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Abstract

This work investigates the effect of neglecting lens distor-
tion, and presents a theoretical analysis of the calibration
accuracy. The derived error bound is a function of a few
factors including the number of calibration points, the ob-
servation error of 2D image points, the radial lens distortion
coefficient, the image size and resolution. This error bound
provides a guide line for selecting both a proper camera cali-
bration configuration and an appropriate camera model
while satisfying the desired accuracy. Experimental results
from both computer simulations and real experiments are
included in this paper.

1: Introduction

The techniques for camera calibration can be classi-
fied into two categories: one that considers lens distor-
tion [2] [4] [8] [9], and one that neglects lens distortion
[3]1{7]- A typical linear technique that does not consider
lens distortion is the one estimating the perspective
transformation matrix H [3][7]. The estimated Hcanbe
used directly for forward and backward 3D-2D projec-
tion. If necessary, given the estimated H, the geometric
camera parameters can be easily determined [3] [6].

Nonlinear optimization techniques are usually nec-
essary for estimating the camera parameters when con-
sidering lens distortion [2] [8] [9]. Faig’s method [2]isa
good representative for those nonlinear methods. One
disadvantage of this kind of method is that a good initial
guess is required to start the nonlinear search. Recent-
ly, Weng showed some experimental results using a
two-step method [9], which used the initial parameters
estimated from a closed form linear solution based on a
distortion—free camera model.

In general, considering lens distortion will not only
complicate the camera calibration procedure, but also
complicate the subsequent on-line processing (though
not formidable) such as feature-point correspondence
(in stereo) and camera re—calibration (in the case of hav-
ing a moving camera). Notice that epipolar line is no
longer a straight line if lens distortion is taken into ac-
count. Moreover, when lens distortion is small, if the
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noise in the 2D feature extraction is relatively large or
the number of the calibration points is relatively small,
the calibration results based on distortion camera mod-
¢l can be worse than those based on linear camera mod-
el. The question is then, “when should we consider lens
distortion in camera calibration?” or “when does it
worth all the troubles to consider lens distortion?” This
work represents an effort toward the answer of the
question.

2: Camera model

Let P be an object point in the 3D space, and rp =
(xo, Yo, 20) be its coordinates, in millimeters, with re-
spect to a fixed object coordinate system (OCS). Let s,
= (u5, v) denote the 2D image coordinates (in pixels),
with respect to the computer image coordinate system
(ICS), of the image point Q, where the origin of ICS is
located at the center of the frame memory coordinate (e.g.
the origin of the ICS is right at (256, 240) for a 480 by 512
image). The relationship between r, and s; canbe ex-
pressed as [4]
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where ¢ = J03ur-uo) + 82(vi-vo)? .

Using the above notations for camera parameters, #;,
b, tzand 1, i = 1...9, are parameters for coordinate
transformation, f is the effective focal length, J, and
é, are respectively the horizontal and vertical pixel
spacing, i, and v, are the piercing point of the optical
axis on the image plane, and « is the coefficient of the
lens distortion. Notice that, suppose there is no optical
distortion (i.e., « = 0), the relationship between rp
and s; can be expressed as a linear transformation.
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3: Accuracy assessment

This section introduces an approximate error bound
for the linear calibration method [5] which does not con-
sider lens distortion. The error bound is based on the
following assumptions:



(a.1). The 3D positions of the calibration points are
known exactly. Inpractice, it is easier to precisely locate
the 3D position of a calibration point, comparing to its
2D image coordinates. Furthermore, the 3D position
error can always be transformed to an equivalent 2D
measuring error.

(a.2). The only source of measurement noise is the
error in estimating the image coordinates of the calibra-
tion points, i.e., the 2D observation noise (in pixels). In
both horizontal and vertical directions, we assume the
2D observation noise have the identically independent
Gaussian distribution with zero mean and the variance,
o .

(a.3). The depth components of both calibration and
test points, zc, can be approximated by a constant (i.e.
the depth of field is small relative to the object dis-
tance). This assumption holds in most computer vision
applications, since the depth of field for a practical cam-
era is usually limited to a small range comparing to the
object distance.

