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Abstract: The paper deals with the minimax 
design of two-channel nonuniform-division filter 
(NDF) banks. Based on a linearisation scheme, 
the design problem is formulated as an 
optimisation problem with linear constraints. The 
authors present a method to design a two-channel 
NDF bank using a modified dual-affine scaling 
variant of Karmarkar’s algorithm. This method 
provides the optimal results that the linear-phase 
FIR analysis and synthesis filters have equiripple 
stopband response and the resulting NDF bank 
also shows equiripple reconstruction error 
behaviour. The effectiveness of the proposed 
design technique is demonstrated by several 
simulation examples. 

1 Introduction 

In many areas, such as the subband coding of speech 
signals [ 11, communication systems [2] and short-time 
spectral analysis [3], quadrature mirror filter (QMF) 
banks find a very important role. Recently, their use- 
fulness has been extended to the area of image subband 
coding [4], which has been recognised as an effective 
technique for high quality image coding at low bit 
rates. In these applications, a QMF bank is used to 
decompose a signal into subbands with equal band- 
width and the subband signals in the analysis system 
are decimated by an integer which is equal to the 
number of the subbands. However, uniform-subband 
decomposition is not an appropriate scheme to match 
the requirements in a great variety of applications. An 
important example is critical band analysis with a filter 
bank which can be utilised in spectral analysis, coding, 
enhancement, speech recognition and audio signals. 
For the subband coding of speech and audio signals, 
the most appropriate decomposition must consider the 
critical bands of the ear. It has been considered in [5] 
that these critical bands have nonuniform bandwidths 
and cannot be easily constructed by the conventional 
tree structure based 011 two-channel QMF banks. Thus, 
it is worth exploiting the design problem of nonuni- 
form-division filter (NDF) banks. 
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The basic theory regarding the principle and the 
related conditions of perfect reconstruction for NDF 
banks has been presented in [6]. Methods for designing 
the NDF banks were also proposed in [6]. However, it 
is difficult to solve the resulting design problem with 
nonlinear constraints. In [7], a structure for NDF 
banks was introduced and a design method based on 
the use of pseudo-QMF was presented. The main 
drawback is that FIR filters with complex coefficients 
are required by the resulting NDF bank to reduce the 
aliasing distortion. Recently, one of the authors consid- 
ered a structure for two-channel NDF banks and pro- 
posed design methods for optimally designing NDF 
banks based on the least-absolute error criteria in [SI. 

In this paper, NDF banks with structures similar to 
[SI, as shown in Fig. 1, are considered. We deal with 
the minimax design of a two-channel NDF bank. A 
method for designing NDF banks with equiripple 
reconstruction error and equiripple stopband response 
for its linear-phase (LP) FIR analysis and synthesis fil- 
ters is developed. A modified dual-affine scaling 
(MDAS) variant of Karmarkar’s algorithm of [9], in 
conjunction with a linearisation scheme, is presented, 
to solve the resulting nonlinear design problem. It is 
shown that the optimal coefficients for the LP FIR 
analysis and synthesis filters can be found through 
solving only linear equations. Simulation results show 
that very satisfactory NDF banks can be obtained 
using the proposed technique. 
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Fig. 1 
system 
a Analysis system 
b Synthesis system 

Two-channel nonunijorm-division maximally decimatedfilter bank 
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2 Two-channel nonuniform-division FIR filter 
banks 

Consider the two-channel nonuniform-division filter 
(NDF) bank with the architecture given in [SI which is 
shown in Fig. 1. The linear-phase (LP) analysis lowpass 
and highpass filters are designated by Ho(z) and H,(z), 
respectively, while the LP synthesis lowpass and 
highpass filters are designated by Fo(z) and Fl(z), 
respectively. Bo(z) and B,(z) are two lowpass filters 
responsible for achieving aliasing-free operation during 
the rational decimation and interpolation. It can be 
shown that using the modulations of multiplying 
exp(ilzz) in highpass subband channel leads to the 
favourable result that B,(z) can be a lowpass filter with 
real coefficients. The desired magnitude responses for 
the analysis filters Ho(z) and H,(z) with passband 
widths equal to L 0 d L  and L l z / L ,  respectively, are 
shown in Fig. 2, where L = Lo + L, .  cop and 0, denote 
the related band-edge frequencies. 
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Fig. 2 
(i) f&,(,u)/d((L(Lo); (ii) H,(co)/d((L(L,) 

