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(g) Dilated Image (h) Gaussian Blurred Image
Fig. 4-7 Attacked Watermarked Images
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Fig. .4-8 Watermark Attracted from the Attacked Images

74




o

Chapter 3  Watermarking Scheme Based on JND Model

Ywatermarked image with n=6000

)watermarked image with n=65536 (c)watermarked image with n=65536
Fig. 3-5 The TIFFANY image Fig. 3-6 The BABOON image
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Limited Color Display for Compressed Video

Soo-Chang Pei, Ching-Min Cheng and Lung-Feng Ho

Department of Electrical Engineering, National Taiwan University
Taipei, Taiwan, R. O. C. Email:pei@cc.ee.ntu.edu.tw

Abstract

Many display devices nowadays still allow a limited
number of colors, called color palette, to be displayed
simultaneously. Besides, images and videos in most
world wide web (WWW) databases are in compressed
formats. Therefore, it becomes an important issue to
retrieve a suitable color palette from compressed do-
main in order to have fast and faithful color repro-
duction for these devices. In this paper, the color
palette design methods for compressed videos are pre-
sented. The proposed approaches use the reduced im-
age rather than the whole image for the color palette
design to avoid the heavy computation in video de-
compression. Experimental results show that output
image quality of proposed methods is acceptable to
human eyes. In addition, empirical results show that
the proposed shifting-window scheme can reduce the
main problem of displaying quantized image sequences,
screen flicker.

I. Introduction

With the prevalence of multimedia and internet,
more and more digital images and videos are available
for people to access. The digital image or video for-
mat is usually quantized with integer from 0 to 255 for
each of three color components (e.g. red, green, blue).
All possible combinations of three of these values gives
256 (or 16 million) distinct colors for full-color digi-
tal disﬁkK/‘I However, due to the costs of high speed
video , many current PCs and workstations lEen-
erally have a single 8-bit frame buffer to allow only a
limited number of colors, called color palette, to be si-
multaneously displayed. If an acceptable output image
quality is desired, it is necessary to develop a use:
procedure, called color quantization, for designing the
color palette.

In the past, the color palette design focused on un-
compressed data. For one single image, several color
quantization algorithms have been proposed. Heckbert
has proposed a median cut (MC) a.elgorithml&l] where
the color space is recursively divided into M rectan-
gular regions with equal color occurrence and their
centroids being representation colors. Recently, the
popular vector quantization (VQ) technique(4] is ap-
plied to the color palette design, too. The colors in
input image are used as training vectors in order to re-
fine the initial rough palette. But VQ-type algorithms
are usually computational intensive such that they are
not suitable for real-time processing. Pei and Chen
have suggested a dependent scalar quantization (DSQ?
algorithm (2], which exploits dependency of input colors
and sequentially partitions the color space. The exper-
imental results show that the DSQ can reduce the com-
putation complexity and its output image quality is ac-
ceptable to human eyes. Also some color quantization
researchers have focused on the processing of image se-
miences. Ravtman and Gatsman(Rl have nronnsed an

algorithm for dynamic color quantization of image se-
quences, which quantizes each image independently to
produce a different color palette for each image. Be-
sides, they suggest the approach of color palette filling
to prevent frequent switching of color palettes, which
leads to the problem of screen flicker.

However, with the consideration of communication
bandwidth and storage space, most image or video
data nowadays comes in compressed format. Extra
heavy computation of image or video decompression
is required before any above mentioned color quantiza-
tion is employed. How to design color palette directly
from compressed data has thus become a significant
issue. In this paper, we extend the DSQ to present
some novel color palette design methods for compressed
videos. The proposed methods use the reduced im-
age in compressed domain to design color palette. we
propose a shifting-window scheme to display longer se-
quences without screen In section II, we describe the
proposed ea:,:Fproa.ch for compressed videos, which uses
the reduced image rather than the whole image for the
color palette design to avoid the heavy computation. In
addition, the t ique of extracting key color frames
for compressed videos is presented and a shift-window
scheme is proposed to solve the screen flicker problem.
Section III reports the simulation results of proposed
methods and some discussions are made.

II. Limited Color Display for

Compressed Video

Now more and more video clips are able to be ac-
cessed in some World Wide Web databases. However,
with the limit of bandwidth of internet, those video
clips are usually compressed by using MPEG (3] for-
mat. In this condition, how to analyze the video clips
to design a suitable color palette for those machines
with limited color display becomes important. In this
section, we will introduce methods of color palette de-
sign for MPEG compressed video.

The low-resolution DC images of MPEG video,
called DC sequence, are first extracted for color palette
design. Additionally, to avoid huge computation costs,
we will only apply the DSQ to those DC images called
key color frames, which contain the major color infor-
mation of the entire DC sequence, for obtaining the
color palette of MPEG video. From the observation of
DC sequences, we noticed that color information inside
a frame is unchanged for most of the sequence except
key color frames, which consists of color changes in the
sequence. Thus, detection of color changes is essen-
tial for finding key color frames. The detection of key
color frames is based on two steps and introduced in
the following subsection:

1. detection of potential key color frames

2. detection of key color frames and extraction of
color nalette




Besides, if only one fixed color palette is used, the
degradation would get worse and worse as the sequence
length gets longer. To overcome this problem, a multi-
ple color palette scheme called shifting-window scheme
is proposed to display compressed video with good
quality even when the sequence length is getting longer.

A. Extraction of DC sequence

We will use MPEG-1 video as the example to il-
lustrate the process of DC uence extraction. In
MPEG-1, the DC coefficient of the DCT block in I
frame is the average of pixeis in the block. The DC
image for I frame can be easily formed by getting the
DC coeflicient in every block. However, the enge
exists in extracting DC images from P or B frames,
which use motion compensation to exploit the tempo-
ral redundan\c{y. A 5enera.l case for P frame has been
proposed by Yeo and Liu(7] and is showed in Figure 1.