To evaluate the accuracy of the camera calibration
for 3D vision application, it is necessary to define an er-
ror measure. The error measure adopted in this paper is
the 2D prediction error, i.e, the image distance (in pixels)

between the Q and Q ,where Q isthe true 2D image

coordinates of the test point P, and Q is the predicated

image coordinates of the 3D test point P using the esti-
mated parameters[5].

The expectation of the average square 2D prediction

error due to measurement noise has been shown to be
(see [5])
11 ¢
N, calib
where N_u; is the number of calibration points and o is
the variance of the 2D observation noise.

Also, the 2D error bound due to the modeling error
(the negligence of lens distortion) has been derived in

[3]
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Fig. 1. Histogram of the normalized
2D prediction error
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where 0, is the average pixel spacing in all directions
(refer to [5]), and R (in millimeters) is half the diagonal
size of the image sensing area.

Assume that the interaction between measurement
noise and modeling error is negligible. Then, we have
the approximate total mean square 2D prediction error
by combining (3) and (4):

elziazmd = €12w + Grzz . (5)

€& = K2 (in pixels) 4)

Notice that the second term, €, of equation (5)is an
expectation value, which means that the violation of the
approximate upper bound, €g,,, , i possible.

4: Experiments

The first experiment tested the error bound by com-
puter simulations. Totally, ten thousand trials were sim-
ulated with randomly selected camera parameters f; uy,
Vo, K , and 2D noise o. The calibration points and test
points were randomly generated, too. More details are
described in [5]. For each random trial, the computed
2D prediction error is normalized by its theoreticbound.
Fig. 1 shows the histogram of the normalized error
which shows that, in most trials the 2D prediction error
is close to and less than the theoretic bound. Still, there
are some points which exceed the theoreticbound. This
is partially because of the violation of the assumption
(a.3)in section 3. Another reason is that € isan expec-
tation value, not an upper bound.

The second experiment tested the bound by a real ex-
periment. We took 21 images of a moving calibration
plate having 25 calibration points on it, which was
mounted on a translation stage. One image was taken
each time the translation stage was moved toward the
camera by 25 millimeters. A typical 480 X 512 image is
shown in Fig. 3. Thus we have 21 X 25 = 525 pairs of
2D-3D coordinates of points. The image coordinates of
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Fig. 2. Real experiment
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the center for each circle was estimated, with an error of
about 0.1 pixel. We randomly chose N points
(Neai = 10, 20, 30, ... or 200) from the 525 2D-3D pairs
to calibrate the camera and used all remaining points to
test the calibrated parameters. The above random trials
were repeated ten times to obtain ten sets of the 2D pre-
diction error. Fig. 2 shows the ten sets of data and two
predicted bounds based on two different effective image
sizes (here « = 0.00035 millimeter-2, which corre-
sponds to roughly 2 to 3 pixels of distortion near the four
image corners). Since all the calibration and test points
are distributed in the central part of the image, whose
size is roughly of 355 by 300 pixels (see Fig. 3), the
bound calculated with this image size is much closer to
the experimental results. To use every pixels in the
480 x 512 image, the error bound will be approximate-
ly three times of the experimental results.

5: Conclusions

For 3D applications, e.g., stereo vision, it is of great
importance to determine the accuracy of 3D position es-
timation. Knowing the 2D prediction error, the 3D po-
sition error can be derived as in [1]. Thus, the error
bound can be used as a criterion to decide whether the
linear camera model is sufficient or not, for a specific
application. In the following, a general guide line is pro-
vided for using this error bound:

1). Determine the acceptable 2D prediction error, de-
noted as €gpe -

2). Calculate the approximate error bound, €gyuna > DY
equation (5) according to the parameters of the equip-

ments to be used.
3). If €pec > €poune then it is good enough to use the

linear camera model.

Fig. 3. A typical image of the calibration
plate containing 25 calibration points
used in the real experiment.
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4).Tf €pee < €pouna thentrytoreduce €, inequation (5)
as much as possible, by making the feature extraction
more accurate (reduce o) and increase the number of
calibration points.

5).If €gouns Still can not meets the requirement afterthe
reduction of €, in step 4), then try to reduce the effec-
tive size of the image to an acceptable level (see equa-
tion (4)).

6).'If the efforts in step 4) and 5) fail to reduce €gouns
such that €. > €pouna , then a nonlinear camera mod-

el should be considered in the camera calibration proce-
dure as in [2] [4] [8] [9].
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