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中文摘要
此研究計劃針對使用埃根逼近法來設計 IIR 濾波器，傳統

上只要考慮濾波器是否有符合頻率響應的規格，然而，在某些通訊應用下我們還需要加入特殊時域及頻域線性限制，

例如要設計通訊系統用的 Nyquist filter ，在某個特定頻率需要較高的精確度，如凹谷道型濾波器等等，埃根逼近法

是個很有效加入線性限制的設計方 法。

關鍵詞： IIR 埃根濾波器、FIR 埃根濾波器、時域及頻域線性限制

Abstract

An effective eigenfilter approach to design causal stable IIR filters with time and frequency 
domain constraints is presented. By minimizing a quadratic measure of the error in the 
passband and stopband, an eigenvector of an appropriate real symmetric and positive-definite 
matrix is computed to get the filter coefficients. Several IIR filters such as notch filters, Nyquist 
filters and partial response filters can be easily designed by this approach. Some numerical 
design examples are illustrated to show the effectiveness of this approach.

Keywords：IIR Eigenfilters 、 FIR Eigenfilters 、 Time and 

Frequency Domain Linear Constraints

I. Introduction
The eigenfilter approach has been recently used to effecitvely design linear phase FIR 

digital filters [1], FIR Hilbert transformers [2], and digital differentiators [3]. Also this approach 
has been applied to design complex FIR filters with arbitrary complex frequency response 
[4][5]. The design of 1-D and 2-D IIR eigenfilters in time domain has been studied in [6]. In this 
approach, we compute the filter coefficients by approximating an ideal desired impulse 
response. Recently, the eigenfilter approach is extended to design stable causal IIR filters in 
frequency domain with an arbitrary number of zeros and poles [7][8]. These methods work out 
in the frequency domain and allow to design filters with arbitrary prescribed magnitude 
frequency response. 
    Eigenfilter approach consists of expressing the error function between a desired target 
and actual filter response as a real, symmetric, positive-definite quadratic eigen_form in the 
filter coefficients. The eigenvector corresponding to the minimum eigenvalue minimizes the 
weighted error function and is the filter solution we need. The eigenfilter approach is widely 
used for its simplicity and easy implementation. Here we present another advantage of this 
approach in which adding the time domain or frequency domain constraints is quite flexible 
and easy. In this paper, the eigenfilter approach is used to design IIR notch filters, Nyquist 
filters, and partial response filters which have special frequency domain or time domain 
constraints.
    In many applications of signal processing, it is necessary to eliminate narrowband or 
sinusoidal disturbance while leaving the broardband signal unchanged. Usually this work can 
be done by the notch filters characterized by a unit gain over the whole frequency domain 
except at some certain frequencies in which their gain are zero. So far, several methods to 