Desired magnitude speclficutions for the analysis filters 

Following eqns. 45, 46 and 47 obtained from the 
Appendix we can reformulate the conditions required 
for perfect reconstruction as follows: 

for O 5 w 5 T T ( w )  = 1, 
Ho(w) = 0, 
H l ( w )  = 0, 

for w, 5 w 5 7r 

for 0 5 w 5 wp 
1 1 

mHo(w) = - Hl(W, + U S  -U), d G  
for wp 5 w 5 w,  (1) 

Eqns. 1 reveal that the conditions for perfect recon- 
struction can be met only when Ho(z) and H,(z)  have 
infinite filter length. Therefore, the design problem of 
the two-channel NDF banks of Fig. 1 is finding such 
Ho(z) and H l ( z )  with finite filter length that the condi- 
tions listed in eqn. 1 can be approximately met in some 
optimal sense. 

3 
the minimax sense 

3. I Problem formulation using a 
lin eis risa fion scheme 
For ithe case of optimally designing two-channel NDF 
banks in the minimax sense, both of the designed filters 
H0(z) and H I  ( z )  have equiripple stopband response, 
while the resulting NDF bank shows equiripple recon- 
struction error behaviour. From eqn. 1, let the design 
specifications for the magnitude responses of Ho(z) and 
H,(z:I be given as follows: 

(Optimal design of two-channel NDF banks in 

&(U)  = 1 

Do(w)  = 0 

with W m z ( w )  = 1, 

with W m z ( w )  = T ,  
( 2 )  

3&{ for 0 5 w 5 wp 

for w, 5 w 5 T 
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and 

D l ( w )  = 0 with W m z ( w )  = T ,  

( 3 )  
- = {  H1 (w) for 0 5 w 5 wp 

for w, 5 w 5 T 

D l ( w )  = 1 with Wmz(w) = 1, 

respectively, where Dl(co) denote the desired magnitude 
responses, Wmx(co) the minimax weightmg function, 
and r the ratio between the passband and stopband rip- 
ples. Assume that the designed FIR filters HO(z)/d(LLo) 
and H,(z)Id(LL,) have peak error 6 in their passbands. 
It can be shown from eqn. 45 that the corresponding 
magnitude response T(u) has the following behaviour: 

for w E [0, up] U [w,, 71-1 (4) 
Eqn. 4 reveals that T(u) is not constrained over the 
frequency range of (cop, w,). Hence, we have to impose 
the following additional condition for T(co): 

for w E (wp,w,) (5) 
to ensure that T(o) shows the equiripple response over 
the entire frequency range. However, we note that the 
required constraint of eqn. 5 is a nonlinear function of 
the filter coefficients ho(n) and hl(n), and, hence, results 
in a highly nonlinear optimisation problem. To over- 
come this difficulty, we propose an appropriate lineari- 
sation scheme for dealing with eqn. 5. Consider the 
following constraint: 

(1 - 6)2 5 ~ ( w )  5 (1 + 6)', 

5 (1 + 6), for w E (wp,w,) (6) 
where 

(7) 
1 1 -  

T ( w )  = -ig(Ld) LLO + -H,2(W) LL1 

denotes the magnitude response of the designed NDF 
bank corresponding to the designed LP FIR analysis 
filters Ao(z )  and A,(z) whose magnitude responses are 
given by Ro(co) and Al(co), respectively. Note that the 
constraint of eqn. 6 is equivalent to the required con- 
straint of eqn. 5 when Ao(co) = H0(w) and Al(u) = 
H1(co). Therefore, eqn. 7 becomes a linear constraint, if 
A0(co) and Pl(co) are set to the magnitude responses of 
the obtained LP FIR analysis filters during the design 
process. 

Next, let V and be two vectors given by 

v =  [H7g,HgIT -- 

and 

Substituting eqns. 7 and 8 into eqn. 6 yields 

(9) 
where ( . ) denotes the operation of vector inner prod- 
uct. From Cauchy-Schwartz inequality, it follows that 

( V - V ) . ( V . V )  > ( V . V ) 2  (10) 
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From eqns. 9 and 10, we obtain 

~ ( w )  = (v.v) 2 (I  - 6)2, for w E (wp ,ws )  (11) 

Eqn. 11 reveals that the inequality holds if Ho(z) and 
H,(z) satisfy the constraint shown by eqn. 6 for the 
obtained during the design process. Moreover, if is 
very close to V for CO E (up, os), we then have 

for w E (up, U,) (12) 
Hence, the constraint shown by eqn. 5 could be met 
during the design process. 

