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Abstract--Fuzzy set theory had been successfully 
used to develop a fuzzy pulse pump controller (FPPC) 
for a phase/fiequency locked loop servomechanism 
(PFLS). For self-tuning the membership functions 
and control rules of the FPPC, a genetic algorithm has 
been used to construct a FPPC. However, this self- 
tuning approach is time-consuming in obtaining a 
near optimal solution. In this paper, an easy tuning 
fuzzy pulse pump controller (ET-FPPC) is proposed 
for solving the above mentioned problem. ET-FPPC 
is designed and constructed by using the a -cut 
based Adjustable Defuzzification Method (a -ADM). 
Only one parameter needs to be tuned in the ET- 
FPPC without tuning the membership functions and 
control rules. Finally, simulation and experiment are 
conducted and their results are very close to the 
theoretical prediction. In comparison with the fuzzy 
pulse pump controller and the adaptive digital pump 
controller, the acquisition time of the PFLS is reduced 
by 45% and 57%, respectively. 

I. Introduction 
The phase-locked servo system (PLS) was first 

proposed in motor servo control in the 1970’s [ 11 and 
its digital approach was presented in 1987 [2]. Since 
then, many digital-pump controllers have been 
presented in succession to reduce the position 
acquisition time in PLS [3,5]. Recently, an all-digital 
controller for PLS was developed to increase the 
position lock accuracy [6]. In order to raise the 
acquisition time in the locking process, a fuzzy logic 
controller was presented for the drives of the PLS [7]. 
To improve the performance of the phase/frequency- 
locked servo system (PFLS), we proposed a fuzzy 
pulse pump controller (FPPC) [9]. The FPPC can 
provide low overshoot, fast locking response, and 
short acquisition time for position lock. However, a 
problem exists in obtaining optimal parameters. A 
self-turning approach to constructing FPPC using a 
genetic algorithm called genetic algorithm-based 
FPPC (GA-FPPC) was proposed to solve the above 
problem [lo]. This approach is useful in obtaining 
appropriate membership functions and control rules 
for FPPC. However, this approach is complex and 

time-consuming in parameter setting. In this paper, 
we present a new kind of FPPC which can easily, 
directly and quickly decide on parameters to solve the 
above mentioned problems. 

All of the adaptive fuzzy logic controllers (FLCs) 
are implemented through tuning membership 
functions or fuzzy control rules. It is noteworthy that 
any other variables in an FLC can be used to change 
the behavior of the FLC. Akifumi Otsubo et al. [ 113 
proposed a new inference method, called product- 
sum-height method, to tune the height of the singleton 
membership function used for Zero linguistic term in 
the consequent part. However, the product-sum- 
height method is based on Rutherford’s control rule 
table. This means that the product-sum-height method 
is not suitable for any other control rule tables, 
especially, for the control rule table with a small 
number of ZO (zero) linguistic terms. Runkler [12] 
detailed many different defuzzification methods and 
discussed how to select an appropriate for desired 
application. This means that the defuzzification 
method also has a strong influence on FLC-based 
control systems in addition to membership hnctions 
and fuzzy control rules. Additionally, Yager and Filev 
[ 13,141 proposed two adjustable defuzzification 
methods called BAsic Defuzzification Distributions 
(BADD) and Semi-Linear DEfuzzification (SLIDE). 
They showed that adjustable defuzzification can 
easily modify the relation between the output fuzzy 
set and crisp output value. This indicates that a new 
kind of tunable FLC without tuning of the 
membership functions or fuzzy control rules can be 
developed successfully using adjustable 
defuzzification methods. Based on the above points, 
this paper aims at presenting an ET-FPPC by 
combining the adjustable defuzzification concept with 
the a -cut method. The a -cut is very simple to used 
to modify a fuzzy set. First, the original output fuzzy 
set of the ET-FPPC is modified by using an a-cut. 
Second, this modified fuzzy output set is regarded as 
a possibility distribution and is transformed into a 
probability density distribution by means of 
normalization operation. Then, a suitable crisp output 
value (i.e., defuzzified value) can be obtained by 
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calculating the expected value of this probability 
density distribution. This new defuzzification method 
is called the a -cut based Adjustable Defuzzification 
Method ( a -ADM). Then, a -ADM is substituted for 
the defuzzifier of an FPPC. Finally, the defuzzified 
value from the a-ADM is sent to the digital pump 
controller to generate a suitable pump voltage to drive 
the servo motor. This new kind of pump controller is 
called an easy tuning fuzzy pulse pump controller. 
The mathematical model of the ET-FPPC based PFLS 
(EF-PFLS) is also presented to discuss the stability of 
the EF-PFLS. Finally, the simulation and experiment 
are conducted to examine the system performance, 
which is very close to the theoretical prediction. 