B, 8,

Motion Vector={ mvx, mvy)
’

Qurrest Block

Figure 1: The extraction of DC image.

Here, B,.s is the block with motion vector
(mvz, myy) pointing to the current block of interest
and B, B3, B3 and B, are the four neighboring blocks
which derive the reference block B,.y. We can express
the DC component of DCT coefficients of By, s denoted
as DCT(B,.y) in the following equation.

4 7 7

(DCT(Bref)oo =Y 3 O wiy(DCT(B:))mt (1)

i=1 m=0 {=0

where wi,; are weighting factors related to the motion
vector.

This precise calculation of DCT coefficients is time-
consuming. Since we are only interested in the
DC component, the first-order approximation is used
rather than precise calculation.

4

(DCT(Bref))OO = Z

i=1

w;h;

2 (DCT(Bi))oo

(2)

where w; and h; are the overlapping width and height
of Byes in block B;. It can be shown that yg%‘ cor-
responds to wj, in Eq. 1 and this is why it’s called
first-order approximation. Although the approxima-
tion error will accumulate, the error is acceptable in
most cases because the GOP size is usually small and
the error will reset to zero at every I frame. The other
advantage of this approximation is that it requires only
the motion vector information and the DC values in the

reference frames. This approximation approach can
alan he annlied tn B frame where twn reference frames

might be needed. The problem of half-pixel-wise pre-
diction can be solved by using the average of larger
blocks depending on the motion vector. The 9x9 block
is needed if half-pixel-wise prediction occurs in both z
and y direction. The 8x9 block is used for half-pixel
accuracy only in z direction and 9x8 block is for y di-
rection only.

B. Key Color Frame Detection for
Compressed Video

After the DC sequence is derived from a MPEG
video, we use its DC images for key color frame de-
tection. To represent color information of a frame,
hue component of HSV space is adopted in this pa-
per. Hue component has been wideldzﬁa.ccepted as a
gﬁ);d candidate of representing color difference. Usin
this representation, we compare the normalized differ-
ence of hue histogram between consecutive frames in
order to detect boundaries between consecutive color
changes. The principle behind this is that two frames
having a unchanging background and objects will show
little difference in their corresponding hue histograms.
The normalization procedure is utilized for reducin
the impact of noise imposing on the hue histograms o
consecutive frames. The normalized hue difference be-
tween the hue histograms of the /th and (! —1)th frame,
S; is given by the following equations:

L
Si=Y_ NHDyi1(j) 3)

=1

where
H}(j) for Hi1(j) =0
NHDi-1() = Hi(j)=Hi_1(j .
b @) { |mi" I‘il J .H:-lx(j) 1 otherwise

(4)
with H;(j) and H;_;(j) being hue histograms of the
two consecutive frames respectively and L of Eq. 3 be-
ing the number of hue component bins in comparison.
In Eq. 4, we choose the minimum value of H;(j) and
H;_,(j) to normalize the hue difference. The condi-
tion, H;_1(j) = 0, is set to reflect the situation when
pixels with the certain hue value j exists in frame [,
but not in frame I — 1.

Similar to luminance change of the DC sequence, we
have observed that color change is also a local activ-
ity which involves details regarding several neighboring
frames. For scene change ysis, Yeo and Liu (5] has
su to set the threshold of luminance change in
order to match the local activity. We adopt this ap-
proach to detect color changes in this paper and choose
a sliding window thresholdg.i.ng technique proposed by
Yeo and Liu [5] to avoid false alarms which might oc-
cur in camera operations or object 3 this
technique, 2n — 1 frames with 2n — 2 hue differences
are examined in a local range. Inside this local win-
dow, a color change from (I — 1)th to /th image occurs
if the following conditions are satisfied:

1. The difference is the maximum with the window,
ie,S; <8,j=1l-n+1,---,1=-1,1+1,---,l4n-1.

2. S, is also m times of the second maximum in this
window.

After examination of each window, the window is
shifted one frame to prepare the next examination un-
til the whole sequence is processed. In criterion 1, the
parameter n is set to be smaller than the minimum du-
ration between two color changes, but large enough to

avoid false alarms. Thisg i’ hecanse as the window size




gets smaller, the threshold is closer to be a global ap-
proach which is unfavorable for color change detection.
If we set n = 30 for a 30 frame/sec video sequence, it
means that there cannot be two color changes within
a second. The parameter m in criterion 2 is imposed
to guard against some camera operations such as fast

anning or zooming. For these operations, the hue dif-
erences S; would maintain consecutive peaks across
several frames. From experimental results, we under-
stand that the design of m depends on the tradeoff
between increasing the detection rate and decreasing
the false alarm rate. It has been found that the values
of m varies from 2.0 to 4.0 give good results.

Through the above sliding-window thresholding
scheme, the detected frames are called potential key
color frames. From experimental results, we observed
that there are redundant false-alarmed frames, which
don't contain significant color information, inside these
potential key color frames. Then, we adopt a coarse-to-
fine strategy to eliminate those false-alarmed frames.
In this strategy, these potential key color frames is
processed one more time by the sliding-window thresh-
olding scheme. After this examination, the detected
frames are desired key color frames which are then used
by the DSQ for the extraction of color palettes. We
illustrate the proposed scheme of detecting key color
frames for compressed video in Figure 2.

P e v vl e

Figure 2: Detection of key color frame.

To do limited-color display with the color palette ex-
tracted by the proposed scheme, we employ the same
procedures as for the compressed image. Using the
well-ogga.nized boundaries of color cubes partitioned by
the DSQ, pixels of each image of decoded MPEG se-
qulence are mapped to their associated representative
colors.

