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ABSTRACT

Octave detection has been an open issue in automatic transcription
of polyphonic music over the years. In the literature, pitch detec-
tors for polyphonic music usually fail to detect octaves for lack
of information about the timbre of each instrument that appears in
the music. To reveal the possibility that this difficulty in automatic
music transcription can be overcome, here a music transcription
system that is capable of octave detection is proposed. Preceded
by a constant-Q time-frequency analysis front end implemented
with a fast algorithm for nonorthonormal discrete wavelet trans-
form [1], a classifier using support vector machine technique [2]
serves as a novel octave detector in this system.

1. INTRODUCTION

In the 1990’s, the advent of compact discs brought sound record-
ing technology to a brand-new age. Sound quality on a record was
greatly improved. On the other hand, the development of Internet
has made a tremendous change to our style to access various in-
formation sources. The transmission of real-time streaming audio
has been developed; however, its quality still falls far behind that
of CD recordings and is thus not enjoyable at all. One solution to
this is to widen the bandwidth of the network connections. In ad-
dition, we can provide another solution from the following view-
point. Our current method for sound recording and transmission
can, in fact, deals with any audible sounds. Nevertheless, sounds
in most records fall within a limited scope of musical instruments.
If we can keep track of these sounds compactly, i.e., in the ana-
lyzed and meaningful form instead of physical waveforms, sound
recording and transmission will undoubtedly become far more ef-
ficient. This has motivated researchers to work on methods to ex-
tract musical contents from acoustic signals, i.e., to automatically
transcribe polyphonic music, over the years. Another reason to
symbolically represent music is that such representations facilitate
further intelligent processing of musical contents, such as harmo-
nization, transposition, or melody search.

The most basic topic in music recognition is pitch recogni-
tion, for pitch is roughly our first perception on hearing a musical
sound. Most musical sounds may have more than one pitch at any
instant; therefore, a useful pitch recognition strategy should take
polyphonic cases into account. The main difficulty in pitch recog-
nition of polyphonic music lies in the decision to tell whether a
perfect octave (or perfect twelfth, perfect fifteenth, etc.) harmonic
interval exists. In [3], a general and well-organized system was es-
tablished without focus on octave ambiguities. Martin {4] adopted
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a sophisticated front end based on an auditory model and explicitly
pointed out this issue of octaves; however, without a timbre model
of the instrument, the beating phenomenon noted in [4] does not
suffice to robustly resolve the problem. Rossi ef al. [5] proposed a
feasible method to detect octaves, while it relies on the property of
inharmonicity [6], which only piano and string pizzicato possess,
and does not work well for weak notes. '

Since pitch corresponds to frequency in the acoustical con-
text, a pitch recognition system incorporates a subsystem of time-
frequency analysis (STFT or constant-Q transform [7]) as its front
end, where spectral analysis is done for a sequence of instants. For.
each instant, harmonically related spectral peaks are grouped into
series, each of which represents a periodic component of the win-
dowed signal. Note that a periodic component may correspond to
more than one pitch, in that, for example, an octave interval con-
tains two different pitches but produces only one harmonic series
in the spectrum. If the timbre of a periodic component is ignored
by a recognition system, then no inference can be made about the
existence of an octave, and a note at which a beautiful melodical
line forms a perfect 8th with a lower voice is subject to loss in the
recognition result. This is how octave errors occur and dissatisfy
music-lovers who test such a system with their favorite recordings.

In view of this, a novel recognition system is presented. It “lis-
tens” for the result of harmonic-series overlap / superposition in
the timbre. Section 2 formulates the problem considered in this pa-
per. The design of such a transcription system to solve the problem
is presented in Section 3. Implementation details and experimental
results are described in Section 4. A few discussions pertaining to
the result and possible further extensions of this system conclude
this paper.

2. PROBLEM FORMULATION

2.1. Acoustical Model of Musical Signals

Each note has a fixed pitch from onset to offset. All spectral par-
tials of the pitch have magnitudes within ten times that of the fun-
damental and frequencies within 35 cents from harmonicity.

2.2. The Transcription Problem

Given any duration of digitized piano recording with certain lim-
itations, the system is required to report the pitch, the onset, and
the offset of each note in the recording. The limitations are listed
as follows: (a) no pedaling; (b) only keys within the range G1-
C8 (A4 = 440 Hz; most of the keys around C1 have missing fun-
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damentals) are played; (c) except perfect octave where two notes
share one onset / offset, perfect 12th, perfect 15th, major 17th, etc.,
are not played.