Based on these results, we formulate the problem for 
the minimax design of two-channel NDF banks as 
follows: 

minimise b 
subject to 

1-65- H~(w) < 1 + 6, for w E [O,wPl m- ’ 
r m- --I- Hl(w) < f )  for w € [0,w,l 

5 1 + 6, for w E (wP,w,) 

Examining the constraints listed in eqn. 13, we note 
that the first five constraints are used to ensure that the 
resulting ~‘(co) satisfies the required constraints shown 
by eqns. 4 and 5.  The second and fourth constraints 
are used to ensure that the designed Ho(z) and H,(z) 
have the minimax stopband response, while the last 
constraint is employed to guarantee that the required 
aliasing cancellation can be met. Moreover, all of the 
constraints listed in eqn. 13 are linear functions of the 
filter coefficients ho(n) and h,(n). Therefore, the design 
problem shown by eqn. 13 is an optimisation problem 
with linear constraints. Accordingly, the overall design 
task is to find the filter coefficients ho(n) and h,(n) such 
that the peak ripple 6 is minimised. 

be a dense grid of frequencies, linearly distributed in 
the range of w = 0 to CO = x, for evaluating the magni- 
tude response of the NDF bank and the related error 
functions defined in the preceding text. Assume that 
Ho(z) is a case 2 LP FIR filter. To formulate the con- 
sidered design problem in a more compact form, the 
expressions given in eqns. 42 and 43, for H,,(co) and 
H,(o) ,  are substituted into the linear constraints shown 
by eqn. 13. Then, we put the related filter coefficients, 
the cosine and sine terms into matrices as shown in 
Section 3.1.1, where U0 is a K x No/2 matrix containing 

Let {CO, = 0, ~ 0 2 ,  ..., i01 = up, ..., WJ = os, ..., WK = 16) 
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the related cosine terms for o E [0, x]. U1 is a K x N1/2 
matrix containing the related sine terms for 03 E [0, 4. 
U,, is an I x No/2 matrix containing the related cosine 
terms for w E [0, cop]. UIp is a ( K -  J + 1) x N1/2 matrix 
containing the related sine terms for CO E [or,,, x]. Uos is 
a (K  - J + 1) x No/2 matrix containing the related 
cosine terms for CO E [os, x]. U1, is an I x N1/2 matrix 
containing the related sine terms for o E [0, U,]. Uot is 
a ( J  - I + 1) x N0/2 matrix containing the related cosine 
terms for w E [U,, U,]. U1, is a ( J  - I + 1) x N,/2 matrix 
containing the related sine terms for w E [U,, CO~]. U,, is 
a ( J  - I + 1) x N0/2 matrix containing the weighted 
cosine terms for w E [up, os]. Ubt is a ( J  - I + 1) x N1/2 
matrix containing the weighted sine terms for o E [wp, 
us]. Let y and z be two vectors containing the inde- 
pendent filter coefficients as follows: 

and 

where the superscript T denotes the transpose opera- 
tion. Using the above matrix notations, the overall 
design problem given by eqn. 13 can be reformulated 
as follows: 

minimise Ild - Q [ y T  z ’ ] ~ I I  
where 

d = [IT,+, 05+,Ir 

1 1  x 1 1  denotes the Chebyshev norm or peak of x. 0 and 
0 represent a zero vector and a zero matrix with size 
shown by its subscript, respectively. 

3.1.1 Matrices used for formulation of the 
design problem: 
U. = [uo(i, j ) ] ,  where 

uo(2,j) = 2cos { (T No + 1 - j )  , 

U1 = [u,( i , j )] ,  where 

uop(i , j )  = 2cos { (y -i) wi}, 
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ul, := [U&, j)], where 

Nl l < i < K - J + l ,  l < j < - -  
2 

Uos =: [uo,(i, j)], where 

NO l < i < K - J + l ,  l < j < -  
2 

UI, =I [u,,(i, j ) j ,  where 

1 T  

1V 1 

2 
1 < i < r ,  l < j < - -  

Uot =I [uot( i , j ) j ,  where 

NO l i i < J - I + l ,  l < j < -  
2 

U1, =I [ult(i , j) j ,  where 

Nl l < i < J - I + l ,  l < j < -  
2 

3.2 Proposed design method 
Based on the formulation given by eqn. 15 for design- 
ing the two-channel NDF bank with continuous coeffi- 
cients, we present an efficient design method based on 
a modified dual-affine scaling (MDAS) variant of Kar- 
markar's algorithm to solve the considered design 
problem. The original and several modified versions of 
Karmarkar's algorithm have been successfully used for 
solving a variety of optimisation problems in the litera- 
ture [9-121. 