C. Shifting-Window Scheme

If only one fixed color palette is assigned to the whole
sequence, the performance of color quantization is get-
ting worse as the sequence length gets longer. On the
other hand, if a color palette is designed for every key
color frame, a serious visual artifact, screen flicker, may
occur when the color palette is changed for these key
color frames(8]. This problem happens because there
is a sudden change of images colors. When the frame
buffer of the display contains an image, a new color
palette which belongs to the next image is already ac-
tive. This phenomenon of screen flicker is sharp and
unpleasant to human eyes.

To solve the screen flicker problem, we still use the
DSQ to design color palettes for the sequence. But a
color palette is designed for each fixed-length shifting-
window in the sequence. The procedures of color
palette design in the video sequence of each window are
the same a’ mentinned ahove. The kev enlor frames in

each shifting-window are detected and applied to the
DSQ for the color palette design as depicted in F'illue
3. These windows contains overlapping frames, which
causes the color distribution woulg not vary too much
from window to window even if the color change occurs.
As a result, the DSQ can generate smoothly varying
color palettes for the sequence if the bit allocation pro-
cedure is fixed. In addition, since every entry of the
color palette of the processed window would not dif-
fer significantly from that of the next window, screen
flicker is greatly reduced.

Frames within a shiff window

i

Figure 3: The proposed shifting-window scheme.

III. Experimental Results and

Discussions

To evaluate the performance of the proposed method
for compressed videos, a test sequence "News” which
has 300 YUV frames with size 352x240 is used. The
sequence consists of three main video segments which
are news conference of a president candidate, a TV
news reporter and news of a tropical storm. There are
special effects of dissolving, fading in and fading out
existed within each transition of two segments. This
test se%uence is first compressed by MPEG-1 compres-
sion. Then the proposed scheme is ‘a}.%)‘lfied to design
a color palette of 256 colors on the color space.
The color components were quantized in the order of
Y(Luminance) first, then U and V last. The numbers
of bits in each color component after bit allocation in
the DSQ are 4(Y), 2(U) and 2(V).

The detected key color frames from the extracted
DC sequence are frame 0, 3, 90, 195 and 210 which
are shown in Figure 4. The parameters of criterion 1
and 2 used to find a color change are set to be 7 and
2, respectively. The sum of hue difference in the first
stelg of scheme of detecting key color frames is plotted
in Figure 5. As we can see, these frames indeed repre-
sent significant color difference. Frame 210 is detected
because the yellow caption appears. And we plot in
Figure 6 the PSNR distribution of luminance compo-
nent of the decoded MPEG-1 sequence and the decoded
sequence quantized by the proposed scheme. In this
figure, the average PSNR of the decoded MPEG-1 se-
quence is 33.9805 dB and that of the proposed scheme
is 32.4647 dB, which shows only about 1.5 dB lost on
average in the color quantization. When we analyze
Figure 6, it is noticed that some peaks or intra-frames
among frame 90 and frame 210 have about 5 dB lost be-
tween PSNR values of the decoded MPEG-1 sequence
and the proposed scheme. Normally, decoded intra-
frames of MPEG-1 sequence are good quality since no
motion estimation is involved. For these intra-frames,
it shows that the matching of colors of decoded MPEG-

1 frame with those of the original frame is hetter than




(a)
Figure 4:

frames: (a)frame 0 (b)frame 3 (c)frame 90 (d)frame
195 (e)frame 210

(b) (c) (d) (e)

The DC images of detected key color

that of the representative colors obtained from the pro-
posed scheme. However, since the PSNR values of the
proposed scheme for these frames are around 35 dB, we
don’t perceive significant degradation of picture qual-
ity in experiments. Concerning the computation time,
the proposed method took about 8.8 seconds to extract
a color palette for the test sequence when using a SUN
SPARC20 workstation.
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Figure 6: The PSNR in the sequence "News”. The
solid curve is for the decoded MPEG-1 sequence and
the dotted curve corresponds to the proposed scheme.

We also executed the shifting-window scheme with
the size of shifting-window being 150 and the size of
overlapping frames between neighbouring windows be-
ing 75 on the test sequence. This configuration results
in three shifting-windows to cover the test sequence.
The designed color palettes for frames 0-149, 75-225
and 150-299 are shown in Figure 7(a), (b) and (c). As
we can see, the color palette of frames 150-299 con-
tains more dark colors which appear in the video clip
of the tropical storm. And the gradual changes can
be observed among these color palettes. When the
corresponding quantized sequence is played back with
frames 0-74 using palette of Figure 15(a), frames 75-
224 using palette of Figure 15(b), and frames 225-299
using palette of Figure 15(c), we have seen that screen
flicker phenomenon is insipid and acceptable to human
eyes.

Figure 7: The color palettes for the sequence "News”
when the shifting-windows scheme is employed.
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ABSTRACT

DFT has the good quality of performance and fast algorithm. But
when we implement the DFT. we will require the floating-points
multiplication. In this paper. we will introduce the integer Fouri-
er transform (ITFT). ITFT is approximated to the DFT, but all
the entries in the transform matrix are integer numbers. So it only
requires the fixed-points multiplication. and the implementation
can be much simplified. especially for VLSI. This new transform
will work very similar as the original DFT. for example, the
transform results are similar and the shifting-invariant property is
also preserved for ITFT. Besides. we will also introduce the
general method to derive the integer transform. By this approach,
we can derive many types of integer transforms (such as integer
cosine. sine. and Hanlley transforms).