effectively design IIR or FIR notch filters have been developed [9]. Adaptive notch filter design 
has been studied, too [10][11]. When the frequencies of narrowband interferences are known 
in advance, fixed notch filters can be used. In section 2, we study the properties of notch filters 
and formulate the design algorithm by adding the frequency-domain constraints to the 
eigenfilter approach. In section 3, we present the effectiveness of this method by showing 
some examples with arbitrarily chosen frequencies of notches.
    Nyquist filters play an important role in digital data transmission for its intersymbol 
interference (ISI)-free property. Also they can be adopted in decimation or interpolation 
multirate systems. To achieve zero ISI, Nyquist filters must satisfy some criteria in time domain 
that they should have zeros equally spaced in the impulse response coefficients except one 
specified. There are two conventional methods, which are IIR and FIR filter forms, to 
implement Nyquist filters. Designing of FIR Nyquist filters are more straightforward than those 
of IIR filters because FIR filters have exact linear phase characteristic, are always stable and 
the filter coefficients are directly its impulse response. So far the design procedures on FIR 
Nyquist filters have been widely studied [12][13]. However, FIR Nyquist filters usually require 
higher filter order to meet the magnitude specification. In contrast to FIR filters, IIR filters have 
lower orders, but their impulse responses are more difficult to keep the zero-crossing time 
constrained property and the problem of filter stability should also be carefully concerned. 
    Recently, Nakayama and Mizukami have proposed a novel expression of transfer 
functions for IIR Nyquist filters that we can keep exact zero intersymbol interference [14]. They 
have used the iterative Chebyshev approximation procedure but without considering its filter 
stability [15]. After adopting the proposed transfer function, the frequency response of the 
filters can be optimized without taking care of its time domain constraints (zero-crossing 
property). In this paper, we study this transfer function of Nyquist filters and present a new 
process based on eigenfilter method to design a Nyquist filter satisfying the arbitrarily selected 
time and frequency criteria. With some adequate constraints added, we can solve the optimal 
solution by the eigen_method to get the equal-ripple, low-pass stable IIR Nyquist filter with well 
behaved group delay. Then we summarize the design procedures and conclude some remarks 
worthy to be noted. Some design examples to demonstrate the validity of the proposed 
method are also illustrated.
    The eigenfilter approach can also be applied to design the partial response filters which 
have similiar zero-crossings as Nyquist filters but sinusoidal shape magnitude response over 
the passband [16]. Partial response filters have received considerable attention since they can 
be employed at an increased bit rate under a prescribed available bandwidth for data 
transmission [16][17]. They play an important role in binary data communication for that the 
intersymbol interference can be reduced by introducing rolloff around the Nyquist frequency. 
These filters can be classified for the different time domain or frequency domain responses. 
We introduce the filters in section 2.3 and formulate the design algorithm in this paper. The 
designing procedures of class 1 to class 5 partial response filters are mainly based on Nyquist 
filter design for we can take one partial response filter as the multiplication of one Nyquist filter 
and a polynomial which shapes the filter. In the section 3, some satisfactory experiment 
examples are presented.
    
II. Problem Formulation and Design Procedures

A. Notch Filter
Assume the transfer function of a notch filter is defined by
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If we need this filter to have a notch at frequency ωi , i.e. the ideal desired frequency response 

is unity everywhere in the frequency domain exceptω ω= i . The transfer function (1) should 

have a pair of zeroes at z e j i= ± ω , that is,
)(|))cos(21( 21 zNzzi
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Eq.2 means that if we need K different notch positions in the frequency domain, the order of 
numerator polynomial should be at least 2K.
    When the positions of the notches of the desired filter are given, from (1) and (2), the 
transfer function of this filter can be written as
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Clearly, )(zC  is known when we have chosen the position of the notches. Then we will use the 
eigenfilter approach to find the optimal b0

 and denominator coefficients.
    Let H d ( )ω  denotes the desired target function representing the notch filter with the 

bandwidth 0.001 ⋅π  at each chosen notch position in our examples. With K notches, we can 
divide the frequency domain into 3K+1 intervals to express different desired frequency 
response in each interval. The response inside the notch consists two transition bands: one 
decreasing function from 1 to 0 and the other increasing function from 0 to 1, respectively, and 
is unity elsewhere.

    To proceed with the formulation of notch filters, consider a cost function related to 
the error of the difference between the calculated response )(ωH  and target response )(ωdH :
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Let Ek ( )ω be the cost function in the frequency interval Ik , so,
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To minimize )(ωE  somehow means a weighted minimization of the error, in which )(ωD  acts 
as the weighting function. Consider the global square cost function given by 

Φ = ∑β φk k
k

, where 

βk
 is a positive constant that weights the k-th band cost function. And φk

 is given by
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where Wk( )ω  denotes the positive weighting function. Consider the vectors
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and
A a a a bK
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The cost functionφk
 can be expressed as
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where superscript T  and *  denote the transposition and conjugation operations, 
respectively. ( *

AA
T

=
 since the filter coefficients are assumed real). Therefore, 
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is a real, symmetric, positive-definite 
)22()22( +×+ KK

matrix. The global square cost function 



now can be expressed as 
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    Applying the eigenfilter approach, the optimum filter coefficients, which minimize the cost 
function, are the elements of the eigenvector of the matrixP corresponding to the minimum 
eigenvalue. After some calculation iterations and computing the corresponding eigenvector, 
we obtain the solution of
A a a a bK

T= ⋅⋅⋅[ ]0 1 2 0
.

