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Abstract 

Using the inversion of singular systems, we propose 
a state-space approach to find the inverse of uni- 
modular matrices. As a byproduct, a simpler com- 
putation method is developed to  solve the general- 
ized polynomial Bezout identity. 

1 Introduction 

The problem of unimodular matrix inversion is usu- 
ally encounted in the analysis and synthesis of multi- 
variable systems. For example, to solve the general- 
ized polynomial Bezout identity [l] is an important 
technique in studying linear systems. The compu- 
tational algorithms for unimodular matrix inversion 
can be found in the literature, such as iterative el- 
ementary operation methods [l] and some other al- 
gorithms [2] , which had solved this problem in fre- 
quency domain. A pencil approach for embedding a 
polynomial matrix into a unimodular matrix is given 
in [3]. To solve the inversion problem of the unimod- 
ular pencil, [3] transforms unimodular pencil into 
the staircase form using unitary transformations. In 
this note, a state-space approach to find the inverse 
of unimodular matrices are proposed. We provide 
a numericallly stable method, which need not any 
transformations, to  find the inverse of unimodular 
matrices. In our results, the degrees of inversed uni- 
modular matrices are related to the nilpotent index 
of a state-space matrix. Furthermore, the general- 
ized polynomial Bezout identity problems are solved 
by our method more easily than that of [4]. 

2 Inversion of unimodular 
matrices 

Consider a real coefficient m x m unimodular poly- 
nomial matrix U ( s )  of degree d: 

U ( s )  = U0 + + UzS2 + ' '  ' + U d S d  (1) 

(i.e. det U ( s )  = nonzero constant=Uo). Let the 
inverse of U ( s )  be V ( s ) ,  then 

U(s)V(s)  = V(s )U(s )  = I .  (2) 

Let 6,,U(s) denotes the highest degree of the i-th 
row in U ( S ) .  Set ai = 6,,U(s)+ 1 and n = ai. 
In the following, we will realize U ( s )  to a singular 
system in the form of U ( s )  = C(sE - I ) - l B  + D. 
Set 

A 

E =  

i =  1 , 2 ,  . . . ,  m 
(3) 

(4) 
A and M ( s )  = ( S E  - I ) .  

Then M-' (s )  is a unimodular matrix, since 

(SE - 1)-1 = 
1 s . . .  p t - 1  1 Block Diag. {- [ 0 0 0 1 ':: . . .  s ),I. 
0 0 . . .  

i =  1 ,2 ,  ..., m 
a , x a ,  

( 5 )  
Choose 
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2 { Block Diag. 11 0 ... 0 O ] l x c r , ,  
i =  1,2, ..., m 

(6) 
then 

C(sE - I)-' 
Block Diag. {-[1 s ... 

i =  l , 2 ,  ..., m 

If we select an arbitrary m x m nonsingular ma- 
trix D, then the n x m matrix B can be read 
directly from coefficients of U ( s )  - D such that 
U ( s )  = C(sE - Z)-'B + D since the form in (7) 
is so simple. 

We have just mentioned an efficient method to 
realize a time-invariant singular system whose fre- 
quency domain input-output relationship is the 
given m x m unimodular matrix U(s) .  The system 
equation can be written as 

E i ( t )  = It(t) + Bu(t),  y ( t )  = Ct(t )  -t Du(t), 

where ~ ( 1 )  E Rn is the state vector, u(t )  E R" is the 
input vector, y ( t )  E Rm is the output vector with 
n > m. E,  Z, B,C and D are real constant matrices 
of appropriate dimensions. Note that rank E = n- 
m ( from (3) ) and D is nonsingular. The associated 
frequency expression of (8) is 

(7) 
= I  

(8) 

U ( s )  = C(sE - I)-1B + D = 

(9) 
The square singular system (8) is invertible if the 
determinant of (9) does not vanish identically [5]. 
The explicit formulas for inverting unimodular ma- 
trices U ( s )  are stated in the following Theorem. 