I. INTRODUCTION

Because of the direct relations with frequency spectrum and
the fast algorithm, DFT is a very popular tool for signal process-
ing. But when we impiement the DFT. some floating-points
multiplication operations are required. The implementation of
floating-points multiplication is usually trouble and time-
consuming. Besides. for the computer. it requires the floating-
points processor. and will be more complex and expensive.

In this paper. we will derive the integer Fourier transform
(ITFT). It approximates to the DFT, but all the entries in the
transform matrix are integer numbers. We can implement the
ITFT without any the floating-points multiplication operation
because there are no non-integer entries. In section 2, we will
introduce the general method to derive the integer transform from
some real discrete transform. This method is the generalization
and the modification of the method introduced by Cham [1] (He
used his method to derive the integer cosine transform). In sec-
tion 3, we will derive the 8-points [TFT. Then. in section 4. we
will discuss the performance and the property of ITFT. We wiil
show ITFT remains almost all the performance quality of DFT.
In section S, we make a conclusion.

II. THE GENERAL METHOD TO DERIVE
THE INTEGER TRANSFORM

Integer transform is the discrete transform that all the entries
in the transform matrix are integer numbers. When we try to find
the integer transform analogous to some real transform, we can
use following the steps described as below. Here we use A to

pei@cc.ce.ntu.edutw

denote the transform matrix of the original real transform, use B
to denote the forward transform matrix of the integer transform.
and use D to denote the inverse transform matrix of the integer
transform.

(1) Find the symmetry relation and the equality relation for each
row of the original real transform. and find the sign of the en-
tries of the transform matrix.

(2) Forming the protorvpe matrix of the forward integer trans-
form from the relations obtained in the step 1. The prototype
must satisfy the following rules:

(a) If for the original transform matrix,
A(m, al) = A(m, a2) A(m. bl) =-A(m, b2)
A(m, cl) =jA(m. ¢2) A(m, d1) = —jA(m. d2)

then for the forward integer transform.
B(m, al) = B(m, a2) B(m. bl) = -B(m. b2)
B(m. ¢1) =jB(m, c2) B(m. d1) = —jB(m, d2)
(b) If for the original transform matrix.

A(mi.nl)=0 A(m2,n2)>0 A(m3.n3)<0
then for the forward integer transtorm,
B(mi.n1)=0 B(m2.n2)>0 B(m3.n3)<0

From these rules. we assign the unknowns in each entry of the
prototype matrix. To be convenient. all the unknowns are con-
strained to be positive and real integers. If the prototype ma-
trix has too many unknowns, we can try to make some un-
knowns be the same. or make some unknowns to be 1.

(3) Forming the prototype matrix of the inverse integer trans-
form. The prototype of transform matrix of the inverse trans-
form is of the same form as the forward transform. but we use
another set of unknowns.

(4) Constraints for orthogonalitv. In this step, we search for the
requirements to make the transform matrices of the forward
and inverse transform to be orthogonal. and make the inner
product of the same rows to be the values of 2* where k is
some integer. That is,

N~ .
Z'B(m,k)Dim,k').:Rm8,,,n where R =2° (1)

k=0
From this, we obtain the equality constraints for the un-
knowns of the prototypes matrices.

(5) Constraints for inequality. In this step, we find the inequal-
ity relations among the unknowns of the prototypes matrices
from the inequality relations for each row of the original non-
integer transform matrix. That is. if for the original transform.

A(m, nl)>A(m, n2)
then for the forward and inverse integer transforms.
B(m, nl) > B(m. n2) D{(m. n1) > D(m, n2)




These will be the inequality constraints for the unknowns.

(6) Assign the values for all the unknowns. At last. we assign
the values of unknowns. They must be real, positive integer
numbers. and satisfy the constraints obtained in steps (4), (5).

We note. the transform matrix B of the forward transform and the
transtorm matrix of the inverse transform D would be different.
Thus. if X(m) is the forward integer transform of x(n),

X(m)=3 B(m.n)- x(n) @
Then we cann;ocover x(n) from X(m) by

x(n)= 3 D*(m.n)-C - X(m) )
where * repr:::ents the conjugation. These can also be written as

X = B-x x=D"C'X @

where H is the Hermitian operation. The method introduced in (1]
makes the transform matrix for the torward and the inverse inte-
ger transform to be the same. and can’t avoid the tloating-points
multiplication for the inverse transform (since the values of Ry, in
Eq. (1) would not be the form of 2%). Here we allow the forward
and the inverse integer transtorm to be different. This cnables us
to fully avoid the floating-points multiplication operations. no
matter for the forward or inverse transform. But since B. D are of
the same forms. so the structures of the implementation of the
forward and inverse transform are basically the same. except for
the direction would be reversed and the parameters are different.

From the process introduced above. we can assure the integer
transform we derived are very similar to the original non-integer
transtorm. because (1) the symmetry. equality relations for each
row. (2) the sign of each entry. (3) the orthogonality property. (4)
the inequality relations for cach row have been preserved. But
sometimes, the integer transform is very hard to derive when we
try to keep all the relations described above. In these cases. we
will relax some of the relations.

