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ABSTRACT

A robust audio watermarking technique using spread
spectrum approach is proposed in this paper. The
watermark is scrambled by a spread spectrum sequence
before it is inserted into the host audio. In the extraction
process, the watermark must be restored by the same
sequence. The spread spectrum approach can increase
both the efficiency and security of the watermarking
method. Two kinds of sequences, perfect sequences and
uniformly redundant arrays (URA’s), are tested. This
technique proves to be robust against MP3 attack in
most cases except when speech clips are used together
with perfect sequences.

Keywords : Watermarking, Spread spectrum, MP3.

1. INTRODUCTION

It has been very common to distribute exact copies of
data electronically nowadays. This makes data keeping
far more convenient, but other problems may occur. It is
possible that illegal copies may be made. To deal with
pirating and to protect the intellectual property, the
author can place some information (usually called
watermark or digital signature) into his/her audio
productions without being perceived. Only those with
the right key can successfully extract the watermark.

EMAETMAHEK

Various techniques have been proposed to cope with
pirating problems in audio data. As Tilki et al.
mentioned in [1], watermark can be inserted by
replacing the Fourier transform coefficients over the
middle frequency bands by spectral components of the
watermark. In [2], watermark is embedded by modifying
phase values of Fourier transform coefficients. Another
technique is echo hiding, which employs multiple
decaying echoes to place a peak in the cepstrum at a
known location [2]. Also, watermark embedding making
use of perceptual masking has been proposed by
Swanson et al. [3]

In the proposed technique, the watermark is scrambiled
before it is added into the host audio. This is done by
correlating the watermark with a perfect sequence or a
uniformly  redundant array (URA), whose
autocorrelation is a delta function, so that the scrambled
watermark can be totally restored by correlating with the
sequence again [4,5].

2. SEQUENCES WITH AUTOCORRELATION
OF ZERO SIDELOBE

A sequence with autocorrelation of zero sidelobe is
equivalent to the direct sequence in spread spectrum
communications. After the signal is correlated with the
sequence, it becomes a random signal, just like a white
noise. If this noise is correlated with the sequence again,
the original signal is restored.

Reconstruction using sequences with autocorrelation
functions of low sidelobe is mentioned in {4], in which
URA (Uniformly Redundant Arrays) was introduced.
Perfect sequences were further developed in [5].

2.1 Properties of Perfect Sequences

Assume a perfect sequence s(n) with length N, and its
periodic sequence s,(n) with period N. Some properties
of perfect sequences are shown as follows: [5]
2.1.1 Correlation properties

The autocorrelation function, or the PACF (Periodic
Repeated Autocorrelation Function) of s,(n) is

N-1
p(my="s,(n)s,(n+m) (1)
n=0
Then
=45 =0 @
mj)=
4 0, m=0
where the energy £ of the sequence is given by
N-1
E= Z s3(n) 3)

n=0



The magnitude of the spectrum of a perfect sequence
is always the constant /£ .
2.1.2 Product theorem of perfect sequences

Consider two periodic perfect sequences s,(n) and s,(n)
whose periods are N, and N,, with N; and N, relatively
prime, and energy efficiencies 7, and 7. Then their
product is also a perfect sequence with period Ny * N, .
Also, the energy efficiency of the product sequence is
the product of the energy efficiencies of the two original
sequences, i.e.

=m0, )

This can be proven by the definitions of perfect
sequences [5].
2.1.3 Synthesis of perfect sequences

From 2.1.2, each perfect sequence s,(n) possesses a
DFT S,(k) of constant discrete magnitude. This property
is used in perfect sequence synthesis. Combining a
constant amplitude spectrum any odd-symmetrical phase
spectrum

w(N-k)=-w(k), intheregion0<k<N (5)
can always give a real, perfect sequence by inverse DFT.

