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一、中文摘要

超音波諧波影像，為利用人體組織之
非線性反應所產生的第二諧波訊號，來提
高影像品質的一個新影像技術。雖然此影
像技術已在臨床上使用，但是受限於探頭
的頻寬、系統的結構設計以及對於聲波在
人體中之非線性傳遞的認知有限等諸多限
制之下，諧波影像的品質仍有進一步提昇
的空間。本計劃針對聲波在人體中的非線
性傳輸建立了計算機模擬之模型。利用此
模型，第二諧波訊號之聲場分佈，及新影
像方法之效能，皆有深入的討論。

關鍵詞：超音波、非線性影像、諧波影像

Abstract

    Harmonic imaging is used to image the
second harmonic signal generated by the
tissue nonlinearity and to improve image
quality. Although its clinical importance has
been verified, performance of second
harmonic imaging is not yet optimal due to
limited transducer bandwidth and system
capabilities. In this project, we developed a
computer simulation model for nonlinear
propagation of sound waves. With this model,
distribution of acoustic field and effects of
new imaging techniques are explored.

Keywords: Ultrasound, Nonlinear Imaging,
Harmonic Imaging

二、緣由與目的

A new application of harmonic imaging
in diagnostic ultrasound is image formation
based on finite amplitude distortion of the
propagating beam [1,2]. Contrary to the
conventional second harmonic imaging using
contrast agents, no contrast agent is injected.
Instead, harmonics are generated by the
nonlinearity of tissue itself. It has been
shown that sufficient harmonic signals can be
generated at acoustic pressures within current
safety limits [1]. In a homogeneous medium,
sidelobes associated with the nonlinearly
generated radiation pattern are much lower
than those associated with the linearly
generated radiation pattern. In an
inhomogeneous medium, artifacts resulting
from tissue inhomogeneities can also be
significantly reduced. Therefore, finite
amplitude distortion based imaging can be
viewed as an alternative approach to
improving spatial and contrast resolution in
the presence of tissue inhomogeneities.

Although commercial products for second
harmonic imaging have been available for
clinical use, performance of such systems is
not yet optimal. The primary limitations
include transducer bandwidth, system
programmability and the understanding of
acoustic propagation in biological tissue.
Therefore, it is the goal of this project to
develop a computer simulation model for
nonlinear propagation of sound waves under
typical imaging conditions. In addition, new
imaging techniques potential of further
improving the imaging performance are
explored with this simulation model.

三、方法
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The simulation model accounts for pulse
sources with arbitrary frequency response and
approximates continuous beam formation by
incremental field propagation. At each
incremental step, linear propagation is
calculated followed by nonlinear propagation.
For linear propagation, the temporal
waveform is first decomposed into discrete
temporal frequency components. Then, the
linear diffraction at each frequency is
calculated using the angular spectrum
method [3]. The nonlinear propagation over
the same increment is obtained by using the
frequency domain solution to Burgers’
equation [4]. Due to the nonlinearity,
harmonics and sub-harmonics generated by
the nonlinear process alter the temporal
frequency contents and affect subsequent
wave propagation. In all simulations,
propagation is assumed in water and no
attenuation effect is included.

Let ),,( zyxui  represent the normal
velocity field of an acoustic wave, where i
is the temporal frequency index and ),,( zyx
denotes the three dimensions in space. The
velocity field can be decomposed into an
angular spectrum of plane waves by taking
two-dimensional Fourier transform with
respect to spatial variables x  and y . In
other words, we have
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where ),,( zffU yxi  is the angular spectrum

of ),,( zyxui , xf  and yf  are spatial
frequencies associated with x  and y ,
respectively. Since ),,( zyxui  obeys the

Helmholtz equation (i.e., 0)( 22 =+∇ iuk ,
where k  is the wave number), the angular
spectrum at zz ∆+  becomes
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The function ),,( zffH yxi ∆  is the
propagation function defined as
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where λ  is the wavelength at frequency i .
The above equation indicates that the

propagation function is essentially a spatial
low pass filter. In the region where

222 /1 λ≤+ yx ff  (i.e., low spatial frequency
region), the propagation function has a unity
amplitude. Outside of this region (i.e., high
spatial frequency region), the propagation
function decays exponentially with increasing
propagation distance. Waves of such spatial
frequencies are also known as non-
propagating waves due to the fact that they
do not propagate effectively. Non-
propagating waves can be ignored in
simulations.

Let ),,( zzyxui ∆+′  denote the temporary
velocity field after linear propagation (i.e.,
the inverse two-dimensional Fourier
transform of ),,( zzffU yx ∆+  with respect

to xf  and yf ), the incremental nonlinear
propagation is approximated by a plane wave
process. Omitting variables x  and y , the
nonlinear propagation can be written as
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where )( zzun ∆+  is the result after both
linear and nonlinear propagation, n  is the
temporal frequency index ( Nn ,...2,1= ), c
is the sound velocity and f  is the
fundamental frequency of the waveform with
a discrete frequency representation. In all
simulations, β  is set to 3.5 approximating
the nonlinear property of water [5].