3. SYSTEM DESIGN

As mentioned in Section 1, spectral peaks are grouped into har-
monic series, each of which bears in its timbre, i.e., relative mag-
nitudes and phases among the partials, feature for octave detection.
Since the timbre of a single note not only takes on several degrees
of freedom in itself, but also varies among pianos and with pitch,
intensity and touching, it is not feasible to work out a rule for oc-
tave detection simply by one’s knowledge and observations. This
has prompted us to take the detection problem as pattern recogni-
tion from the viewpoint of machine learning. The octave detector
is to be trained to make correct decisions. While neural networks
have been successful in simulating human learning behavior and,
in particular, chord recognition [8], an evolving technique called
support vector machine (SVM) [2, 9] is adopted here. The SVM
can be viewed as a neural network that is designed automatically
to meet the optimality derived in statistical learning theory. It is
currently receiving more and more attention and finds various ap-
plications in the literature [10].

Figure 1 shows the block diagram of the proposed automatic
transcription system. Each part of the system is described in detail
in a subsection below.

l Digital audio signal

Constant-Q transform

l Spectral peaks

| Decimation by 64 J

Spectral peaks for every 64 samples

Grouping

Series G1| v Seriesi |00 creeens

Onset/offset o
detection
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Fig. 1. System block diagram.

3.1. Constant-Q Transform [7]
The discrete-time constant-Q transform of signal z[n] with @ =

34 is )
X(w,n)=w_ zlklw((k - n)w)e ¥,
k

where w is the digital frequency, n is the instant of observation,
and w(-) can be any bell-shaped window function that is nonzero

only in the interval [—34w,34x]. The transform is evaluated at
192 quartertone-spaced analog frequencies ranging from 21.8 Hz
to 5.43 kHz (sampling frequency: 44100 Hz), sufficient to cover
the whole register of the piano. Dividing these frequencies into
eight octaves, the highest octave of the spectrum is evaluated ev-
ery sampling instant, the second highest every two, the third every
four, and so forth. The resulting sequence of spectra is decimated
by 64, which is a trade-off between the temporal accuracy of tran-
scription and the data rate throughout the rest of the system.

For every 64 samples, we have one spectrum, from which a
set of peaks are picked out. A relative maximum on the magnitude
spectrum is recognized as a peak if and only if the sharpness at that
frequency, defined as the relative maximum divided by the average
value over the neighboring five frequencies, exceeds 1.7. Consider
a 10%-point periodic signal with 20 equal-magnitude partials:

20
z[n] = (u[n] — u[n — 10%]) Z 8in(0.0045kmn).
k=1

The magnitude spectrum observed at n = 5 - 10%, | X (w, 5 - 10%)),
is plotted in Fig. 2, where the higher the order is, the less sharp
the partial is. The threshold 1.7 is set to ignore partials of orders
greater than ten. Since these high-order partials generally do not
differ from one another in magnitude so much as to produce sharp
peaks, the grouping of partials can be reasonably limited to order
ten without mistaking any higher partial for another pitch.

0.08 0.1 0.15 0.2 0.25 0.3 0.35
@ (rad)

Fig. 2. Illustrating the effect of sharpness threshold. Partials of
orders greater than ten do not give rise to peaks.

3.2. Grouping of Peaks and Onset / Offset Detection

The peaks found in a spectrum are grouped into harmonic series
of which each satisfies the acoustical model described in Section
2.1 and does not share the peak at its fundamental with a lower-
pitched series. Other hypothetical harmonic series are set to zero.
The total power of each series is computed (summing over the par-
tials); all those having total power less than ﬁ of the greatest
are set to zero. This heuristic coincides with the masking effect in
psychoacoustics.

By monitoring the total power of each series, detection of on-
set or offset is performed. An instant is declared to be an onset of
a series if the power rises from zero, an offset if the power falls
below 0.01 times the maximum, both (an offset and then an onset,
i.e., repetition of note) if the square root of the power increases
from a nonzero value by more than 1.25, and no state change oth-
erwise.

3.3. The Support Vector Machine |2, 9] and Octave Detection

A machine for M-by-1 pattern (feature) vectors is characterized
by two parameters,  and b, where b is a scalar and « is a column
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vector with number of elements the same as that of training data,
N. The vector a minimizes

laTHa - i @;
2 i=1
subject to the constraints
a; >20,i=1...N;ya=0,

where

Hy = (y"y)u(X"X)},i,j=1...N,
X is an M x N matrix made up of columns of training patterns,
yisal x N vector consisting of binary variables showing the ex-
istence of octave interval for each training pattern (1 for existence
and -1 otherwise), and p is the degree of the polynomial kernel.
The scalar b is the mean value of the vector (ys — IR.), where

(lix1)i = as;ys;, Rij = ((ng_q),‘j +1),4,5=1...1,

as [Xs, ys] is obtained by removing the zero elements [corre-
sponding columns, corresponding elements] of o [X, y], and [ is
the length of as. The decision of the machine for a pattern x is

{ 1 if f(x)>0
-1

if f(x)<o0
where f(x) =Ir + b,and r; = (X%x); +1)?,i=1...I. The
patterns in X are called support vectors.