2.2 Properties of Uniformly Redundant Arrays
Uniformly redundant arrays (URA’s), as introduced in
[4], are binary matrices with autocorrelation of zero
sidelobe. They are firstly developed to enhance the
performance of coded aperture array image processing.
A complete URA set consists of a pair of matrices, A
and G, where A is the key used in the embedding
process, and G in the extraction process.
2.2.1 Synthesis of URA's
Given a URA of dimension r by s, it must be satisfied
that » and s are both prime numbers and r-s = 2. The
elements in the matrix are denoted as A(ij), where i =
0~r-1, and j = 0~s-1. URA’s are generated as follows:
(4]
A(ij)=0 if i=0
=1 if j=0.i%0 (6)
=1 if C,)Cp)=1

=0 otherwise

whereC, (i) =1 if thereexists an integer x, 1 < x < r such thati = x> mod r
=-1 otherwise
The extraction key G is generated by assigning

Glig)=1  if Afij)=1
=-1 if Afij)=0
(10)

2.2.2 Correlation Property

The circular correlation function of A and G is a 2-D
delta function with the element in the intersection of the
first column and the first row proportional to the number
of 1’s in A, which is the value (rs+1)/2, and the rest all
Zeros.

3. PROPOSED TECHNIQUE
3.1 Watermark Embedding
The proposed technique makes use of spread spectrum
approach and repeated insertion. The watermark W is
first correlated with a sequence P, resulting in a

noise-like signal /. This signal is scaled by a factor 4 and
added into the host audio 4, producing the stego audio S.

S=A+klI=A+kW&P) 7
where ® stands for correlation.
3.2 Watermark Extraction
In the extraction process, it is necessary to refer to the
original host audio 4. The received stego audio S is
subtracted by A, obtaining the noise-like signal /, which
is then correlated with the sequence P to restore the
watermark .
W'=(S—A)®P
=ki®P
kW ®P)®P ®
= kW ®(P®P)
=kW®S5
=kW
The block diagrams of watermark embedding and
extraction are shown in Figs. 1 and 2.
3.3 Repeated Insertion
When [/ is added into the host audio A, repeated
insertion is adopted. That is, each sample in / is added
into several samples in 4. This concept is illustrated in
Fig. 3 [6].

4. AUDIO SIMILARITY MEASURE

This technique proves to be robust against MPEG [
Layer III (MP3) compression attack. To grade the
watermark quality objectively and quantitatively, the
approach in [7,8] is incorporated.

In the quality evaluation process, Measuring
Normalizing Block (MNB) technique is developed.
There are several steps in the measurement process:

(1) Two signals are normalized by removing the
mean values and normalized to a common RMS
level.

(2) Each signal is broken into overlapping frames.
Each frame is multiplied by Hamming window
and transformed into frequency domain. Only the
samples of DC to Nyquist are retained.

(3) Select frames with energy above a given
threshold. Transform the frequency domain
samples into dB scale by taking logarithm.

(4)  Apply the Frequency MNB (FMNB).

(5) Apply either Time MNB (TMNB) structure 1 or
structure 2.

(6) Apply linear combination and logistic function to
obtain Acoustic Distance (AD) and Logistic
Function of AD (L(AD)).

The range of AD is from 0 to infinity, and the range of
L(AD) is from 1 to 0. For AD closer to 0 and L(AD)
closer to 1, the two audio signals are of higher similarity
perceptually. For two identical signals, AD is 0 and
L(AD) is 0.9909 [7,8].

5. EXPERIMENTAL RESULTS
5.1 Data Profile
Two types of audio clips are tested in this research,
including both music and speech. The data profiles are
listed in Tables 1 and 2. Two clips are used as host audio



while four are used as watermark audio clips. All the
clips are 16-bit PCM stereo WAV format except that the
host ones are of sample rate 44100 Hz and the
watermark ones are of sample rate 44100/6 = 7350 Hz.
Both perfect sequences and URA’s are tested, and the
experimental results are shown.
5.2 Using Perfect Sequences

The perfect sequence is used to scramble the
watermark before watermark embedding. The extracted
watermark after the stego audio has gone through MP3
compression and decompression is compared with the
original watermark and the similarity results
corresponding to different repeating block sizes are
measured, as shown in Figs. 4 and 5. This value stands
for the robustness of the watermarking technique against
MP3 attack. The MP3 encoding specification tested here
is the standard bitrate of 128kb/s.
5.3 Using URA’s

The similarities of extracted and original watermarks
using URA’s under MP3 attack with different repeating
block sizes are also plotted in Figs. 4 and 5.