11. System Description 
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Fig. 1 The block diagram of the EF-PFLS. 

The functional scheme of the easy tuning fuzzy 
pulse pump controller based phase/frequency locked 
loop servomechanism (EF-PFLS) is shown in Fig. 1. 
This system is composed of two PositiodFrequency 
Converters (PFCs), a Discrete FrequencyPulse 
Comparator (DFPC), an ET-FPPC, a DC motor with a 
motor driver, an optical encoder, an upldown counter, 
and a lead screw. The PFC, and PFC,are, 
respectively, used to convert the input pulse number 
p ,  (i.e., input position) and output pulse number p ,  
(i.e., feedback position) into the discrete fkequencies 
fi and f,. Then, the DFPC compares the discrete 
frequencies f;. and A,, and converts the period error 

1 1 into a pulse error p ,  [6] .  After that, the ET- 
J ;  A, 
FPPC infers a suitable pump voltage V, according to 
the instant pulse error p ,  to drive the DC motor. The 
lead screw is mounted on DC motor to produce linear 
displacement D from the motor shaft rotation 8. An 
optical encoder and an up/down counter are also 
mounted on the shaft of the DC motor to sense and 
measure the feedback position represented as pulse 
number p , .  

111. Easy Tuning Fuzzy Pulse Pump Controller 
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Clearly, different a values will result in 
different modified fuzzy sets 4. That is to say, a 
fuzzy output set of FLC can be modified using a -cut 
based transformation by tuning the a value. 

The second procedure of a -ADM normalizes the 
piu (x) . This procedure can be written as: 

Fig. 3. (a) The block diagram of the 

Yager and Filev [13,14] proposed a xa% 

a -ADM. P& ( X I  

c Paa ( X I  
N ( x )  = (b) Decomposition of a fuzzy set A“. ( 5 )  

defuzzification procedure to transform the possibility where N(x) is the function of normalized ~- 
distribution into a probability density distribution, and A a  

(6) 
the defuzzified value is the expected value of the 
probability density distribution. In this paper, we use 
this concept to build the a -ADM. The a -ADM can 

Since 1) N ( X ) ~ O  for x E A , .  

2) C N ( x ) = l  (7) 
be divided into three procedures, as shown in Fig. xe.4 

3(a). The first procedure of a -ADM is used to 
transform the original hzzy set A” into a modified 
fuzzy set 4 . The procedure can be written as: 

N(x) have the characteristics of a probability density 
distribution and can be regarded as the probability 
density function (p.d.0. Thus, the second procedure 

- -  
T,:A + A, 

of the a-ADM can be viewed as transformation of 
the possibility distribution p2u(x) into a probability (1) 

where r, is the transformation, which will be density distribution N(x). 

discussed later, A” is the original fuzzy set, 
modified fuzzy set. 