First, the design problem of eqn. 15 can be reformu- 
lated as follows: 

minimise 6 

where is a (2K + 4) x 1 column vector with all entries 
equal to 6 and h = [yT zTT .  Next, we further construct 
the following matrices: 

w = [ h T  b I T ,  b=[OT 

where 0 and 1 represent two vectors with appropriate 
sizes and all entries equal to zero and one, respectively. 
Accordingly, the minimax optimisation problem of 
eqn. 17 can be rewritten in the form of a dual optimisa- 
tion problem as follows: 

maximise bTw 
subject to  ATw < c (19) 

Based on the dual-affine scaling variant of Kar- 
markar's algorithm presented in [9], we introduce slack 
variables to the formulation of eqn. 19. This leads to 
the following optimisation problem which is equivalent 
to eqn. 19: 

maximise bTw 

subject to ATw + v = c, v 2 0 (20) 
where v is the vector containing the slack variables. 

Next, assume that we have an interior feasible solu- 
tion WO which satisfies ATwo + vo = c and vo > 0 at the 
initial stage. With the initial solutions WO and yo, it has 
been shown in [13] that an appropriate scaling opera- 
tion must be performed to update w and v such that 
the objective function bTw can be improved at a faster 
rate. In [9], it was proposed to scale the slack variables 
as follows: 

G = Dl'v (21) 

D, = diag(v) (22) 

where 

Substituting eqn. 21 into eqn. 20, we obtain 
maximise bTw 
subject to  ATw + DUG = c ,  G 2 0 ( 2 3 )  

Let the set of feasible solutions for eqn. 20 be given by 

w = (w E R ~ ~ + ~ I A ~ ~  .} (24) 
where N, = (No + N1)/2. Then, the set of feasible scaled 
slack vectors for eqn. 23 is given by 

V = {v E R4"+*13w E W,ATw+D,G = c }  (25) 
From eqn. 25, it is easy to show that the corresponding 
w in W, for a given scaled slack vector ii in V is given 
by 

w ( ~ )  = ( A D ; ~ A ~ ) - ~ A D ; ~ ( D ; ~ ~  - G )  (26) 
and the one-to-one relationship between the feasible 
directions f, in W and f; in is given by 

fc = -DGIATf, (27) 
Based on eqns. 23 and 26, the feasible direction f?, can 
be obtained by computing the gradient of the objective 
function brw with respect to B as follows: 

fc = V,(bT(W(G))) = -Dc1AT(ADU2AT)-'b 
(28) 

f, = (ADt2AT)-lb (29) 

Comparing eqns. 27 and 28, we obtain 

91 IEE Proc.-Vis. Image Signul Process., Vol. 145, No. 2, Apvil 1998 



After determining f, from eqn. 29, we note that updat- 
ing w can be carried out as follows: 

if a suitable step size a is found, where w', h', and 6' 
represent the w, h, and 6 obtained after the (i - 1)th 
iteration, respectively, during the optimisation process. 
We use this f h ,  which is the subvector containing the 
first N, entries of the feasible direction f,, as the true 
descent direction for updating the coefficient vector h 
of the optimisation problem in eqn. 23. To find a suita- 
ble step size a analytically, instead of numerically, for 
updating w, we propose an efficient method by consid- 
ering the feasibility of using the updated slack variable 
VI + af,. First, from eqns. 21 and 28, we have the feasi- 
ble direction for the unscaled slack variable as follows: 

f, = -AT(ADL2AT)-'b = -ATf, (31) 
Then, based on the fact that the updated slack vector v 
must be a vector with all entries greater than or equal 
to zero, a suitable step size a can be obtained by taking 
the most appropriate feasible step in the direction off ,  
as follows: 

where 0 i y < 1 is in general chosen experimentally. ( z ) ~  
denotes the jth entry of the vector z and min{x} the 
minimum value of x. Based on eqns. 18 ans 30, the for- 
mula for updating h after the ith iteration is then given 
by 

his' = hz + a f h  ( 3 3 )  