Then we can get the transfer function coefficients of numerator and denominator by (3) and 
(4). 
    Experimentally, some remarks need to be mentioned.
1. Updating of the target function phase: Reference to [1], here we only approximate the 

magnitude response of H d ( )ω . Yet the cost function E( )ω  also depends on the phase of 

H d ( )ω . In absence of any information, we can initially assume the desired phase response 
linear, i.e. ϕ ω( ) =M ω , where M is a given constant. Reference to [1][8], to have a 

well-behaved response and fast convergence, an iterative phase updating can be adopted. 
Here we describe this method in brief. At the n-th iteration, let A n( )  be the coefficient vector 
obtained and H n( )( )ω  the corresponding frequency response. Assume that )()1( ωϕ +n  be the 
phase of H d ( )ω  at the (n+1)-th iteration. Assign )()1( ωϕ +n =∠ )()( ωnH , and redo the design 

procedure until some criterion is met.
2. Choice of weighting function Wk( )ω : As discussed previously, to compute the quadratic 

matrix P in (12)(13), we need to decide the weighting function. Let W n( )( )ω  be the weighting 

function in the n-th iteration. We adopt the recommendation of [8] in our experiments, let
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where D n( )( )ω  is the denominator of H n( )( )ω . So at each iteration, we can give higher 
weights to the regions where D n( )( )−1 ω  is small and the error will be smaller in the regions.

3. Stability check: The stability of the filters we designed should be carefully concerned. To 
ensure the stability of the IIR filters, we need to calculate the roots of denominator 
polynomial to find unstable poles and substitute them with their inverse conjugate. So that 
we can make this filter always stable without changing its magnitude response.

    To summarize the method to design IIR multiple notch filters, we can take the following 
steps:
1) Decide the positions of notches and calculate polynomial )(zC  according to (4). The initial 

state can be set ωωϕ K=)()0( (we use K denotes the number of notches we need) and 

W kk
( )( )0 1ω = ∀

.

2) Compute the matrix P by using (12), (13), and (14), where P is a function of ϕ ω( )( )n  and 

Wk
n( )( )ω . Let A n( )  be the eigenvector corresponding to the minimum eigenvalue of P, and let 

H z
n( )

( )
 be the relative transfer function; find unstable poles and substitute them with their 

inverse conjugate.
3) Update the phase of the target function by using 
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H
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; update the weighting 
function 

Wk
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( )
+1

ω
 according to (14).

4) Compute the poles outside the unit circle and substitute them with their inverse conjugate.
5) Repeat step.2 to step.4 until some stop criterion is met. In our experiments, we take fifty 

iterations in each result for that the error converges within twenty iterations.
6) Using (1) and (2) to get the desired transfer function coefficients.

B. Nyquist Filter

As mentioned in the introduction, to obtain the zero intersymbol interference, Nyquist filter 



)(zH has the impulse response )(nh with the time domain constraints, i.e., 
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, where K and N are integers. Then the impulse response crosses the time axis every N
samples. According to [15], the conditions in (15) can be rearranged and written as 





 =≠=+

otherwise

kif
NkNKh

,0

0,01
)(

                        (16)

, where K and N are integers. It is known that the transfer function of an IIR Nyquist filter can 
be expressed in the form 
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where 
nN ,

dN  are integers, and all the filter coefficients 
ia ,

ib are real, 10 =a . 
dN  is a multiple 

of N. Hence, only frequency-response optimization should be considered when the above 
transfer function is employed. The specification of Nyquist filters in frequency domain should 
be a lowpass filter with passband and stopband cutoff frequency 

pω and 
sω expressed as
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, where N is the interpolation ratio and ρ  is the rolloff rate.