For clearly explain the a -cut based 
transformation, we assume a convex fuzzy set 2 
defined in the universe of discourse U, whose 
membership function is pi (x )  and is shown in Fig. 
3(b). An a-cut of fuzzy set A“ is a crisp set A,, 
which contains the elements whose membership 
degrees are greater than or equal to a .  That is, 

is the 

A, = ( x ~ A p ~ ( x ) T a } ,  a ~ ( 0 , 1 ]  (2) 

The characteristic function p4 ( X )  of the crisp set .4u 

The final procedure in the a-ADM is used to 
determine the crisp output value. Here, the expected 
value is used to do this. That is, 

where d is the expected value. 

Substituting equation (5) for N(x) in equation (S), 
we get the defuzzification formula 

XSA, 

(9) 

is 
where da-ADM is the defuzzified value using the a - 
ADM. 

V. Mathematical Analysis 
(3) 

Now, we can describe the modified fuzzy set 2, The crisp output values of ET-FPPC with different 
a values are shown in Fig. 4(a). We can find that a 
larger a value will lead to a larger crisp output value 
when the pulse error p ,  is large, and that the crisp 

0 x e A a  output values with different a values are similar 
when the pulse error p ,  is close to zero. This is why 
different a values can result in different step 
responses in this EF-PFLS. For discussing the 
stability of the EF-PFLS, the ET-FPPC in the EF- 

in the same discourse U as follow: 

P i ( 4  x € 4  
P- 47 = {  

=i (4) PU,-(X) PZW 2 a 
0 P z ( x ) < a  
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PFLS is regarded as an adaptive proportional 
controller. The adaptive proportional gain K, of the 
ET-FPPC can be obtained by dividing the output 
pump voltage v, by the pulse error p , .  These 
adaptive proportional gain curves with different a 
values are shown in Fig. 40)  
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(a) (b) 
Fig. 4. (a) The output pump voltage v, of the ET- 

(b) The adjustable proportional gain K, of the 

From Fig. 4(b), we can find that K ,  can be 
regarded as an uncertainty parameter with bounded 
[ K;, I?]. The maximum value of K, is not larger 
than 1 ( i .e . ,~+=l) ,  and the minimum value of K ,  is 
zero (i.e., K ;  =O).  Therefore, we can conclude that the 
range of the adaptive proportional gain K,  is [0,1] 

for any errors with any a values. 

FPPC for different a value. 

ET-FPPC for different a value. 

............................. ET-FPPC 
DFPC 

(b) 
Fig. 5. (a) The complete mathematical model of the 

(b) The simplified mathematical model of the 

Fig. 5 shows the complete and simplified 
mathematical models of the EF-PFLS in locked-in 
range, where the relevant parameters are defined as 
follows: 

EF-PFLS in locked-in range. 

EF-PFLS in locked-in range. 

zm the mechanical time constant of the motor. 
K, the DC gain of the motor with the motor 

driver(rudsec/v). 

K, the adaptive proportional gain of the ET-FPPC. 

K, the conversion ratio of the angular displacement 
to the length of lead screw (cdrud). 

K,  the normalized factor of the input of FPPC. 
K, the conversion ratio of the angular displacement 

to the pulse number(l/rud). 
T the sampling period. 

From the Fig 5(b), we have the forward gain 

With the z-transform, we can obtain 

(12) 
The loop gain is 

K,KpKmK,(l - e-,'T) 
GH(s) = 

s2(szm + 1) 

With the z-transform, (1 3) can be transferred to 

GH(z)  = 

(14) 

From (12) and (14), the closed-loop transfer knction 
can be written as 

where 

bl = K,K,K,,, T-z,,, 1-e" [ ( 71 



bo = K,K,K,,, [ z,,, ( I-e'- 2, -Term '1 (19) 

Thus, the system transfer function will be 

-- W Z )  u 4 z  + bo) 
p , ( z )  - z2  +a,z+ao ' 

According to the system transfer function, we can 
have the characteristic equation written as 

2 +a,z+ao = o  (21) 

By characteristic equation and Jury's stability test 
[ 151, we can have three inequations as follows: 

l + a , + a o > O  (22) 

l - a , + a o > O  (23 ) 

These inequations are the necessary and sufficient 
conditions for system stability. For a given motor 
with motor driver, optical encoder and lead screw, 
these values z,, K, ,  K, and K , ~  are known. 
Therefore, we can compute these inequations (22-24) 
as functions of sampling period T when K ,  is 
determined. Using the above inequations, we can 
determine sampling period T below which the system 
is stable. 