6. DISCUSSION

If the extracted watermark qualities under two
combinations are carefully investigated, it is clear that
URA outperforms the perfect sequences no matter what
types of audio clips are under consideration.

In both cases, the host and watermark combinations
can be classified into two categories: “music in music”
and “speech in speech”, with the former combination
more robust against MP3 attack. Also, the repeated
insertion does not work much in audio watermarking,.
Given the same host audio, watermark audio, and
scrambling sequence, larger repeating block sizes do not

necessarily yield better results in similarity measurement.

Therefore, the major factor that counts in robustness
improvement is not the repeating block size, but the
efficiency of the scrambling sequence, in the URA case,
the number of 1’s in the matrix.

7. CONCLUSION
An audio watermarking technique based on the spread
spectrum approach is proposed in this paper. Sequences
with autocorrelation function of zero sidelobe are
introduced, investigated, and tested in the experiments.
Also, their results under MP3 compression attack are
presented in a new objective and quantitative audio

Watermark

(Channel 1)

Watermark squrlf::(t:e/ URA
{Channel 2)

similarity measure.

The experimental results show that URA provides
better robustness for watermark embedding than the
perfect sequence.

Repeated insertion is adopted but proved not very
promising in robustness improvement. The major part
that improves the robustness is the sequence correlation.

The main contribution of this research is that audio
clips are used as watermark other than the commonly
used binary sequences. The employment of audio clips
as watermark introduces much more challenges than
binary signals, but has also pointed out another way on
digital watermarking. Watermarks can be larger and
more meaningful signals other than binary sequences,
carrying more information about the author, owner, or
the creation. It will be of wide applications in the future
multimedia and internet oriented environments.
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Table 1: Audio clips used as host audio (sample rate = 44100Hz)
1| PIANO |Piano Solo: “Etude Op.25 No.12, Chopin” 13.531 seconds
2| SPFLE |English Speech: “Time Magazine”, Female 17.580 seconds
Table 2: Audio clips used as watermark (sample rate = 7350Hz)
1| VOILN |Violin Solo: “Hungarian Dances No.1, Brahms” 4.232 seconds
2| GUITR |Guitar Solo: “Petenera Para Guitarra” 2.900 seconds
3 SPFSE  |English Speech: “from Time Magazine”, Female 5.538 seconds
4| SPMSE |English Speech: “from Time Magazine”, Male 6.531 seconds
L(AD} of violin solo extracted fram piano solo (Channel 1) L(AD) of guitar solo extracted from piano solo (Channel 1)
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Fig. 4 Similarity values of music clips extracted from piano solo
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ABSTRACT

Recently, a generalization of the Hilbert transformer, the
fractional Hilbert transformer, was defined and developed.
In this paper, we propose a design of the allpass filter to re-
alize the fractional Hilbert transformer based on the maxi-
mally flat approximation to the desired phase response. The
coefficients are solved analytically for the traditional Hilbert
transformer which is a special case of the fractional Hilbert
transformer. Based on the closed-form coefficients, we show
that the maximally flat allpass Hilbert transformers are sta-
ble. Design examples indicate that the proposed filters ex-
hibit good approximation to the desired frequency response.