3.3 Selection of the Rrequired initial guess 
Based on the proposed design method presented in Sec- 
tion 3.2, the overall design process is basically an itera- 
tive procedure. To initiate the iteration, an initial guess 
for the filter coefficient vector h must be provided. As 
the initial guess will affect the convergence speed and 
the design results, an appropriate initial guess is usually 
the one which produces the best design results in sev- 
eral iterations. For the considered design problem, our 
design experience shows that an appropriate initial 
guess ho = [yo zo) of h can be obtained as follows: 

First, we compute the unconstrained least-squares 
solutions given by 

zo = &-G(UT,Ul, + UTsUIB)-l(UTplK--J+l) 
(34) 

and compute the magnitude responses AO(u] of Ho(z), 
&,(U) of Hl(z)  and the magnitude response T(w) of the 
NDF bank corresponding to ho, respectively. Next, uti- 
lising the WLS algorithm presented by one of the 
authors in [14] to obtain a weighted least-squares solu- 
tion as follows: Construct the reqFired envelop func- 
tion B(o) from the error function IT(@) - 11 according 
to the WLS algorithm of 1141. Based on B(o), we com- 
pute the required update function v(w) according to the 
following formula: 

(2K + 4){B(bJj}1.5 
v(w) = 

where W ( w )  denotes the initial weighting function 
which is set to one for all U. Then, update the weight- 
ing function as W(w) = $V((o)Y(o) and form the associ- 
ated weighting matrix W = diag(W(wl), W(w2), ..., 
W(wK)), where diag() denotes a diagonal matrix. 

Finally, we solve the following linear equations to 
find the appropriate initial filter coefficient vector ho: 

where A = U,' WU, + U&UOs + U& U,,, B = U,' WUb - 

Ub = HIU1, Ho = l/LLo diag(Ho(wl), Ho(w2), ..., 
g0(wK))  and H1 = l/LLo diag(Al(wl), Al(o2), ..., 
l?l(wK)). Using the initial filter coefficients obtained 
from eqn. 35, we then compute the corresponding mag- 
nitude responses Hg(w) and Hf(w) .  Moreover, we use 
the H # ( u )  and H f ( w )  as the initial guesses of go(w)  
and AI(@), respectively. 

3.4 The design procedure 
From the results in Section 3.3, we summarise the pro- 
posed design technique by presenting the following 
design procedure: 
Step 1; Initialise the design process. Set the iteration 

number i = 0. 
1. I Specify the design parameters: the filter lengths 
No and N1 the bandedge frequencies up and os and 
the ripple ratio Y. Construct the matrices b and c 
from eqn. 18. 
1.2 Use the method presented in Section 3.3 to 
generate a suitable initial guess ho for the coefficient 
vector h and construct the matrix SZ corresponding 
to hO. 
1.3 Compute corresponding initial magnitude 
responses H$(w) and H f ( w ) ,  and set H$(w) and 
Hp(w) as the initial guesses for g o ( w )  and Bl(w), 
respectively. Form the initial parameter vector 

U&U1,, C = UfWUb + ULUls + UKU,,, U, = HoUo, 

W O =  [;:I 
where So = 1.01 max{ld - SZhO1}. 

Step 2: At the ith iteration, calculate the matrices SZ 
and A corresponding to the current filter coefficient 
vector hi. Then, calculate the corresponding error 
vector e' = Qhi - d and the peak ripple = 1.01 
max{ le"}. 
Step 3: Find the slack vector vz = c - ATwi = [vT vTIT, 
where v1 = 6'1 - e', v2 = 6'1 + ei. 
Step 4: Compute the feasible direction vector f,v = 
(ADF2A7)-'b for optimisation. Instead of directly com- 
puting f,, by performing the inverse of (AD;2AT>, we 
propose an efficient algorithm as follows: 
4.1 Construct the diagonal matrices D, = diag(vl), 
D2 = diag(v2), and D = (Dc2 + D T ~ ) .  
4.2 Compute the column vector xi = QT(Dy2 - Dc2)1 
and the value c1 = -(lQl)-'. 
4.3 Solve the equation (Q%Q + clxlxlT)fh = -clxl 
using Gaussian elimination to find fh. 
4.4 Compute fs = cl(xlTfh + 1). Then, form the 
desired direction vector f, = [fhTfsIT. 