四、結果與討論

In all simulations in this paper, a one-
dimensional, 96 channel linear array is
assumed. The array has a 0.25mm pitch and
the transmit focus is 50mm away from the
transducer. Spectra of two representative
waveforms are shown in figure 1. The solid
line in figure 1 shows the spectrum of the
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source plane velocity field. The signal has a
Gaussian envelope with a 2MHz center
frequency and a 50% fractional bandwidth.
The source plane peak amplitude of the
Gaussian waveform is equivalent to that of a
continuous velocity field with a RMS
acoustic intensity of 4W/cm2. The dashed
line shows the spectrum at the focal point.
Second harmonic generation is evident as the
harmonic amplitude is significantly increased.
The second harmonic amplitude is about -23
dB relative to that of the fundamental
frequency at the transmit focus. Note that
such amplitudes may be too low compared to
the system’s dynamic range.

To improve the sensitivity, coded
excitation is explored. Specifically, two chirp
waveforms were simulated and compared to
the Gaussian signal used in figure 1. The
chirp waveforms used in this study have the
following general form
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where ))(exp( 2tσπ−  is a Gaussian function
determining the envelope of )(tS , 0f  is the
center frequency, f∆  is the chirp bandwidth
and α  determines the rate of change of the
instantaneous frequency. Figure 2 shows a
normal Gaussian waveform in the top panel
and two chirp waveforms in the lower panels
with normalized amplitudes. The normal
Gaussian waveform is the same as the source
plane signal used in figure 1. Parameters of
the two chirp waveforms are chosen such that
they have similar bandwidth and total pulse
energy as the Gaussian waveform. The ratio
of the peak amplitudes of the three
waveforms is approximately 1:0.65:0.39
(from top to bottom) before being normalized
for display.

Spectra of the three waveforms in the
focal plane are shown in figure 3. The solid
line represents the spectrum of the normal
Gaussian waveform, the dashed line
represents the spectrum of the short chirp
waveform and the dot-dashed line represents
the spectrum of the long chirp waveform.
Clearly, the second harmonic amplitude

decreases as the peak pressure decreases
although the total pulse energy remains the
same. The peak levels at the second harmonic
frequency for the two chirp waveforms are
about –3.7 dB and –8.2 dB relative to that of
the normal Gaussian waveform. The
reduction in second harmonic amplitude is
consistent with the ratio of the on-axis,
source plane peak amplitudes (i.e.,
1:0.65:0.39). If the source plane peak
amplitudes of the three waveforms are equal,
figure 3 also implies that the SNR is
improved by 3.7dB by using the short chirp
waveform and by 8.2dB by using the long
chirp waveform.

The SNR improvements using chirp
waveforms are further illustrated in figure 4.
The top panel depicts the axial amplitudes at
the fundamental frequency and the bottom
panel shows the axial amplitudes at the
second harmonic frequency. In both panels,
axial amplitudes of the normal Gaussian
waveform, denoted by the solid lines, are
compared to two chirp signals. The two chirp
signals are identical to each other except for
the peak amplitude. Compared to the normal
Gaussian waveform, the first chirp waveform,
denoted by the dot-dashed lines, has the same
pulse energy but a lower peak amplitude. The
second chirp signal, denoted by the dashed
lines, has the same peak amplitude but higher
pulse energy compared to the normal
Gaussian waveform. Again, the dashed lines
are very similar to the solid lines. The pulse
energy in this case is about 3.7 dB higher
than that of the normal Gaussian waveform.
Hence, such waveforms can be used for finite
amplitude distortion based imaging since
they increase the SNR without exceeding the
exposure limits.

Based on the above results, it is
demonstrated that a simulation model has
been successfully developed and the potential
of coded excitation to further improve the
performance of finite amplitude distortion
based harmonic imaging has been verified.
Although simulations were mainly performed
for the finite amplitude distortion based
harmonic imaging, the same techniques are
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also applicable to microbubble based
harmonic imaging.

Note that the simulations in this study
only accounted for frequencies up to 6 MHz
and effects of the higher frequencies were not
included. Due to their relatively low
amplitudes, however, it is expected that
exclusion of higher harmonics does not have
significant effects on the results.

五、計畫成果自評

Both linear and nonlinear propagation
models were developed in this project.
Moreover, simulations were performed using
parameters typically seen in real imaging
conditions. With this simulator, displaced and
distributed aberrations can be included and
effects of nonlinear propagation in the
presence of tissue inhomogeneities can be
investigated.

In addition to the project goals outlined
in the proposal, potential improvement in
imaging sensitivity of coded excitation was
also explored using this simulator. The
results have been submitted to Ultrasonic
Imaging for consideration for publication.
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Fig. 1: Spectra at the source plane and at focus.

Fig. 2: Normal (top) and two chirp waveforms
(middle and bottom).

Fig. 3: Spectra at focus of the three
waveforms in Fig. 2.

Fig. 4: On-axis amplitudes for fundamental
frequency (top) and harmonic frequency

(bottom).
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