VI. Experiment and Simulation 

ET-FPPC i 
....................... 

....................................................... 

Fig. 6 The block diagram for realizing the EF-PFLS. 

The block diagram for realizing the EF-PFLS is 
shown in Fig. 6.  In this design example, the locked-in 
range is defined in I 1000, the mechanical time 
constant z, of the motor is 115 msec, the DC gain 
Km of the motor with a motor driver is 32.7 cm/sec/V. 
Since the pitch of the lead screw is lcm and the pulse 
number per round of the optical encoder is 1000, the 
normalized factor K,  is 0.001, the conversion ratio of 
the angular displacement to the pulse number Kc is 
500/n and the conversion ratio of the angular 

displacement to the length of lead screw Ks is 
0 . 5 / ~ .  We can now explore the stability boundary of 
the sampling period T when K ,  is equal to 0.5. The 
stable range of the sampling period can be obtained 
by plotting inequations (22-24) in Fig. 7(a). It is easy 
to see that the maximum stable sampling period T 
required for this case to be stable is about 0.72sec. 
Since different K ,  values result in different 
maximum stable sampling periods T, the distribution 
of T versus K ,  is plotted in Fig. 7(b). In this system, 
the maximum sampling period is 0.45sec since K ,  

ranges between 0 and I .  

(a) (b) 
Fig. 7 (a) The stability boundary of the sampling 

period ( K ,  =0.5). 

(b)The distribution of the maximum stable 
sampling period T versus the proportional 
gain K; 
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Fig. 8. (a) Simulated step responses with different a 

(b) Simulation ( - ) and experimental (000) 

(c) Step responses of the PFLS with different 

controllers, which are ET-FPPC ( - ), 

values. 

step responses for a =0.276. 

FPPC (---) and ADPC ( .  . .  ). 
A simulation and experiment for this example are 

conducted, as shown in Fig. 8. Fig. 8(a) shows 
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different step responses with different a values. The 
result is the same as the theoretical prediction, where 
different a values result in different step responses. 
Since overshoot is not permitted in an excellent 
servomechanism, a = 0.276 is adopted for getting 
null overshoot. From Fig. 8(b), we can easily see that 
the simulation and the experimental results are very 
close. Finally, two different pump controllers, a fuzzy 
pulse pump controller (FPPC) [9] and an adaptive 
digital pump controller (ADPC) [2], are also selected 
to construct a PFLS for the purpose of performance 
comparison. Computer simulations of these three 
controllers are conducted and shown in Fig. 8(c). In 
comparison with FPPC and ADPC, the acquisition 
time of the ET-FPPC is reduced by 45% and 57%, 
respectively. 

VII. Conclusion 

In this paper, an a -cut-based adjustable 
defuzzification method (a  -ADM) is proposed, which 
can easily change the relation between the crisp 
output value (i.e., the defuzzified value) and the fuzzy 
output set by tuning the a value. This property 
shows that the a -ADM can efficiently tune the step 
response of an FLC-based servo control system. 
Based on the a -ADM, an Easy Tuning Fuzzy Pulse 
Pump Controller (ET-FPPC) has been designed and 
realized to achieve an ET-FPPC based 
PhaseiFrequency Locked Loop Servomechanism (EF- 
PFLS). A simulation and experiment are conducted to 
examine the system performance, which is very close 
to the theoretical prediction. In comparison with the 
FPPC and the Adaptive Digital Pump Controller, the 
acquisition time is reduced by 45% and 57%, 
respectively. 
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