1. INTRODUCTION

Hilbert transform (HT) is a basic and important tool in sig-
nal processing. In a communication system, it is used for
single side-band modulation and then reduces the bandwidth
needed for transmission. HT is also used for edge detection
[1]. In [2], the HT is generalized into the fractional Hilbert
transform (FHT) and two alternative definitions are given.
One is a modification of the definition of HT and the fre-
quency response is expressed by

efjan/Q

forw >0
Hype(w) = { o Jan/2

forw <0 (1)
Note that this FHT can be regarded as an allpass (AP) fil-
ter with a suitable specification of phase response. Another
is implemented by using the above definition as well as
the fractional Fourier transform to achieve a two-parameter
FHT system. The discrete version of the FHT is proposed
in [3].

Both FIR and IIR filters are investigated to realize the
HT in extensive literature. In [4] and [5], the impulse re-
sponses of the FIR HTs are analytically solved in the max-
imally flat (MF) sense. A realization scheme based on de-
composing the transfer function of HT into allpass subfilters
is proposed in [6].

In this paper, the FHTs with MF phase response will
be designed. The filter coefficients are obtained by solv-
ing linear equations. For the HT, a special case of the FHT,

the coefficients are solved analytically. We show that the
MF AP HTs are always stable by applying the Enestrom-
Kakeya theorem to the closed-form coefficients. The stabil-
ity problem for the general FHTs is illustrated by numeri-
cally showing that the poles lie in the unit circle |z| < 1 for
a certain a.

2. MAXIMALLY FLAT DESIGN OF AP FHT

The transfer function H(z) of an Nth-order AP filter can be
represented by

N _
N 2m=0 2" _NA(z ")
SN oaer o A P
> om0 @n 27" (2)
where the coefficients a,,’s are real. Without loss of gener-

ality, we let ag = 1 to prevent from the null solution for a ,,.
The phase response §(w) of H(e?“) can be expressed by

H(z) ==z

SN a,sin nw
f(w) = —Nw+2tan~ ! &a=0 2~ 3)

n—g On COS NW

Given the desired frequency response 6 4(w), we want to
find a set of coefficients a,,’s so that the phase error 8, (w) =
84(w)—8(w) is minimized. By expressing the desired phase
response as 94(w) = —Nw + 6(w), the phase error 6. (w)
can be represented by
N .
Be(w) = () — 2tan~} Zns0BSIIL )
g On €COS NW
However, it is difficult to minimize the above error function
due to its nonlinearity. Therefore, we minimize an equiva-
lent error function e(w) which is defined by

N s
> o Gn Sin nw

1=
e(w) = tan —H(w) — .
2 SN o @ncos nw

)

1t is easy to show that e(w) = n(w)/d(w) where

N
nw) = Z ay, Sin [%é(u)) - nw} (6)
n=0

d(w)

N
1-
cos §H(w) Z a, Cos Nuw. @)

n=0



Finally, the numerator function n(w) is the target error func-
tion to be minimized.
Let (w) in Eq.(6) be the ideal phase response expressed

as
—%om, for0 < w < m;

O(w) = ©)

gam, for -7 <w <0

where « is the desired fractional parameter. Putting the
phase response #(w) into Eq.(6), we can obtain the follow-
ing equations

N
1
n(w) = — Z a, sin <nw + Zaﬂ) , forw > 0; 9

n=0

N
1
n(w) = Z a, sin (—nw + Zonr) , forw < 0. (10)

n=(

If n(w) is minimized at w = wg in the MF sense, it has to
satisfy the MF conditions of d*n(w)/dw® = 0 atw = Fwy.
Because of the odd symmetry between Eq.(9) and (10), we
can drop the case of wg > 0. Let d*n(w)/dw* = 0 at
w = wo where n(w) is expressed by Eq.(9). We have

N
Za n* sin | nwg + 1Ic71' + lonr = —d; sin l(171'
n E Q 5 4 k © 4

n=1
an
where d;. is defined by

L,
e {

The coefficients a,’s can be solved by the N linear equa-
tions expressed in Eq.(11) for k = 0,1,..., N — 1. In this
paper, we choose the frequency wg = %n to achieve the best
approximation on the middle frequency range.

fork =0;
otherwise.

