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Abstract

This paper introduces a staircase approximation to solve for the transients of
dispersive transmission lines with nonlinear loads. Such an approach is with easy
formulation and general enough to solve a complete microwave circuit like mixers or
oscillators. Furthermore, it can handle independently without the help of CAD tools if
the terminated circuit network is complicated. '

I Introduction

As the clock rate of digital circuits goes higher and higher, dispersion and other
frequency-dependent property of transmission lines takes a more crucial role than
before. Besides, nonlinear problems are of practical interest and importance, too.
Therefore, an approach to handle these two issues simultaneously is necessary, which
is what we want to do in this paper.

To treat the transient response of dispersive transmission lines, the frequency-
domain method is adopted traditionally. It suffers, however, not only the difficulty
with the presence of nonlinear loads but also the slow numerical integration when
taking the inverse Fourier transform. The FDTD [1], another candidate, is capable of
settling nonlinear loads, but has difficulties when frequency-dependent factors must
be considered. In addition, the FDTD becomes involved in dealing with muitisection
transmission lines, which further limits its applications. -

The staircase approximation we proposed here can solve for the transients of
dispersive lines with nonlinear loads through a straightforward formulation. The next
section will give a sketch of the staircase approximation. Section IIl provides some
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numerical examples, and the last section draws some conclusions.
I Formulation

The dispersive telegraphist’s equations in time domain are
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where the star “*” represents the convolution operation to account for dispersion.
Approximate the signals by
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where #,(¢) is the unit rectangular pulse with duration Ar. This is called the

staircase approximation since the voltage and current signals at a given x is now
approximated by a staircase-like function. By inserting (3) and (4) into (1) and (2) and
integrating with respect to t and then taking inner product by Galerkin scheme, the
original system of continuous time-dependent equations transforms to a system of
discrete time-independent matrix equations
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where [v] and [/] are column matrices and [R], [L], [G], [C] are square
matrices which can be obtained accordingly.

Once these matrices are determined, equations can be manipulated in a way
similar to those in the time-harmonic case. Problems with linear loads thus can be
solved directly, and nonlinear loads can be solved iteratively {2].

I Numerical Results

To prove the usefulness of the staircase approximation, consider a lossless (R =G =0)
transmission line shown in Fig. 1, and shunt with a capacitor and a nonlinear load at
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the terminal. A generator with an internal resistor is placed at the left end.

As the first -example, assume the transmission line is with the parameters
4= 1.0(m), L=0.5(uH/m),and C =0.2(nF/m). In addition, a matched generator
excites a unit step function. The nonlinear loads are described by i=0.01xv?(4)
for v>0 and i=0 for v<0, and shunt with capacitors C, =50(pF). The solid
curve represents the result by the FDTD method. Both the dotted and the dashed lines
exhibit the response calculated by the staircase approximation. The parameters for it
are At =0.15625(nsec) with 128 bases (dotted curve), and Ar =0.125(nsec) with
160 bases (dashed curve). Both match well.

Next, let’s remove the nonlinear loads and introduce the Debye dispersion with
parameters ¢, =9, ¢, =0 and w,=1/t,=57rx10°. Apply a rectangular pulse
excitation with pulse width w =1(nsec), remove the nonlinear load and replace the
length of transmission line by ¢=0.5(m), internal resistor by R, =0(Q) and load

capacitor by (', =20(pF) . The voltage and current response calculated at
x=0.5(m) by the staircase approximation (solid line) and the frequency-domain
transform method (dotted line) are illustrated in Fig. 3. The agreement of both curves
validates the capability of our method in dealing with dispersive transmission lines.

Last, but not least, assume the same parameters used in the second example but
drop the capacitor and apply the nonlinear loads ;=0.002xv?(A4) for v>0 and

i=0 for v<0. The results are exhibited in Fig. 4, in which the solid line is with the
parameters Ar=0.1 (nsec) and 512 Dbases while the dashed line adopts
Ar=0.2(nsec) and 256 bases. The results show that the convergence of our method
is pretty good.

IV Conclusion

We have proposed the staircase approximation and shown its usefulness in dealing
with transients of dispersive transmission lines with non-linear loads. Numerical
results verified with the FDTD and the conventional frequency-domain method have
been exhibited. This method can be easily formulated and applied to problems with
frequency-dependent loads and multiconductor transmission lines, which are
important for more realistic applications.
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