    Now we can formulate the design procedure of Nyquist filters with the zero-crossing time 
domain constraints of Nyquist filters. According to (17), assume the calculated frequency 
response of a Nyquist filter is given by
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and the desired frequency response is )( ωjd eH ,a lowpass filter described by (18). Then the 

current error function is
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and the global cost function of the whole frequency range will be
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so we can rewrite the cost function to be
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In (25) and (26), )(ωW  is the weighting function of each frequency grid. Since Eq.25 matches 

the eigenform, we can solve the minimization problem by eigenfilter approach to obtain the 
optimal filter coefficients. 

As the notch filter design discussed in the previous section, we need a weighting 
function )(ωW  when computing the matrix P. Here we can use the weighting function 

prescribed in (14) to get a non-equiripple response. If the equiripple response is desired, 
another kind of weighting function should be employed. In the previous works proposed [8], a 
recursive updating of the weighting function was introduced to obtain an almost equiripple 
solution. Also we adopted the recursive procedure to get a convergent solution satisfying the 
given specification. An adequate choice of the recursively updating weighting function is given 
below.

    Let )(nA  be the solution vector at the n-th iteration and )()( ωnH  the corresponding 

frequency response. The magnitude error is

)()()( )()( ωωω ndn HHe −= ,                       (27)

and the weighting function used in the (n+1) iteration will be
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where ))(( )( ωneenv  is the envelope of the positive function )()( ωne . Then the resulting solution will 

be almost equiripple.

    The Nyquist filters are lowpass filters and have no constraints of the phase response. 
Usually we use a linear phase as the initial target phase response. So that we can initially set 

ωω MH −=∠ )( , in which M is a constant, as the desired phase response when we calculated 

)(ωdH . Experimentally we use the given integer K to be M , then

ωωω jK
dd eHH −= )()( .                         (29)

    We can conclude the design procedure into some steps:

1) Give the desired numerator and denominator order 
nN  and 

dN
, two integers K , N , rolloff 

rate ρ . And we will need the initial weighting function to control the amplitude ratio of the 

ripples of each band. 

2) Calculate 
)(ωdH
 according to (18a) and (18b). Calculate matrix C and P according to (23) 

and (26), respectively. 

3) Calculate the eigenvalue of matrix P  and obtain the eigenvector corresponding to the 
minimum eigenvalue and the vector is the coefficients we need.

4) Compute the frequency response 
)(ωH
 according to the coefficients obtained and decide 

the weighting function used in the next iteration. We adopt (14) or (28) to be the weighting 



function in the non-equiripple case or equiripple case respectively.

5) Find unstable poles and substitute them with their inverse conjugate to ensure the stability 
of filters.

6) Update the phase of the target function by using ϕ ω( )( )n+1 =∠ H n( )( )ω ; update the weighting 
function Wk

n( )( )+1 ω .

7) Repeat the step.4 to step.6 until a stop criterion is met. In our experiments, we stop the 
iteration until the maximum of the error of each frequency grid is smaller than 0.005.

C. Partial Response Filters
The partial response filters can be thought as a modification of Nyquist filters but have some 
specified magnitude and impulse response. These filters can be classified to five classes and 
summarized in Table.A [16].
    In Table.A, each binary symbol nC  is chosen to be a prescribed superposition of n 
successive transmitted impulses 

nbbb ...,, 21
 as 

1121 bkbkbkC nnnn +++= − L  [16]. Partial response filters 

can achieve high data rates with better error rate performance.
And the class of binary in Table.A is the original Nyquist filter.

Table.A The Properties of class 1 to class 5partial response 

filters [16].

Impulse response )(nhClass

1k 2k 3k 4k 5k
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)/2cos()/cos(2

FfFfj
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5 -1 0 2 0 -1 )/(sin4 2 Ffπ

    The transfer function of partial response filters is assumed as )(/)()( zDenzNumzH = , to obtain 

the impulse and magnitude response prescribed, the numerator polynomial of the transfer 
function must be divided by some specified polynomial. That is,
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    So the transfer functions of the classified partial response filters can be thought as Nyquist 
filters cascade with some specified )(zR . We can assume the calculated frequency response 

of a partial response filter as
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and the desired frequency response )( ωjd eH  is given in the table, then the current error is
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Let the cost function to be
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and the total error function of the whole frequency range will be
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then we can rewrite the cost function as:
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In (38) and (39), )(ωW  is the weighting function of each frequency grid.