3. EXPLICIT SOLUTION FOR HILBERT
TRANSFORMER

In the previous section, we show that the coefficients of
the AP FHTSs can be obtained by solving Eq.(11). The re-
sulting FHTs exhibit the best approximation at w = %w
in the MF sense. However, these linear equations are ill-
conditioned. For example, the reciprocal of the condition
number is approximated to 1.281817 x 10 ~29 for the equa-
tions of Eq.(11) with N = 20 and & = ] solved by MAT-
LAB or similar software. That is, we can not solve Eq.(11)
reliably for large N. The problem of numerical instability
may be avoided by solving the equations analytically.

In this section, we will analytically solve the coefficients
of MF AP FHTs for @ = 1 in Eq.(11). That is, we will find
the closed-form solution of the AP MF HTs. Letting o = 1

in Eq.(11), we can express the equations as
ol 1 1
Z ann® (cos §n7r + sin 57177) = —§, foreven k,
n=1
Al 1 1
Z ann® (COS Emr — sin §n7r) =0, for odd k.(12)
n=1

The above equation can be solved by the ratio of two Van-
dermonde’s determinants. If IV is even, after some algebraic
manipulations, we obtain the closed form of a,,’s of

Gy (M) )

Ym =+ L), \m

form=0,1,..., M, and
(M —m)(3)

3 m (1’\1) (14)
(M +m+3)(M+3), \m

A2m41 = —

form = 0,1,...,M — 1 where M = N/2, (M) is the
binomial coefficient, and (), is the Pochhammer’s symbol
definedby (z)o =land (z)p, =2 x (z+ 1) x--- x (z +
n — 1). On the other hand, if N = 2M + 1, we have

() o

form = 0,1,..., M. Based on Eq.(15), it is obvious that
1—2~" is a factor of the denominators A(z) of the odd-order
MF AP HTs. Accordingly, we have the following property:

A2m = —A2m41

Property 1 If N is an odd number and M = (N - 1)/2,
the denominator A(z) of an Nth-order MF AP HT can be
Jactored as A(z) = (1 — 271) A(2?) where

1
% (Al). (16)
m m

M
A(z) = Z amz" ™, and a,, = 07 + g) ‘
2

m=0
Remark. In[7] the authors analytically solved the coeffi-

cients of the MF AP orthonormal symmetric wavelet filters.
These coefficients can be expressed by

(=M + K/4),, (M)

1+ K/4), an

by = (_l)
where K must be odd to satisfy the orthonormal condition.
The odd-order MF AP HTs with coefficients expressed in
Property 1 can be related with the MF AP orthonormal sym-
metric wavelet filters by @,, = (—1)™b,, for K = 4M + 2.
Based on Eq.(1), one may synthesize the Nth-order FHTs

by

H,(2) = (cos %onr) 2N 4 (sin %aﬂ) Hy(z) (18)



where H; (z) is an Nth-order HT. That is, high order FHTs
with flat phase response can be synthesized by the MF AP
HTs without solving the ill-conditioned Eq.(11). We will
prove that these FHTSs are always stable by showing that the
MF AP HTs are stable. However, the FHTSs synthesized by
AP HTs are not allpass filters. It is obvious that the FHT
synthesized by Eq.(18) has the magnitude of cos %mr +

sin fam atw = 0if Hy(z) is the MF AP HT. This DC value

reaches its largest value of v/2 > 1 when a = 1/2. Hence,
a scaling factor is necessary to reduce this peak magnitude.
A modified FHTs is proposed by H/ (z) = kH,(2) where
k = (cos ax + sin am)~"/? = (1 + sinamr)~1/4.