Step 5: Compute the feasible direction vector f, = 
-ATf, = [fs f$lT, where fv1 = fsl - Qfh, fV2 = fsl + Qfh. 
Step 6: Determine the step size a according to eqn. 32. 
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Then, update the filter coefficient vector h according to 
eqn. 33 and calculate the associated peak error aitl = 8 
+ afs according to eqn. 30. 
Step 7; Define a performance indication function 

It is reasonable to terminate the design process when- 
ever the indication function is small enough. Therefore, 
we stop the iterative procedure if ~ ( i  + 1) 5 K ,  where K 
is a preset small positive real number. Otherwise, set 
R0(co) = HOi+'(w), A1(w) = H1"+'(w), and i = i + 1, then 
go to Step 2. 

4 Simulation examples 

In this Section, we present several simulation examples 
of designing two-channel NDF banks with linear-phase 
FIR filters for illustration. These designs are performed 
on a personal computer with Pentium CPU using 
MATLAB programming language. For all design 
examples, the number K of frequency grid points used 
is set to 8 x max(No, NI). Moreover, the ripple ratio r 
for the design problem shown by eqn. 13 is set to 0.25. 
The value of the y required by eqn. 32 is set to 0.99. 
The value of the K used for terminating the design 
process is The performance for each of the 
designed filter banks is evaluated in terms of the peak 
reconstruction error (PRE) in dB, the normalised peak 
passband ripple (NPPR) in dB, the normalised peak 
stopband ripple (NPSR) in dB, and the stopband ripple 
energies (SRE) of the designed HO(z) and HI(z) .  They 
are defined as follows: 

PRE = max{12010gloT(w)l} for w E [0,7r], 

Table 2: Significant design results for examples 1 and 2 

Example 1 Proposed method Method of 171 

PRE, dB 0.03161 0.04377 

NPSR (dB) of H ~ ( w )  -42.8854 -29.7787 

NPSR (dB) of H l ( o )  -42.9158 -34.0271 
SRE of H ~ ( w )  4.0432 x 1.5554 x I 0-4 

SRE of Hl(w) 3.6990 x 1.4742 x 

Proposed method Method of [71 Example 2 

PRE, dB 0.0254 0.0206 

NPSR (dB) Of Ho(o) -43.7402 -26.5533 
NPSR (dB) of Hl(w)  -45.0486 -32.3882 
SRE of H ~ ( w )  1.8594 x 4.8525 x 
S R E  of H~(co) 1.6150 x 2.2802 x 

0 0 .I 0.2 0.3 0.L 0.5 

0.08 
I 

Example 1: The design specifications used are shown 
by case 1 in Table 1. Table 2 lists the significant design 
results after 25 iterations. The design results obtained 
from [8], based on the least-absolute error criterion, are 
also shown for comparison. We observe that the pro- 
posed technique produces much smaller peak ripples 
than [8]. Table 3 shows the filter coefficients of the 
designed analysis filters Ho(z) and Hl(z)  for this case. 
Fig. 3 plots the corresponding magnitude responses in 
dB, of Ho(w)/d(LLo) and Hl(w)/d(LL1), and the overall 
magnitude response T(w) in dB of the designed NDF 
bank. We note that the designed NDF bank shows sat- 
isfactory performance. 