III. THE 8-POINTS INTEGER FOURIER
TRANSFORM

The original 8-points DFT is:

F(m.n)=exp(-jmnn/4) mnef0.1....71 ()
To derive the 8-points integer Fourier transform (ITFT), we first
try to form its prototype from the equality relation and the sign of
each entry of the original 8-points DFT. We list the equality
relations for each row of the 8-points DFT as below:
row |row O [row I Jrow 2 |row 3 [row 4 [row 5 [row 6 [row 7
G=1 |C=I =-j C=-1 C=j
G=2 |C=l |C=-j |C=-1]C=j IC=l |C=-j [C=-]1 |C=j
G=4 |C=1 [C=-1IC=l [C=-1 {C=1 [C=-1 |C=1 |C=-1
Table 1 the equality relation of 8 points DFT

The values of G and C mean the m™ row of the integer Fourier
transtorm prototype matrix will have the following relation

Flo(m.n®G)=C-Flo(m.n) it n®G>n

Fl,(m,n®G)=C" -FI,(m.n)

where @ is the exclusive-OR addition:

K . K . K )

3 a,2'@Y b;-2' =Y (a;XORb;)- 2" a.b=0.1

i=I i=l i=l
From these relations, and together with the sign of the entries in
the 8-points DFT matrix, we can construct the prototype matrix
of the 8-points forward ITFT as:
let el el el el el el el
al a2-ja2 -jal -a2-ja2 -al -a2+ja2 jal a2+ja2
e2 -—je2 <2 je2 2 -je2 e je
bl -b2~-jb2 jbt b2-jb2 -bl b2+jb2 -jbl -b2+jb2
e3 -3 e & &3 -3 e3 -3
cl 2+j2 -jd 2+j2 =l 2-j2  jd —<2-j2
4 jd -e4 -—jod o job -4 —jed
[dl d2+jd2  jd -d2+j2 -dl -d2-j@ -jd d2-jd2 |
We assign the unknowns for the real part and image part of the
entries separately to assure all the unknowns will be real numbers.
In this prototype matrix. there are totally 12 unknowns. The
amount of unknowns seems to be too much. so we will set some
unknowns to be 1 and some unknowns to be equal. We set

el=el=e3=ed=1. 6)

bl=cl. b2=c2, dl=al. d2=a2 )
Then the prototype is simplified as:
LS TR T S ! to]
al a2-ja2 -—jal -a2-ja2 -al -a2+ja2 jal a2+ja2
o i ! -y Al i
fot -2 jd c2-je2 o 2+ -jd ~<2+j2
1 -1 1 -1 1 -1 1 -1
o —2+j2 —jd c2+j2 -l 2-je2  jd  -2-je2
L -t 1 i -l A
lal a2+ja2 jal -a2+ja2 -al -a2-ja2 ~jal a2-ja2 |

8)

and there are only 4 unknowns. But we must assure the ITFT can
still be derived after the simplification. otherwise we must re-
move some of the equality relations Egs. (6). (7). We note. in Eq.
(8), the m” row of the prototype matrix will be the conjugation of
the (7-m)™ row, as the original DFT.

if n®G<n

-

Then we form the prototype for the inverse ITFT. The proto-
type is of the same form as Eq. (8), but we change the unknowns
{al, a2. cl, c2} as {a3, ad. c3, c4}:

(11 1 1 1 1 ! 1
a3 ad-jaed —ja3 -ad—jad -a3 -ad+jd ja3 adtjad
1 -j -1 j 1 - -1 j
A3 -ojd j3 oA-jod 3 objob -jc3 -odjod

<

e T
3 ook i3 objob 3 objob  j3 okt

IS T St S T TS R
(23 adejad ja3 -adhjad -a3 -ad-jsd —jB ad-jad |
©

There are 4 unknowns for the inverse ITFT. so there are totally 8




unknowns tor [TFT.

Then we search the constraints for the unknowns. First. we try
to ftind the orthogonality constraints to make each row of the
forward, inverse ITFT to satisty the Eq. (1).

From the prototype of the forward. inverse ITFT, we find ex-
cept for {row 1, 5}, {row 5. 1}. {row 3, 7}, and {row 7, 3}, all
pairs of different rows will be orthogonal to each other. And
calculating the inner product of {row 1, 5}. {row 5, |}. {row 3,
7}. and {row 7. 3} directly, we find if we want these pairs to be
orthogonal. then the following constraints must be satisfied:

(1) ale3=2a2c4 (2) a3cl=2adc2
Then. from the requirement that the inner product of the same
row must be the value of the power of 2, we also obtain the con-
straint as:

(3) ala3+2a2ad4=2% (@) clc3+2c2cd=2"

where k. h are integer numbers. The constraints of (1), (2). (3). (4)
will be the equality constraints of the unknowns.

Then. from the inequality relations for each row of original
DFT matrix. we obtain the inequality constraints tor the 8-points
integer DFT as:

(5) al2a2 (6) cl2c2 (7)) dl=2d2 (8) fl212
These are the inequality constraints. Thus we have obtained all
the constraints for unknowns.

Then we assign the values of unknowns. Since there are 8 un-
knowns and only 4 equality constraints. so there are infinite
choices for the values of unknowns. But to search the values of
unknowns to satisfy all the constraints, especially to satisfy the
constraints (3). (4). is a ditficult task. We introduce a process as
below. This process will make the work of searching for the
values of unknowns to be more etticient.

(a) Choose the vaiues of al. a2 such that al, a2 are integer num-
bers and
2.a22alza2 (10)

{(b) Find the integer values of ci. ¢2 such that cl = ¢2, and

al-c2+a2-c1=2" n is integer an
(c) Set the value of 23, a4. ¢3.c4 as
c3=2-a2. c4=al. a3=2-c2. ad=cl

Then the values of unknowns are all obtained. We list some pos-
sible choices of the unknowns as below:

(1) al=2, a2=1, ct=2. c2=1, a3=2, a4=2, ¢3=2. c4=2
This is the smallest. simplest integer solution for the un-
knowns. And in this case. the value of Ry, in Eq. (1) is:
Ry=R,=R,=R¢=2". R, =Ry=Rs=R,;=2"
(2) al=7. a2=5. cl=13, c2=9, a3=18, ad=13, c3=10, c4=7
We note. when we choose the parameters as the values list-
ed above, the ratios of al:a2. cl:c2, a3:a4. c3:c4, are all near
to 1.414:1, which is ratio of the original discrete Fourier
transform. If R, is defined as Eq. (1). then in this case
Ry=R,=R,=Rs=2". R,=R;=Rs=R,=2"
We can implement the forward/inverse 8-points integer
Fourier transform (8-points [TFT) in the following ways:

x(0) (0)

