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Abstract

An effective eigenfilter approach to design causal stable IIR filters with time and frequency
domain constraints is presented. By minimizing a quadratic measure of the error in the
passband and stopband, an eigenvector of an appropriate real symmetric and positive-definite
matrix is computed to get the filter coefficients. Several IIR filters such as notch filters, Nyquist
filters and partial response filters can be easily designed by this approach. Some numerical
design examples are illustrated to show the effectiveness of this approach.

Keywords . lIR Eigenfilters - FIR Eigenfilters - Time and

Frequency Domain Linear Constraints

l. Introduction

The eigenfilter approach has been recently used to effecitvely design linear phase FIR
digital filters [1], FIR Hilbert transformers [2], and digital differentiators [3]. Also this approach
has been applied to design complex FIR filters with arbitrary complex frequency response
[4][5]- The design of 1-D and 2-D IIR eigenfilters in time domain has been studied in [6]. In this
approach, we compute the filter coefficients by approximating an ideal desired impulse
response. Recently, the eigenfilter approach is extended to design stable causal IIR filters in
frequency domain with an arbitrary number of zeros and poles [7][8]. These methods work out
in the frequency domain and allow to design filters with arbitrary prescribed magnitude
frequency response.

Eigenfilter approach consists of expressing the error function between a desired target
and actual filter response as a real, symmetric, positive-definite quadratic eigen_form in the
filter coefficients. The eigenvector corresponding to the minimum eigenvalue minimizes the
weighted error function and is the filter solution we need. The eigenfilter approach is widely
used for its simplicity and easy implementation. Here we present another advantage of this
approach in which adding the time domain or frequency domain constraints is quite flexible
and easy. In this paper, the eigenfilter approach is used to design IIR notch filters, Nyquist
filters, and partial response filters which have special frequency domain or time domain
constraints.

In many applications of signal processing, it is necessary to eliminate narrowband or
sinusoidal disturbance while leaving the broardband signal unchanged. Usually this work can
be done by the notch filters characterized by a unit gain over the whole frequency domain
except at some certain frequencies in which their gain are zero. So far, several methods to



effectively design IIR or FIR notch filters have been developed [9]. Adaptive notch filter design
has been studied, too [10][11]. When the frequencies of narrowband interferences are known
in advance, fixed notch filters can be used. In section 2, we study the properties of notch filters
and formulate the design algorithm by adding the frequency-domain constraints to the
eigenfilter approach. In section 3, we present the effectiveness of this method by showing
some examples with arbitrarily chosen frequencies of notches.

Nyquist filters play an important role in digital data transmission for its intersymbol
interference (ISI)-free property. Also they can be adopted in decimation or interpolation
multirate systems. To achieve zero ISI, Nyquist filters must satisfy some criteria in time domain
that they should have zeros equally spaced in the impulse response coefficients except one
specified. There are two conventional methods, which are IR and FIR filter forms, to
implement Nyquist filters. Designing of FIR Nyquist filters are more straightforward than those
of IIR filters because FIR filters have exact linear phase characteristic, are always stable and
the filter coefficients are directly its impulse response. So far the design procedures on FIR
Nyquist filters have been widely studied [12][13]. However, FIR Nyquist filters usually require
higher filter order to meet the magnitude specification. In contrast to FIR filters, IIR filters have
lower orders, but their impulse responses are more difficult to keep the zero-crossing time
constrained property and the problem of filter stability should also be carefully concerned.

Recently, Nakayama and Mizukami have proposed a novel expression of transfer
functions for IR Nyquist filters that we can keep exact zero intersymbol interference [14]. They
have used the iterative Chebyshev approximation procedure but without considering its filter
stability [15]. After adopting the proposed transfer function, the frequency response of the
filters can be optimized without taking care of its time domain constraints (zero-crossing
property). In this paper, we study this transfer function of Nyquist filters and present a new
process based on eigenfilter method to design a Nyquist filter satisfying the arbitrarily selected
time and frequency criteria. With some adequate constraints added, we can solve the optimal
solution by the eigen_method to get the equal-ripple, low-pass stable IIR Nyquist filter with well
behaved group delay. Then we summarize the design procedures and conclude some remarks
worthy to be noted. Some design examples to demonstrate the validity of the proposed
method are also illustrated.

The eigenfilter approach can also be applied to design the partial response filters which
have similiar zero-crossings as Nyquist filters but sinusoidal shape magnitude response over
the passband [16]. Partial response filters have received considerable attention since they can
be employed at an increased bit rate under a prescribed available bandwidth for data
transmission [16][17]. They play an important role in binary data communication for that the
intersymbol interference can be reduced by introducing rolloff around the Nyquist frequency.
These filters can be classified for the different time domain or frequency domain responses.
We introduce the filters in section 2.3 and formulate the design algorithm in this paper. The
designing procedures of class 1 to class 5 partial response filters are mainly based on Nyquist
filter design for we can take one partial response filter as the multiplication of one Nyquist filter
and a polynomial which shapes the filter. In the section 3, some satisfactory experiment
examples are presented.