    Since Eq.(38) results an eigen_form, we can solve the minimization problem by eigenfilter 
approach to obtain the optimal solution. At last, according to (32), we should multiply the 
calculated numerator by )(zR  specified by (31) and obtain the desired transfer function 
coefficients. The resulting numerator order will be )](deg[ zRNn + . The same as designing the 

Nyquist filters, we can also adopt the suitable weighting function in (39) to obtain equiripple or 
non-equiripple solutions by iterative procedures. The design procedure of partial response 
filters is summarized as below: 

1) Give the desired numerator and denominator order 
nN  and 

dN . And we will need the 

initial weighting function to control the amplitude ratio of the ripples of each band. 

2) Find )(ωdH  according to table.1. Calculate matrix C and P according to (36) and (39), 

respectively. 

3) Calculate the eigenvalue of matrix P  and obtain the eigenvector corresponding to the 
minimum eigenvalue and the vector is the desired coefficients we need.

4) Compute the frequency response )(ωH  based on the coefficients obtained and decide 

the weighting function used in the next iteration. We adopt (14) or (28) to be the weighting 
function in the non-equiripple case or equiripple case, respectively.

5) Find unstable poles and substitute them with their inverse conjugate to ensure the stability 
of filters.

6) Normalize the numerator polynomial by its unit DC gain.
7) Update the phase of the target function by using 

ϕ ω
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( )
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function 
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( )
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ω
.



8) Repeat the step.3 to step.7 until a stop criterion is met. We take 50 iterations in our 
experiments to obtain satisfactory results.

It is worthy to notice that we need to normalize the calculated coefficients by unit DC gain in 
each iteration to ensure the convergence of solutions for designing class 1 to class 3 partial 
response filters. For DC equals to zero in class 4 and class 5 partial response filters, 
normalization is not used then.

III. Experimental Results
A. Notch Filter Design
Here we present some design examples using our proposed method. First for the notch filters. 
We show the effectiveness of the proposed approach with arbitrarily prescribed notch 
frequencies and bandwidth.
Example 1: A notch filter with one notch at ω =0.25π  after 100 iterations. The magnitude 
response and pole-zero plotting are given in Fig.1, and the computed coefficients are given in 
Table.1.
Example 2: A notch filter with two notches at ω =0.3π  and 0.7π and plotted in Fig.2, and the 
coefficients are given in Table.2.
Example 3: A notch filter with three different notches at ω =0.3π , 0.6π and 0.9π . Besides 
that, we can arbitrarily specify the notch bandwidth. Here the widths of three notches are 
0.002π , 0.02π , and 0.04π , respectively. The responses are shown in Fig.3, and Table.3 
gives the resultant coefficients.
    Designing the notch filter using the eigenfilter approach with constraints can obtain exact 
zeroes at the desired locations and very flat pasband elsewhere, and the solution converges 
after several iterations.

B. Nyquist Filter Design 
Example 4: A Nyquist filter with with 

nN =15, 
dN =4, ρ =0.3, N=4, K=9 and the weighting of 

ripple ratio 1000/ =sp δδ . To express the properties of Nyquist filters completely, the magnitude 

response, impulse response, and pole-zero plotting are given in Fig.4. The resultant 
coefficients are given in Table.4.
Example 5: We design the filter with same specification as example 4 but equiripple is 
presented in Fig.5. The resultant coefficients are given in Table.5.
The specification of the last two examples is the same as illustrated in [14]. Compared with the 
attenuation 38 dB in [14], an improved minimum stopband attenuation of almost 40 dB is 
obtained but the ripples are not quite equal. The coefficients of example 5 are also listed in 
Table.5. 
Example 6: A Nyquist filter with 

nN =17, 
dN =4, ρ =0.2, N=4, K=10 and shown in Fig.6. The 

resultant coefficients are given in Table.6.
In these examples, we plot the frequency response, impulse response, and pole-zero positions. 
Since we formulate the design procedure of Nyquist filters according to the zero-crossing time 
domain constraints, we can obtain exact zeroes in the specific positions. Also the magnitude 
responses are wellbehaved. 