4. STABILITY PROBLEM

To test the stability, one can apply the Schur-Cohn crite-
rion or the more efficient Jury-Marden criterion [9] on the
proposed AP filters. Thiran show that the MF AP frac-
tional delay filters were stable by applying the Schur-Cohn
criterion[8]. However, there exists other stability criteria
suitable for the proposed filters without evaluating the Schur-
Cohen determinants or establishing the Jury-Marden arrays.
In this paper, we will apply the Enestrom-Kakeya theorem
[10] which is stated as

Theorem 1 Letp(z) = SN a,z¥~" N > 1, be apoly-
nomial witha, > 0for0 < n < N. Lett, = ay4+1/a, for
0 < n < N. Then all the zeros of p(x) are contained in the
annulus

min r, < |z| < max 7,.
n n

Based on the Enestrém-Kakeya theorem, we have the
following properties about the stability of the MF AP HTs.

Property 2 All the poles of the MF AP HTs of even order
are contained in the unit circle |z} < 1.

Proof: Let B(z) = A(—z) where A(z) is the denominator
of an even-order MF AP HT with coefficients expressed in
Eqs.(13) and (14). Then all the coefficients of B(z) satisfy

_ Qomy1 _ 2M —2m
Tm S T T Mt omal 1
2m -1
Tom—1 = _(lg—m = m < 1.
Qam-1 2m

According to the Enestrom-Kakeya theorem, we conclude
that all the zeros of B(z) are contained in the unit circle
[2{ < 1 since the ratios of successive coefficients are less
than unity. Then all the zeros of A(z) are also in |z] < 1.

Property 3 The MF AP HT of odd order has a pole at z =
1. All the other poles are contained in the unit circle |z| < 1.

Proof: By applying the Enestrom-Kakeya theorem to A(z)
in Property 1, we have this property.

We can not conclude that the general MF AP FHTs are
stable. However, by numerically computing the poles of the
AP FHTs, the largest moduli of these poles are less than
unity within a range of interest. Fig. 1 shows the plot of
largest modulifor2 < N <16and0 < a < 1.

5. DESIGN RESULTS

Fig. 2 and 3 show the design results of the MF AP FHTs .
Fig. 2 is the plot of the phase responses of the 10th- and 11-
order MF AP FHTs for « = 0.1,0.3,0.5,0.7 and 0.9. The
phase responses are normalized by 2{arg[H(w)] + Nw} /.
The purpose of the normalization is to find out the approx-
imation to the desired a. There are bumps around w = 0
for odd-order filters. Figs. 3 and 4 show the magnitude and
normalized phase responses for the FHTs synthesized by
the 30th-order MF AP HT. We can not obtain these FHTs
by solving Eq.(11) due to numerical instability. The phase
responses shown in Fig. 3 exhibit good approximation to
the desired phase responses within the middle frequency
band. However, the magnitude responses can not remain
unity over the whole band. Fig. 4 shows the magnitude re-
sponses which are scaled according the discussion in Sec-
tion 3.

6. CONCLUSIONS

The MF AP FHTs are proposed in this paper. The coeffi-
cients of the FHTs are obtained by solving a set of linear
equations. For the special cases of the HTs, the coefficients
are solved analytically. Based on the closed-form expres-
sions, we prove that the MF AP HTs are stable according
to the Enestrom-Kakeya theorem. The stability of the gen-
eral MF AP FHTs is investigated by numerically calculating
their poles for a certain range of « and N. The largest pole
in modulus is less than unity for N < 16. However, since
the general FHTs can be synthesized by the HTs, we show
that IIR FHTs with flat phase response can be implemented
by the MF AP HTs.
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Fig. 1. The plot of the poles of largest modulus for 0 <

@ < land2 < N < 16. These moduli are less than unity
indicate the corresponding MF AP FHTs are stable.
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Fig. 2. The plot of normalized phase responses for N = 10
and 11.
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Fig. 3. The plot of normalized phase responses of 30th-
order FHTs synthesized by the 30th-order MF AP HT.
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Fig. 4. The plot of magnitude responses of 30th-order FHTs
synthesized by the 30th-order MF AP HT.