LN L=

x(1)

x(2)

Fig. 1 Decimation-in—frequency implementation for the for-
ward 8-point integer Fourier transform (ITFT)
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Fig. 2 Decimation—in-frequency implementation for the in-
verse 8—point integer Fourier transform

We find. for the 8-points ITFT, the number of the multiplication
operations required is:

o forward/inverse transform: 8 fixed-points multi. operations

e normalization: 8 fixed-points multi. operations

etotal: 24 fixed-points multiplication operations
And for the original 8-points DFT,

o forward/inverse transform: 2 floating-points multi. ops.

e normalization: 8 fixed-points multi. operations

erotal: 4 floating-points. 8 fixed-points multi. operations
That is, we replace 4 floating-points multiplication operations
with 16 fixed-points multiplication operations. The costs for
doing 16 fixed-points multiplication operations is much less than
the costs for doing 4 floating-points multiplication operation.
Thus, the 8-points ITFT will be much faster than the original 8-
points DFT. Besides, we can further reduce the number of fixed-
points multiplication operations by setting al=cl, or a2=c2. or
a3=c3, or ad=c4. and each of them will save 2 fixed-points mui-
tiplication operations.




IV. THE PERFORMANCE OF THE INTE-
GER FOURIER TRANSFORM
We will see the performance of the 8-points integer Fourier

transform (8-points [TFT). Here the parameters we choose are
al=7, a2=5, cl=13, ¢2=9, a3=18. ad=13. c3=10. c4=7.

We first see the transtorm result. We choose 2 inputs:

xI=[2. 3, 4 5 4 5 2 3] (12)
x2={2.8. 4.3-0.6i, 3.7+0.9i. 3.1-0.6i, 4.6, 3.1+0.6i.
3.7-0.9i. 4.3+0.6i] (13)

We plot them in Fig. 3(a). 3(b). Then we do the original 8- points
DFT. and plot the transtorm results in Fig. 3(c). 3(d). And then,
we do the 8-points [TFT. To facilitate the comparison. we will
normalize the transform results. That is. for the transform result
of the 8-points ITFT

X(m)= %Fl(m,n)' x(n) (14)

We will normalize X(m) (the transform results of the 8-points
ITFT) by the first column of the forward transform matrix:

X(m) = X(m)/ FI(m.0). (15)
And plot them in Fig. 3(e), 3(f).
(@) b)

0 2 4 6

Fig. 3 The transform results of the original DFT and ITFT. (a).
(b): Original signals. (c) (d): Results for original DFT. (e),
(f): Results for ITFT. The real part and imaginary part are
plotted in separable.

We find. the normalized transform results for the 8-points ITFT
are very similar as the transform results for the original 8-points
DFT. Also, we note that input x2 is the combination of a low
frequency component and a high frequency component. As these
2 components can be separated by both the original DFT and the
IDFT. So the IDFT can also be used for the filter design.

Then. we see the displacement property of the IDFT. Here we use
the displacement of input x2[n] (detined in Eq. (15)) as the input:

x3[n] = x2[((n+1))g] x4[n] = x2[((n+2))g] (16)
And we plot x2. x3. x4 in Fig. 4(a). 4(c). 4(¢). Then we do the 8-
points ITFT for x2. x3. x4. and plot the amplitudes of the nor-
malized results in Fig. 4(b). 4(d), 4(t).

o 20
-5 Y
0 2 4 6 0 2 4 6

Fig. 4 The space-invariant property for the ITFT. (a)(c)(e):
Shifted input. (b)(d)t): Amplitude of the transtorm re-
sults of ITFT.

We find. for the ITFT. the displacement property also keeps. The
signal after displacement will have the same transform amplitude
as the original signal. When we compare the phase. there is a
interesting phenomenon. We find. if X2(m), X3(m). X4(m) are
the transtorm results of x2(n). x3(n). x+(n), then

angle(X3)-angle(X2)
=[0 —45 -9 -135 0 135 -270 -315] (mn
angle( X4)—-angle(X2)
=0 -9 -180 -270 0 -90 -180 -270} (18)
This is exactly the same as the original DFT.
V. CONCLUSION

In section 3. we have used the method introduced in section 2
to derive the 8 points integer Fourier transform (8 points [TFT).
In fact. we can also derive the [TFT for some other number of
points (such as the 6-points ITFT). We also can derive other
types of integer transtorms. such as the integer cosine. sine. and
Hartley transtorms. etc.

For the integer transform. we can replace all the floating-
points multiplication operations with the fixed-points multiplica-
tion operations. so the integer transtorm is very efficient. If the
datum we want to process are all integer number. using the inte-
ger transforms is especially efficient. The concept of the integer
transform is very new, and there are only a few researches about
it until now. Because they are convenient for implementation.
and almost remain the quality of original non-integer transform.
so they can compete with the original discrete transform in many
applications. We believe the integer transform will be very
popular in the future.
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ABSTRACT

[n this paper, we derive some properties of maximally flat R-regular
Mth-band FIR filters. We show that the R-regularity implies max-

imally flat frequency response at w = 0. The R-regular con-

straints are a set of linear equations with complex coefficients. We

can convert these complex-value equations to equivalent ones with

only real coefficients. We also show that it is possibie to com-

pietely determine the filter coefficients by R-regularity. Design

examples are presented to illustrate the R-regularity properties and

the effectiveness of the proposed approach.