C. Partial Response Filter Design
At last we design the partial response filters with class 1 to 5 as example 7 to example 11, 
respectively. Both equiripple and non-equiripple cases are displayed. 
Example 7: Class 1 partial response filter with the specifications: 

nN =10, 
dN =2, N=2, K=6. The 

magnitude responses and impulse responses of both equiripple and non-equiripple cases are 



given in Fig.7. To express the cosine shape of the magnitude response of the class 1 partial 
response filter, the magnitude response of the non-equal ripple is given in linear scale in 
Fig.7.1. Other magnitude responses are given in log scale to show the attenuation of the 
stopband. The coefficients of equiripple case of class 1 filter are given in Table.7. 
Example 8: Class 2 partial response filter with specification:

nN =12, 
dN =2, N=2, K=7. The 

responses of both equiripple and non-equiripple cases are given in Fig.8.
Example 9: Class 3 partial response filter with specification: 

nN =13, 
dN =2, N=2, K=5. The 

responses are given in Fig.9.
Example 10: Class 4 partial response filter with specification:

nN =12, 
dN =2, N=2, K=7. The 

responses are given in Fig.10.
Example 11: Class 5 partial response filter with specification: 

nN =12, 
dN =2, N=2, K=9. The 

responses are given in Fig.11.
Both equiripple and non-equiripple cases are presented. The impulse responses and 
magnitude responses are very satisfactory.

IV. Conclusion
   In this paper, we have presented a new method to design digital IIR notch filters, Nyquist 
filters, and partial response filters. To design these filters, many methods have been proposed 
before. However, designing these filters with time-domain or frequency-domain constraints, IIR 
eigenfilter approach is a better choice and easier to handle. Here we first formulated the 
properties of these IIR filters and extended the existing IIR eigenfilter approach to design these 
filters. The effectiveness of eigenfilter approach has been revealed for adding the time-domain 
or frequency-domain constraints. We have employed an iteration process to obtain an 
equiripple, stable solution of the desired IIR filters. 
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     Fig.1.1 Magnitude response of Example 1.

 Fig.1.2 Pole-zero plotting of Example 1.

Table 1 The resulting coefficients of Example 1.



0b 0.44721416257553 0a 0.44748014854380

1b -0.63245633399964 1a -0.63245085376586

2b 0.44721416257553 2a 0.44695293602563

Fig.2.1 Magnitude response of Example 2.

Fig.2.2 Pole-zero plotting of Example 2.

Table.2 The resulting coefficients of Example 2.

0b 0.54377099289015 0a 0.54440003292807

1b 0 1a 0.00000001968196

2b 0.33606895570239 2a 0.33607333526488

3b 0 3a -0.00000002024473

4b 0.54377099289015 4a 0.54313573327771

.



Fig.3.1 Magnitude response of Example 3.

Fig.3.2 Pole-zero plotting of Example 3.

Table.3 The resulting coefficients of Example 3.

0b 0.29801430260418                 0a 0.30692859574000      

1b 0.40070303293878 1a 0.39958611590026  

2b 0.36147942821254 2a 0.35985811773165

3b 0.38956042881218 3a 0.38939406634299

4b 0.36147942821254      4a 0.36292519208517

5b 0.40070303293878 5a 0.40128160491205

6b 0.29801430260418 6a 0.28887025331247



Fig.4.1 Magnitude response of 

Example 4.

Nyquist filter with specification 

9,4,3.0,4,15 ===== KNNN dn ρ

Fig.4.2 Impulse response of 

Example 4.

Fig.4.3 Pole-zero plotting of 

Example 4.

Table.4 The resulting coefficients of Example 4.