Table 1: Design specifications for examples 1 and 2 
~~ ~~~~ ~ 

No NI u p  U S  Lo L1 - 
Case 1 32 32 0 . 3 ~  0.5% 2 3 
Case2 80 80 0 . 1 6 ~  0.241~ 1 4 

~~~ ~ ~ 
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-0.08 
-0.1 

0 0 .I 0.2 0.3 0.L 0.5 

b 
normalised frequency 

Fig.3 Resultsfor example I 
a Magnitude responses of the designed analysis filters; (if Ho(w)/<(LLo); (ii) 

b Magnitude response of the designed filter bank 
Hi (wY\/!LL, 1 

Example 2: The design specifications used are shown 
by case 2 in Table 1. Table 2 lists the significant design 
results after 24 iterations. The design results obtained 
from [8], based on the least-absolute error criterion, are 
also shown for comparison. We note that the proposed 
technique produces much smaller NPSR for HO(w) and 
HI(o) than [8], although the obtained PRE is about 
0.005dB larger than [8]. The filter coefficients of the 
designed analysis filters HO(z) and N,(z), for this case, 
are shown in Table 4. Fig. 4 depicts the corresponding 
magnitude responses, in dB, of Ho(w)/d(LLO) and 
H1(w)/d(LLI) and the overall magnitude response T(w), 
in dB, of the designed NDF bank. Again, we observe 
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that the designed NDF bank shows satisfactory per- 
formance. Hl(z) for example 2 

Table 4: Coefficients of the designed filters HJz) and 

-100 

h l ( n )  n Table 3: Coefficients of the designed filters H,,(z) and h O ( n )  

Hl(z)  for example 1 0 0.45803124267317 2.7 1841 395946488 79 

I 
I I I I 

0 
1 
2 

3 
4 

5 
6 
7 

8 
9 

10 
11 
12 

13 

14 

15 

1 0.39391839289863 0.58653979383744 78 

2 0.28212798902572 0.03760272343259 77 
3 0.15045999110334 -0.20458764522497 76 

4 0.02957640277630 -0.28059364907837 75 

5 -0.05593866670522 -0.2467270548221 1 74 
6 -0.09405098288370 -0.15012893322837 73  

7 -0.08738564264302 -0.03549196098245 72 

8 -0.05051 530933699 0.06025689577293 71 

9 -0.00378564696091 0.11407619720969 70 

n h&n) h l (n)  n 

1.23618061095655 2.038782587 181 31 31 
0.6036636881 4555 -0.17085591 494049 30 

-0.06593423400779 -0.46462363986519 29 
-0.26250252196451 -0.1689559432 1699 28 

-0.05978007203571 0.14027327860362 27 
0.124582 10425695 0.1738581 10801 91 26 

0.08099324386912 0.01 87 137651 3089 25 

-0,04535651 182571 -0.09339193740865 24 

-0.06563937 131 828 
0.00403015855316 
0.04055005846851 
0.01 116042939344 

-0.01873820489688 
-0.01 445539655885 

0.01 185217520092 

0.00335802636641 

-0.06633719998891 
0.01 689334155360 
0.04892162177594 

0.01852213686230 
-0.01720549184744 
-0.0214631 534631 4 

-0.00683499670667 

0.00405233023957 
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Fig .4 Results fov example 2 
a Magnitude responses of the designed analysis filters; (I) Ho(w)/d(LLo); (ii) 

b Magnitude response of the designed filter bank 
N,(w)i'l(LL,) 

5 Conclusion 

This paper has presented a technique for the minimax 
design of two-channel nonuniform-division filter 
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10 
11 
12 

13 
14 

15 

16 

17 

0.03389393829676 
0.05083166321064 
0.04509235882373 

0.02331411153929 

-0.00324964308123 

-0.02365064588068 

-0.03123670574243 

-0.02540595923248 

0.11 9691 153341 70 

0.085971 60778625 
0.03156805275825 

-0.02232291227351 

-0.05875000957058 

-0.06940440350 199 

-0.0556397461 5065 

-0.0263379625297 1 

69 

68 
67 
66 

65 

64 

63 

62 

18 -0.01079456933549 0.00623448358 185 61 

19 0.00539069612345 0,030941 23405048 60 

20 0.01659802796562 0.04118237891 154 59 
21 0.01 93451 451 5559 0.03623637168863 58 

22 0.01404992006621 0.02046137903336 57 
23 0.00423858802056 0.00096504172300 56 
24 -0.00543803955506 -0.01522284800301 55 

25 -0.01 117196006325 -0.02345510603403 54 

26 -0.01 142137968840 -0.02256204344689 53 

27 -0.00715516359514 -0.01 460076673778 52 

28 -0.00082908929037 -0.00354834307683 51 

29 0.00443393816193 0.0063886 1799696 50 
30 0.00709035681695 0.01 221 907841 134 49 
31 0.00600460723563 0.01 291 636622822 48 
32 0.00334026241524 0.00934740945378 47 

33 -0.00099161144139 0.00357636799262 46 

34 -0.0025498280501 0 -0.00208799277315 45 

35 -0.00494400133026 -0.00593141 524694 44 