Given a harmonic series, its timbre, which varies with time,
reflects whether an octave exists or not. In order to detect octaves
for harmonic series of various durations, the detector extracts as
features the partial values within a short period of time following
the onset. The resulting distribution of the features is depicted in
Fig. 3. Since the overall intensity is irrelevant, the complex value
of each feature is further normalized to the fundamental. Then,
exclusive of the fundamental, we have totally 44 features, whose
real and imaginary parts are separated to form a real 83-tuple. This
is the pattern to be passed to the SVM. Since neighboring notes on
the piano have similar timbres, only the SVM’s for C2, C3, ..., C7
are trained. Each SVM is shared by neighboring harmonic series
for octave detection.

10th partial
9th partial
8th partial
Tth partial
6th partial
Sth partial
4th partial
3rd partial
2nd partial
fundamental

Onset

Time

Fig. 3. Time-frequency distribution of the extracted features. The
instants at which each partial is observed are marked with solid
circles.

4. IMPLEMENTATION AND RESULTS

The entire system is implemented in MATLAB 6.0 on a Pentium
IIT 800-MHz PC. Concerning the implementation of constant-Q

transform, a factor that makes its computation time-consuming is
that the windows for low-frequency analysis are extremely long.
By representing the transform as 24 nonorthonormal wavelet trans-
forms, the a trous algorithm [1], which is a fast algorithm for
nonorthonormal wavelet transforms, helps speed up the compu-
tation. With the 192 analysis frequencies denoted by

{wr27'},k=1...24,i=0...7,

where wy’s are the highest 24 frequencies, the transform is com-

puted by the filter bank depicted in Fig. 4. The FIR filter Hy(2),

whose impulse response is given by
hin] = w(~wkn)e F*™,

is implemented using an overlap-save method with 2048-point FFT.
The filter G(z) performs linear interpolation with impulse response

L 1

1
gln} = \/56[”] + 2\/56[71. + 1]+ —=é[n —1}.

2V2
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Fig. 4. The filter-bank structure that enables efficient computation

of the constant-Q transform.

The polynomial kernel of the SVM has degree 2, ie., p =
2. The vector a is computed using the (medium-scale) quadratic
programming package in the optimization toolbox. An SVM is
trained by successively accumulating failure patterns as its training
data. The patterns are extracted from a digital-piano recording
with notes of various MIDI velocities ranging from 50 to 100. The
rate of convergence can be observed in the training progress shown
in Fig. 5, where each black bar represents a testing failure and each
white bar represents a success. In the end of each progress, most
decisions of the SVM are shown to be correct.

0] 1T Y A Ll

(a) C3 (b) C4

Fig. 5. The training progresses of harmonic series C3 and C4.
Each progress goes from left to right with 120 patterns represented
by bars. White bars represent successes while black ones represent
failures, at which the SVM is re-trained.

To show a typical result using our system, an eight-second test-
ing music and its transcription result are both plotted in Fig. 6 for
comparison. The numerical representation of the testing music
is obtained from the MIDI output of the digital piano. The on-
set of each note is marked with nothing if it is the upper note of
an octave, with a triangle if it is the lower note of an octave, and
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with a circle if it is not associated with any octave. Each octave
is marked with a dotted line connecting both notes. Errors are la-
beled g, b, ¢, etc. Table 1 is a confusion matrix constructed for
the 46 harmonic series involved in this experiment. Three out of
four 8ths are detected, and only three out of forty single notes are
misreported to be 8ths. If the information of timbre were not used,
i.e., it were not for the SVM octave detector, the confusion ma-
trix would be the one shown in Table 2, with all the 8ths, two of
which lie in the main melodical line, left undetected and no single
note misreported to be an 8th. Such shortcomings from lack of oc-
tave detection get more severe as the occurrences of 8ths increase.
The transcription took about 10 minutes of computation. It can be
accelerated if the program is translated into a C / C++ code.
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Fig. 6. An experimental result.

5. CONCLUSIONS

Octave detection has been shown to be feasible under the condi-
tion that the music contains only one instrument. Detection of
perfect 12th, perfect 15th, etc. can also be included by construct-
ing an SVM for each additional function and properly assigning

Transcribed to Be | Octave Note Invalid
Octave 3 series | Seriesd, e, and f | 0 series
Note Series a 37 series 0 series
Invalid 0 series Series b and ¢ —_
Table 1. Confusion matrix for the result.
Transcribed to Be | Octave Note Invalid
Octave 0 series 0 series 0 series
Note 4 series 40 series 0 series
Invalid 0 series | Series band ¢ —

Table 2. Confusion matrix without SVM octave ‘detection.

the training data to cover all possible sorts of timbres. In the case
of ensemble music, where the same pitch may be played by differ-
ent instruments, the proposed method can be further extended to
detect a certain note played by a certain instrument, e.g., the 12th
played by the violin.
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