0b 0.00458461115022                      11b 0.25239597909338

1b 0 12b 0.19754485652388         

2b -0.00682683757339 13b 0.12961566918558

3b -0.01740969380899 14b 0.06790172230435

4b -0.01811987645841                        15b 0.02489208206431

5b 0 0a 1.00000000000000                                                    

6b 0.04727636125958 1a 0

7b 0.11634386187788 2a 0  

8b 0.19151334697879         3a 0

9b 0.25000000000000 4a 0.51846267674232

10b 0.27231999915970

.



Fig.5.1 Magnitude response of 

Example 5 :

Equiripple case of example 4.

Fig.5.2 Impulse response of 

Example 5.

Fig.5.3 Pole-zero plotting of 

Example 5.

  

0b 0.00373701676675 11b 0.25294719373311

1b 0 12b 0.19736549464621         

2b -0.01124615922963 13b 0.13402787767668

3b -0.02174419712868 14b 0.06879712348272

4b -0.02126344099409                        15b 0.02727697661389

5b 0 0a 1.0

6b 0.04660624892311 1a 0

7b 0.11623394636996 2a 0

8b 0.19049647956317   3a 0

9b 0.25 4a 0.53611151070671

10b 0.27100557266568

Table.5 The resulting coefficients of Example 5.



Fig.6.1 Magnitude response of 

Example 6.

Nyquist filter with specification 

10,4,2.0,4,17 ===== KNNN dn ρ

Fig.6.2 Impulse response of 

Example 6.

Fig.6.3 Pole-zero plotting of 

Example 6.

Table.6 The resulting coefficients of Example 6.

0b 0.00510870405594                       12b 0.27723994576975         

1b 0.00302751851227 13b 0.24109149576972

2b 0 14b 0.17449621243145

3b -0.01424096402269 15b 0.11185237075775

4b -0.02125305506918                       16b 0.05274927478049   

5b -0.02406533221737 17b 0.01960823484487

6b 0 0a 1.0 

7b 0.04505898586477 1a 0

8b 0.11388103120759         2a 0

9b 0.18865812448367 3a 0

10b 0.25 4a 0.69798484972580

11b 0.28535192595900



Fig.7.1 Linear magnitude 

response of 

Example 7 : Class 1 partial 

response filter.

Fig.7.2 Impulse response of 

Example 7.

Fig.7.3 Magnitude response of 

equiripple case of Example 7. 

Fig.7.4 Impulse response of 

equiripple case of Example 

7.

Table.7 The resulting coefficients of equiripple case of Example 7.

0b 0.01446798102295                                      7b 0.45110472197426

1b 0 8b 0.37240643153797      

2b -0.00961818862706 9b 0.20708477391566

3b 0 10b 0.08488537433446

4b 0.08634022042579         0a 1.0

5b 0.24401994805860 1a 0

6b 0.39794744727930 2a 0.84863870992193

             

Fig.8.1 Magnitude response 

of Example 8: 

Class 2 partial response filter.

Fig.8.2 Impulse 

response of Example 8.



Fig.8.3 Magnitude response 

of equiripple case of Example 

8. 

Fig.8.4 Impulse 

response of equiripple 

case of Example 8.

Fig.9.1 Magnitude response 

of Example 9: 

Class 3 partial response filter.

Fig.9.2 Impulse 

response of Example 9.



Fig.9.3 Magnitude 

response of equiripple 

case of Example 9. 

Fig.9.4 Impulse 

response of equiripple 

case of Example 9.

Fig.10.1 Magnitude 

response of Example 

10: 

Class 4 partial response 

filter.

Fig.10.2 Impulse 

response of Example 

10.



Fig.10.3 Magnitude response 

of equiripple case of Example 

10. 

Fig.10.4 Impulse response of 

equiripple case of Example 

10.

Fig.11.1 Magnitude response 

of Example 11: 

Class 5 partial response filter.

Fig.11.2 Impulse response of 

Example 11.

Fig.11.3 Magnitude response 

of equiripple case of Example 

11. 

Fig.11.4 Impulse response of 

equiripple case of Example 

11.
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