Theorem 1 : The inverse of the unimodular ma- 
trix U ( s )  in (9) is 

V(s )  = U - ' @ )  
= (-D-'C)(sE - ( I  - BD-lC))-'BD-' + D-l 

s E - ( I - B D - l C )  i BD-' [ ... . . . .  1 .  
-D-'C i D-I 

Proof: Since D is nonsingular, from (8), we have 
u(t)  = -D-'Cz(t) + D-'y(t) ,  substituting into (8) 
gives E&(t)  = (I - BD-IC)s ( l )  + BD-'y(t). Note 
that the combination of above is the inversed singu- 
lar system of (8) since its input and output are y ( t )  
and u(t)  respectively. Hence, V ( s )  is the inverse of 
U(s )  , where 

V(8)  e U - - ' ( S )  

= ( -D-~c ) ( sE  - ( I  - B D - ' C ) ) - ~  BD-' + D - ~  
(10) 
0 

For convenience, we set A, = I - BD-lC. It is 
well known that, the inverse of a unimodular matrix 
is unimodular also. Thus, det[sE - A,] should be a 
nonzero constant, In other words, A, is nonsingular. 
We can use this result to verify U ( s )  in (9), whether 
it is a unimodular matrix or not. 

Corollary 1 : If det(sE - A,) is not a nonzero 
constant then the polynomial matrix U ( s )  is not a 
unimodular matrix. 0 

Remark 1 : 
(i) (SE - A,)-' is a unimodular matrix and can be 

A 

represented as 

( S E  - A,)-' 

= (-l)"{I + [ ( A c ) - l E ] ~ +  [(AC)-'EI2s2 + . * .  

+ [(A, ) - ' ElPC- ' sPc - )[(Ac)-lI, 

where q, = nilpotent index of [(A,)-'E]. Hence, 
the highest degree of V-'(s)  will be q, - 1. 

(ii) In (9), if D is selected as U0 on purpose, let 
P = BD-'C, the 1st) (a1 + l ) th ,  (a1 + 
a2 + . - + am-' + 1)th rows of B have zero co- 
efficients and the columns' coefficients of G are 
zero values, except for the lst, (a1 + l) th,  .-., 
(a1 + a2 + ... + am-' + 1)th columns. We can 
easy toprove CB = 0, P2 = BD-'CBD-'C = 0 ,  
and Pi = 0, where i 2 2, so 

A;' = ( I  - BD-'C)-' = ( I  - P)-' = I + P. 

The computation of (A;lE)i = ( ( I+P)E) '  meed 

In the above, the problem of unimodular matrix 
inversion was converted to the problem of singular 
system inversion. This result can be applied to solv- 
ing the polynomial generalized Bezout identity as it 
will be discussed in the next section. 

only multiplication. U 

3 Solutions of the polynomial 
Bezout identity 

The polynomial matrix fraction descriptions 
(MFDs) are useful frequency expressions for multi- 
variable systems [l]. One key technique for system 
analysis and design is to solve the polynomial Be- 
zout identity. The connection between singular sys- 
tem and polynomial Bezout identity was discussed 
in [4]. Compared to [4], our result is simpler since 
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only proportional feedback is involved and only one 
pole placement computation is needed. 

We first introduce an efficient method to realize a 
time-invariant singular system whose input-output 
relationship is given by the m x r polynomial matrix 
fraction description B-'(s)x(s). 
Lemma 1 : Let us consider the given m x r 
polynomial matrix fraction description B- ( s ) x ( s )  
with 6,,Z(s) 5 SriB'(s). Assume D(s) and X ( s )  
- are left coprime. If we chooseA and B satisfying 
D(s) = I + C M - ' ( s ) L  and N ( s )  = CM-'(s)B 
respectioely; where C and M ( s )  are shown in (6) 
and (4), then D-'(s)P(s) = CW-' (s )B ,  where 
W ( s )  = ( S E  - A) and A = I - LC. Furthermore, 
the quadruple {E, A, B, C} are strongly controllable 
and observable. 

Proof -- : 
D 

C ( M ( s )  + LC)-lB = CW(s)- lB.  Since m ( s )  and 
D(s)  are left coprime, the realization of D-'(s)m(s) 
can be written as the quadruple {E, A,  B ,  C} ,  which 
are strongly controllable and observable from [6]. 

The condition of strongly controllable ( observ- 
able ) contains the requirements of finite control- 
lable ( observable ) and nondynamic infinite control- 
lable ( observable ), which are defined in [7]. The 
realization of Lemma 1 satisfies finite controllable is 
thus evident. 