1. INTRODUCTION

Mth-band filters are often used to design efficient digital sampling
rate conversion systems for real time operations [1]. The impulse
response h(n) of an Mth-band FIR filter of order .V has the prop-
erty that

h(L+ M) = h(L)6(¢), £€=0,%1,%2.... (¢)]

where L is the center of symmetry. That is, one of the M polyphase
components is equal to A(L)z~% which is just a delay. An Mth-
band filter satisfying the constraint of Eq. (1) in time domain has
the following equivalent property in frequency domain (3, 4, 2]

M-
Z CJ'(Q”k/AW\LH(ej(w+21rk/M)) = .'\/Ih(L)E-)WL 2
k=0

where H(e’“) is the frequency response of the filter. Usually,
h(L) is assigned to be 1/M for normalization. In (3], constraint
of the frequency response and bounds of passband and stopband
ripples were derived. In [5], a linear-phase FIR M'th-band filter is
decomposed into cascaded several FIR subfilters which is designed
simultaneously by Remez-type algorithm. In {4}, nonlinear-phase
Mth-band FIR filters with reduced group delay were investigated
and designed by using the eigenfilter approach.

Mth-band filter with R-regularity implies that there are R ze-
ros atwy = 2k/M .1 < k £ M -~ 1 on its frequency response.
In (4], the R-regularity is transformed into the linear constraints in
the impulse response. In this paper, we derive several properties of
the R-regular Mth-band FIR filter. We will show that the normal-
ization in Eq. (2) is achieved if the frequency response at w = 0
is unity. Moreover, the R-regularity aiso implies maximaily flat
frequency response at w = 0. Based on the properties, the lin-
ear equations constraining the impulse response can be split into
several polyphase equations with fewer coefficients involved.

A lowpass FIR filter with frequency response F'(e’“) is max-
imally flat if its impulse response is determined by the flatness at
w = 0 and w = m, in which the flatness is defined as the number

of zeros of dF(e’)/dw (2]. Generally speaking, the maximally
flat Mth-band FIR filter cannot be completely determined by the
flatness at wy since the number of flatness does not match the fil-
ter coefficients in generai . In this paper, we apply the concept
of the maximally flatness to design of R-regular Mth-band FIR
filters, and give a situation under which the impulse response of
Mth-band FIR filter is solved by the flatness at wy.

2. PROPERTIES OF R-REGULAR MTH-BAND FIR
FILTERS

Let H(z) be the transfer function of an causal Nth order Mth-
band FIR filter. In this paper, we consider the general case in which
N and L can be arbitrary integers. Suppose ((L))m = r where
((L))z denotes L modulo M, the transfer function H(z) can be
expressed as

H(z) = Z h(n)z™™ + h(L)z~%. )}

n=0

((n))m#r

If the frequency response H(e’“) is R-regular with R zeros at
we = 2wk/M for1 < k < M —1, then the transfer function H(z)
has Rzerosatz = W5, 1 < k < M — 1, where W = ¢~ 727/M
is a Mth root of unity. The location of these zeros implies that
H(z)canbe factored as H(z) = Hi(2)[l + 2z~  + 272 +--- +
z-(M— 1)]R'

Since H(e’“) has R zeros at wi = 2rk/M,1 < k< M -1,
the following equations have to be satisfied:

N
D hntWr + R(L)LWH =0
(AP r
or, specificaily,
N N
Y h@a W s 3 An)ntwr
(n3i2e=0 ((m)pr=r—1
N N
+ D hmEWR e+ > AW
(P hg2r 1 ()M =1
+ h(L)L'W*" =0 @)

forl<k<M-1and0 < q < R-1. Therearc R(M ~ 1)
equations in Eq. (4). In additional, the frequency response at w =




unknowns (since p = 0,1...., r—1lr+1...., M - 1). That
is, 4p(q) may be solved exactly. To find the values of Ap(q) , we
rewrite Eq. (6) in matrix form as follow

Ax=b (12)
where A =
1 W Wr—l Wr+1 Wx\«l—l
1 W'Z Lv"l(r—l) vv'lfr-é-l‘) . vv‘l(.'\/l—l)
i Wx"/’-l an-'x)(r_n W/(M—'l)(r‘n) W(M—L)2
=[—Llyrpe zrpa L paen q]‘
b [ JWW L, ‘\/IW L M Ly
and

X= {Ao(q)‘ ‘41(‘1) """" 4 "-1(Q)1 ‘4'+1(q)7 ey ‘4M—1(q)]t r

forl <k < M—1,0 < q £ R-1 where the superscript * denotes
the transpose. It is easy to find out a solution for Eq. (12) by in-
spiration. In fact, A,(q) = LY/M is an unique solution to Eq. (6)
and (12). Note that A is nonsingular because det(A) is a Van-
dermonde determinant generated by distinct elements. Therefore,
the solution to Eqg. (12) is unique [6]. Since the above derivation is
based on Property 1 which is deduced from Eq. (S), we obtain the
following property.

Property 3. The R(M — 1)+ 1 equations expressed by Eq. (4)
as well as Eq. (5) can be simplified to R(M — 1) equations repre-

sented as
N

Z h(n)n? = £ (13)
= M
((n))am=p
forp=0,1,...,r=-1r+1,.... M -1land0<g<R-1

In summary, Eq. (4) and (5) can be reduced to Eq. (13) as
well as h(L) = 1/M. However, the coefficients in Eq. (13) are
real numbers while the coefficients in Eq. (4) are compiex. The
computation with real numbers involved needs much less memory
than that with complex numbers.

