Dieleclric-Loaded Metallic Rectangular Waveguide 

A dielectric-loaded metallic rectangular waveguide as 
shown in Fig. 1 is simulated from h b  = 1 to 6. The 
expansion point is selected at the central fkquency h b  = 
3.5, where the fmt five modes are calculated. Pertur- 
bations of each modal eigenvector are computed up to P 
= 10. The dispersion curves (Fig. 1) obtained by MPMOR 
are quite consistent with the direct solutions (circles), 
even below the cutoff frequency of each mode. 

To analyze the accuracy of MPMOR, we define the 
relative error as 

and 256-MB RAM. 

IIA(k)x(k) - W)B(k)x(k)l l  (*) error = 
llx(k)ll 

where A(k) and B(k) are the original matrices at 
frequency k, and x(k) and A(k) are the approximate 
solutions by MPMOR. 
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Fig. 1. The dielectric-loaded metallic rectangular waveguide 
and the dispersion curves of its fust five modes. The results of 
MPMOR with the expansion point at k,b = 3.5 (solid lines) and 
duect calculation (circles). 

Four curves are shown in Fig. 2. The first one 
corresponds to the error of the first mode with 
perturbation order P = 5. The error is lower than lo-' 
over the frequency band. The second, corresponding to 
the first mode with P = 10, has even lower error, below 
IO-'' over the entire fiequency range! The error of the 
second mode (dashed line) and the third mode (dotted 
line) are also quite low. 

mode 2 P=10 
........... mode 3 P=10 - -4 L 
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Fig. 2. 
the fmt three modes by MPMOR 

Error versus frequency of the reduced-order models for 

For this structure, the number of unknowns is 10961. 
The total time for solving the generalized eigen-problem 
and the generation of the reduced-order model ( P  = 10, 
i.e. L = 11) for the fust mode is 17 s. Solving the 
reduced-order model at 501 fiequency points ( A  h b  = 
0.01) takes only 0.42 s, while solving the original FEM 
model at 5 1 frequency points ( A i&b = 0.1) takes 526 s. 

It is natural to ask, in addition to the desired mode, what 
the other eigenpairs of a reduced-order model are. In fact, 
it has been observed that some of them are also 

approximate eigen-modes. Every eigenvalue (transformed 
to the corresponding propagation constant and normalized 
to fiequency) of the reduced-order model for the f is t  
mode in the frequency band are shown in Fig. 3. It is 
apparent that the third mode and some other high order 
modes exist in the reduced-order model. We traced the 
third mode in the reduced-order model for the first mode 
and found that the relative error is quite low and uniform - lo-*) over the frequency band. This solution is 
really an eigen-mode of the waveguide. 
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Fig. 3. Eigenvalues (transformed to the corresponding propa- 
gation constants and normalized to /q,) of the reduced-order 
model (P = 10) for the first mode. 

B, Shielded Anisotropic Image Waveguide 

A shielded anisotropic image waveguide as shown in 
inset of Fig. 4 is simulated from 23 MHz to 45 MHZ and 
the results are compared with those in [3]. The 
dielectric is TiOz, which has a very high permittivity E, = 
170 and E~ = E, = 85. The expansion point is chosen at 
f = 36 MHz, where the first two modes are calculated. 
Perturbations are computed up to P = 15. The dispersion 
curves (Fig. 4) of the first two modes at 36 MHz obtained 
by MPMOR are in good agreement with the direct 
solutions (circles). Note that the two modes cross over 
around 40 MHz. The proposed method can trace the 
desired mode through this region successfully without 
mistaking the first mode for the second or vice versa. 

The relative error of the reduced-order models as 
defined in (8) are presented in Fig. 5 ,  where we can see 
that MPMOR has a much better performance than AWE 
[3]. The number of unknowns for this structure is 10529. 
The total time for solving the generalized eigen-problem 
and the generation of the reduced-order model ( P  = 15, 
i.e.. L = 16) for the first mode is 42 s. Solving the 
reduced-order model at 221 frequency points ( Af = 0.01) 
takes. 0.33 s only. However, solving the original FEM 
model at 23 frequency points (4 = 0.1) takes 614 s. 
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Fig.4. The shielded anisotropic image waveguide and the 
dispersion curves of its first two modes at 36 MHz.  The results 
obtained by MPMOR (solid lines) and direct calculation (circles). 
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Fig. 5. Error versus frequency of the reduced-order models for 
the first two modes at 36 MHz. The results obtained by MF’MOR 
(solid lines) and AWE [3] (dots). 
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C. Shielded Microstnp Line 

As a final example, we simulate a shielded microstrip 
line 14) fiom 10 GHz to 25 GHz. The expansion point is 
chosen at 18 GHz. Perturbations are computed up to P = 
20. The results obtained by MPMOR are in good agree- 
ment with the direct solutions for the first to the fifth 
mode (:Fig. 6). However, for the sixth and seventh modes, 
the adopted scheme succeeds only in the region of the 
complex modes, but tends to trace one of two ordinary 
modes after the complex modes split around 17 GHz and 
20 GHz. A more robust scheme is still under study. 

w. CONCLUSION 
The modified perturbation theory has been successfully 

applied to the finite-element model order reduction to 
greatly accelerate the analysis of waveguide eigen-mode 
problems. A reduced-order model produced by MPMOR 
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Fig. 6. The dispenion curves of the first seven modes of the 
microstrip line. The results of MPMOR with the expansion point 
at 18 GHz (solid lines) and direct calculation (circles). 

is not limited by poles and has a much wider bandwidth 
than an AWE reduced-order model. It has been found that 
as far as a wideband characteristic of a particular mode is 
concemed, the eigenvector and its frequency derivatives 
are enough to construct the congruence matrix. 

In addition, a reduced-order model of some mode may 
contain the characteristics of other modes. Thus if several 
dispersion curves are needed, we may check at the expan- 
sion point whether the desired high order modes (eigen- 
values) exist in the already obtained reduced-order model 
with good enough accuracy. If they do, we can directly 
use the same model to obtain the dispersion curves of the 
high order modes without generating reduced-order 
models for them. 
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