Lemma 2 [8] : If { E , A , B }  is finite controllable 
and E is singular, then there exists a gain matrix K 
such that the matrix pencil SE - (A + B K )  has no 

In [8], a useful algorithm to compute K so that 
( S E  - (A + B K ) )  being a unimodular matrix is pro- 
vided also. Combining Lemma 1 and 2, we are ready 
to investigate the solutions of the polynomial Bezout 
identity. 

Theorem 2 : Let E- ' ( s )E( s )  be the left coprime 
m x r polynomial matrix fraction description. Let 
the strongly controllable and observable realization 
of D ' ( s ) X ( s )  = C(sE - A)-'B be the same as in 
Lemma 1. The following eight polynomial matrices 
satisfy 

1 

A A 

( s ) X ( s )  = [ I  + CM-l(s)L]- 'CM-l(s)B = 

- 

finite poles. 0 

- - 
D(s )  

N(4]  [;;;I --N(S)] = [; ;] [-v(.) X ( S )  D(s)  
(11) 

where 
- - 
D(s )  = I + CM-'(s)L, N ( s )  = CM-'(s)B, 

D(s)  = I + KH- ' (s )B ,  N ( s )  = CH-'(s)B, 

X ( S )  = I - KM-' ( s )B ,  Y ( s )  = K M - ' ( s ) L ,  

A A A 
in which M ( s )  = SE - I, A = I - LC and H ( s )  = 
S E  - A - B K ,  K is obtained from the infinite eigen- 
value assignment as stated in Lemma 2. 

Proof: Set 

[ M ( s )  i L B 1  

1 - K  i 0 I ]  

From Theorem 1, the inverse of the polynomial ma- 
trix U ( s )  is 

A 
V ( s )  = U-'( SI 

H ( s )  : L B 

- - [ -,. .; .:j 
where 

= S E  - I +  L C -  BK = S E  - A - B K .  

4 Example 

Given the unimodular matrix in [3] 

1 [: s:7 s 2 + 7 s + 3  O 1 ,  U ( s )  = 0 1 

find its inverse. 

Solution : Set a1 = 3 , a z  = 1, a3 = 3, and 
n = a1 + az + a3 = 7, from (3) and (6), we obtain 
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0 

0 
0 

0 

0 
1 
0 ,  

... 

and 
* 

0 

0 .  
. . .  
0 -  

1 
0 
0 

c 

1 0 0  
. . . . . . . . .  

c = o o o  

, o  0 0 

0 

0 
1 
0 

0 

... 

0 
0 
0 

0 

0 
0 
0 

... 

... 

0 

1 

0 

... 

. . ,  

0 

0 
0 
0 

. . .  

0 

0 

1 

. . .  

0 

1 
0 
0 

... 

0 

0 

0 

... 

If we choose D = 

can be read from the coefficients of 

then the matrix B 

U ( S )  - D = 

The obtained 

B = -  

’0 s 2  

0 6 2 + 7 s  
0 0  : I ,  

’ 0  0 0 
0 0 0  
0 -1 0 

0 0 0  

0 0 0  
0 -1 -7 
0 0 -1 

. . . . . . . . .  

. . . . . . . . .  

It can be verified that U ( s )  = C(sE  - I)-’B + D 
in our result. The inverse of U ( s )  is shown in (10) 

u- ’ (s )  

= ( -D-’C)(sE - ( I  - BD-’C))-’BD-’ + D-’ 
1 (-2 - 7s - 3) (84 + 7s3 + 3 2  - s - 7) 

1 
- S2 

The coefficient of s5 is exact zero which is more 
reliable than [3]. 

5 Conclusions 

The major contributions of this note are as follows: 
(i) Corollary 1 can be used to check a square poly- 

nomial matrix whether it is unimodular or not. 
(ii) Explicit formulas for solving inversion of uni- 

modular matrices are developed. Our proposed 
method is numerically reliable algorithm. 

(iii) A strongly controllable and observable general- 
ized state-space realization method for polyno- 
mial matrix fraction descriptions is constructed. 

(iv) Solutions of the generalized polynomial Bezout 
identity are provided in a simple form. 

The method presented in this note is straight- 
forward and easy to follow. Our method allows 
one to use the available software packages (e,g. 
MATRIXx,  MATLA B etc.) to compute the so- 
lution. 
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