3. DESIGN OF MAXIMALLY FLAT R-REGULAR
MTH-BAND FIR FILTERS

In Egs. (4) and (5), or equivalently, Eq. (13), it is obvious that
the number of equations is determined by R and M. For a given
M, we have more equations if R is increased. If the number of
zeros at W* is all the same, the number of unknowns is generally
not equal to the number of equations, and consequently h(n) can
not be solved by Egs. (4) and (5) only. However, it is possible
to solve the impulse response exactly form Egs. (4) and (5) for
some specific M, N and L. That is, it is possibie to completely
determine the R-regular Mth-band FIR filter by the zeros at W*
for some M, N and L with a suitable choice of R. This design
may be regarded as a generalization of the traditional maximally
fiat filter. In this section. we will indicate the situations to achieve
the maximaily flat design.

Let N, denote the number of coefficients to be determined in
Eq. (3) and N, denote the number of filter coefficients in A,(q)
defined by Eg. (7). Let | x| denote the largest integer less than z.

It is easy to show that

N. N-LAJ—L——-N“LJH, (14)

i

Np |_ J+10<p<M—1p;&r 15)

The following property indicates the sufficient condition for the
design of the maximally flat R-regular M'th-band filters.
Property 4. Egs. (4) and (5) can be solved exactly if

((NDm =M =2,((L))m =M -1,

R=LT1Y—J+1.

In fact, based on the Property 4, the impulse response can be
solved not only by Egs. (4) and (5), but also by Egs. (13). The
closed form of the impulse response is

(-1 Y (Mi+p—L)
(Mm+p—-Lym{(R-1-m)!

for0<m<R-1and0<p<M-1,p#r={(L)wm-

h(Mm + p) =

4. ILLUSTRATIVE EXAMPLES

In this section, we gives some design examples to illustrate the
properties derived in Sec. 2 and 3.

Example 1. In the example, we will design the 14th order R-
regular fourth-band FIR fiiter. The index of symmetry is 7. Thus,
we have Ml = 4, NV = 14, and L = 7. According Eq. 14, there
is Ve =14 - |7/4] — L'/-l] + 1 = 13 coefficients to be solved
which are

{1(0),h(4),h(8), A(12)},  {h(1),h(5), h(9), h(13)},
{h(2), h(6), h(10), h(14)}, and {A(7)}

where each group denotes the unknown coefficients in correspond-
ing polyphase components.

Since ((14))4 = 4—2and ((7))s = 4 — 1, according to Prop-
erty 4 these impulse response can be solved by Egs. (4) and (5) if
R = [14/4] + 1 = 4. In fact, the coefficients of each polyphase
components can be separated and solved by (M — 1) subequations

of Ap(g) = L¥/M in Eq. (13). The resulting transfer function is
H(z) = 5—15 (-5-82z7" = 7272 435274 + 7227°
+ 10527% + 1282'7 +105z72 +7227% +3521°
+ =722 _g,13 _ —14)
Itis éasy to shown that
-1, -1, =_-2 -1, -2, _-3\%
H(z) = 31—2-(0—122 +5278) (1427 + 2724270,
and H(z) ~-zt=
vl (5 +282z7" + 89272 +20827° + 3702™* + 488z 7°

+37027° + 208277 + 89278 +2827° +527'%) (1 - z7')°

The designed filter has symmetric impulse and thus has linear phase
response. Fig. 1(a) and (b) show the impulse response and magni-
tude response, respectively.




Example 2. In the example, we also design the R-regular
fourth-band FIR filter of 14th order. But the index of symmetry
is reduced to be 5. Thus, we have M = 4, N = 14, and L = 5.
According Eq. 14, there is N. = 14 — |5/4] — |9/4} +1 =12
coefficients to be sotved which are

{r(0),h(4), h(8), A(12)}, {h(2), A(6), h(10), h(14)},
{r(3), A(7), A(11)}, and {k(5)}

where each group denotes the unknown coefficients in correspond-
ing polyphase components.

We assign one degrees of freedom to be the unity DC gain
constraint. Since the reset 11 constraints cannot be assigned to the
3 frequencies of 27 /4, 47r/4 and 6m/4 evenly, the maximally flat
design cannot be soived. However, if let R = 3 in Egs. (4) and
(5) and put the additional 2 degrees of freedom on the flatness at
w = m, we can solve the impuise response. The resuiting transfer
function is

1
Bz = 55

+ 501z7% +384z77 +19727% - 69210 — 642~ !!
+ =392 4 7z—“) .

(=9 +7327% +19227° + 363z +51227°

It is easy to shown that

H{z) =

1
2048
—834z7% - 390277 - 111=7° +327° 4212710 4+ 7271

(1-)

The impuise response is not symmetric. Fig. 2(a) and (b) show the
impulse response and magnitude response, respectively.

5. CONCLUSIONS

In this paper, several properties of the R-regular Mth-band FIR
filter are derived. We show that h(L) = 1/M if the frequency
response at w = 0 is unity. Moreover, if the Mth-band FIR filter
is R-regular, then we can show that its frequency response have
R degree of flatness at w = 0. Based on these properties, the
linear equations constraining the impulse response can be split into
several sub-group equations with fewer real polyphase coefficients
involved. Generally speaking, the Mth-band FIR filter cannot be
completely determined by the flatness at wi. In this paper, we
apply the concept of the maximally flatness to the design of R-
regular Mth-band FIR filters, and give a situation under which the
impulse response of Mth-band FIR filter can be completely solved
by the flatness at wi. Design examples are presented to verify these
properties.
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Figure 1: Design of the maximally flat 14th order R-regular
fourth-band FIR filter with symmetry index L = 7. (a) Impuise
response and (b) magnitude response.
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Figure 2: Design of the maximally flat 14th order R-regular
fourth-band FIR filter with symmetry index L = 3. (a) Impuise
response, and (b) magnitude response.