36 -0.00157439853624 -0.007257 151 96422 43 

37 -0.00372373281 058 -0.00634679156296 42 
38 0.00344441728518 -0.0059357971 0025 41 
39 0.00422786323294 -0.00009662845410 40 

(NDF) banks with linear-phase FIR filters. The design 
problem has been formulated as an optimisation prob- 
lem based on a linearisation scheme. A design method 
has been developed based on the use of a modified 
dual-affine scaling variant of Karmarkar's algorithm 
for updating the filter coefficient vector. Appropriate 
selection of the initial guess has been presented for ini- 
tiating the design process. Moreover, an analytical for- 
mula has been proposed for calculating the step size 
required at each iteration. As a result, the coefficients 
of the analysis filters can be obtained efficiently by 
solving only linear equations during the design process. 
Simulation results have shown the effectiveness of the 
proposed design technique. 
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6 Acknowledgment -H,(d") into eqn. 37 yields 

X ( e J W )  = T ( e J " ) X ( e J " )  + A1 ( e J w ) X ( e J " W t " )  

+ A2(e3w)X(e3wWL1)  (38) 
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8 Appendix 

Let Bo(") and Bl(z )  be LP FIR filters with lengths equal 
to Nbo and Nbl,  respectively. The associated maguitude 
responses are set to Bo(u) = 1, for U E [0, uJLO] and = 
0, for w E [(2n - w,)iLo, n] and Bl(w) = 1, for o E [0, 
(n - wp)iL1] and = 0, for w E [(n + wp)iL1, n], respec- 
tively. Moreover, assume that Ho(z) and H,(z) have 
zero stopband response. Then, it follows that the inputi 
output relationship of the NDF bank in the frequency 
domain is given by [8] 

e - 3 W G 0  

LLO 
X ( e J w )  = ~ [ X  ( eJw ) Ho ( e3" ) 

+ x (eJW w,L 1 ) H~ ( e ~  w,L 1 ) 

+ x ( eJW w, L1 ) H1( ej" w, 1 )] Fl ( e3 ) 

(37)  
where Go = (Nbo - I)/Lo and GI = (N[,l - l)/L1 are set 
to integers to avoid noninteger group delays. The 
twiddle factors W, = exp(-j2niL). Substituting the 
conditions L = Lo + L,, Fo(eJ'") = Ho(eI") and Fl(dw) = 

The first term of eqn. 38 represents the response of a 
linear shift-invariant system T(dW) with input X(d"), 
while the other two terms represent the resulting 
aliasing distortion. Therefore, perfect reconstruction 
requires the following conditions: 
PR 1: The magnitude T(o) of T(e-lw) must be equal to 
1, i.e. T(u) = 1, for all U. 

PR 2: The magnitude A I ( @ )  of A,(@) must be zero, i.e. 
A,(u)  = 0, for all w. 
PR 3: The magnitude A2(w) of A2(dW) must be zero, i.e. 
A2(w) = 0, for all w. 

We note from eqn. 39 that Ho(z) must be either a 
case 1 or case 2 LP FIR filter, while H l ( z )  must be a 
case 4 LP FIR filter to ensure the PR 1 condition. The 
definitions for each of the case 1 to 4 of LP FIR filters 
can be found in [15]. Let Ho(z) and Hl(z)  be LP FIR 
filters with lengths equal to No and N1, respectively. 
Then, Ho(eJ") can be expressed as [15] 

(42) 
( N o  - 1 ) ~  

Ho(e3") = e - J T H o ( w )  
where 

N o - 3  f - 
h o ( Y ) +  5 2ho(n)cos(w(n- F)) 

n=O 
Ho (U)  = for case 1 

and ho(n) 
ilarly, we 

where 

denotes the impulse response of Ho(dW). Sim- 
can express Hl(dIW) as [15] 

(43) 
( N 1 - l ) w  

HI(.+) = j e - j T H l ( w )  

and hl(n) denotes the impulse response of Hl(elW). Sub- 
stituting eqns. 42 and 43 into eqn. 39 yields 

+ -e -3(G1+N1--l)"H?(w) (44) 
LL1 

Let Do = Go + No - 1 and D ,  = GI + NI  - 1 .  If DO 
D,, then exp(-j(Do - Dl)w)  must be included in the 
highpass subband channel, and, if Do < D1,  then 
exp(-j(D, - Do)o)  must be included in the lowpass sub- 
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band channel to equalise the group delay difference, 1 + -ffi (0)ffi (U - u p  - U,)  (46) LL1 and, hence, ensure the PR1 condition. Hence, we can 
neglect the LP term of eqn. 44 and express T(w) as and 

WS : 
1 1 

T ( w )  = ---;(U) + --H,2(U) (45) LLn LL1 
Next, substituting eqns. 42 and 43 into eqns. 40 and 41, 

1 

we can obtain respectively, where the related gro 
between the lowpass and highpass subband channels is 
also assumed to be equalised. 

1 
LLO 

A,(w)  = -Ho(w)H~(w - U?, - U,) 
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