Il. Problem Formulation and Design Procedures

A. Notch Filter
Assume the transfer function of a notch filter is defined by

-1 -2 -M (1)
N(Z bB+bz ¥trz _+xect vz
H(Z)zn{ﬂ:M-F _'1-.'.M_'2-'.. + LM



If we need this filter to have a notch at frequency W;, i.e. the ideal desired frequency response
is unity everywhere in the frequency domain except W = W;. The transfer function (1) should

have a pair of zeroes at Zz= €/ thatis,
(1- 2xcos(w) xz* + 22) | N(2) - (2
Eq.2 means that if we need K different notch positions in the frequency domain, the order of
numerator polynomial should be at least 2K.

When the positions of the notches of the desired filter are given, from (1) and (2), the
transfer function of this filter can be written as

N _ BxC(2 , (3)
D(2 g +az'+az?+»a, 7"

H(9=

where

(4)

C(z)= é(l- 2 xcos(w; )%z +Z'2).
Clearly, C(Z; is known when we have chosen the position of the notches. Then we will use the
eigenfilter approach to find the optimal b and denominator coefficients.

Let ¢ denotes the desired target function representing the notch filter with the

bandwidth 0.001 %P at each chosen notch position in our examples. With K notches, we can

divide the frequency domain into 3K+1 intervals to express different desired frequency

response in each interval. The response inside the notch consists two transition bands: one

decreasing function from 1 to 0 and the other increasing function from 0 to 1, respectively, and

is unity elsewhere.

To proceed with the formulation of notch filters, consider a cost function related to

the error of the difference between the calculated response 1, and target response 1¢(y):
E(w) = (error ) D (w) (5)
=(H (w)- H(w)D(w)

Let £ () be the cost function in the frequency interval /. so,

, s o (6)
E.() = DIHI W) - O A1~ 25c0s(w) xe  + &)

To minimize g,) somehow means a weighted minimization of the error, in which p, acts
as the weighting function. Consider the global square cost function given by F o8 b, where
- k' k

k

b, IS a positive constant that weights the k-th band cost function. And ¢, is given by

e @)
v = OEWM)F W(w)aw
where () denotes the positive weighting function. Consider the vectors
GN=[HIW) Hiw)e™ s Hi(w)e ™ (8)
- (5(1— 2>cos(w)xe M + e )"
and
A=[a a »x a, B]" ©)
The cost function, can be expressed as
, (20)

Fi= AA G (W) O (w) AM(w)

where superscript T and ~ denote the transposition and conjugation operations,

respectively. ( , . since the filter coefficients are assumed real). Therefore, is given by
o (12)
and
12)

R = ;0(W)0 (W)Vik(w) cw
is a real, symmetric, positive-definite matrix. The global square cost function



now can be expressed as
F=3bf =A@ R)A=APA’ (13)
P P
Applying the eigenfilter approach, the optimum filter coefficients, which minimize the cost
function, are the elements of the eigenvector of the matrix, corresponding to the minimum
eigenvalue. After some calculation iterations and computing the corresponding eigenvector,
we obtain the solution of

A=[a & »= a, B"
Then we can get the transfer function coefficients of numerator and denominator by (3) and
(4).

Experimentally, some remarks need to be mentioned.

1. Updating of the target function phase: Reference to [1], here we only approximate the
magnitude response of ,4,). Yet the cost function gy, also depends on the phase of

H'w)- In absence of any information, we can initially assume the desired phase response
linear, i.e. ;w)=Mw, where M is a given constant. Reference to [1][8], to have a

well-behaved response and fast convergence, an iterative phase updating can be adopted.

Here we describe this method in brief. At the n-th iteration, let 4» be the coefficient vector
obtained and 4, the corresponding frequency response. Assume that ; »2(,, be the

phase of 9y, at the (n+1)-th iteration. Assign ; v, =D oy, and redo the design
procedure until some criterion is met.

2. Choice of weighting function ww): AS discussed previously, to compute the quadratic
matrix P in (12)(13), we need to decide the weighting function. Let ) be the weighting

function in the n-thiteration. We adopt the recommendation of [8] in our experiments, let

W=t (14)
[ D" (w) |
where pon,) is the denominator of ,»(,) . So at each iteration, we can give higher

weights to the regions where -~y is small and the error will be smaller in the regions.

3. Stability check: The stability of the filters we designed should be carefully concerned. To
ensure the stability of the IIR filters, we need to calculate the roots of denominator
polynomial to find unstable poles and substitute them with their inverse conjugate. So that
we can make this filter always stable without changing its magnitude response.

To summarize the method to design IIR multiple notch filters, we can take the following
steps:

1) Decide the positions of notches and calculate polynomial ¢, according to (4). The initial
state can be set ; o, - xw(We use K denotes the number of notches we need) and

Wow) =1 "k’
2) Compute the matrix P by using (12), (13), and (14), where P is a function of ;) and

wnw)- Let A be the eigenvector corresponding to the minimum eigenvalue of P, and let

., _ be the relative transfer function; find unstable poles and substitute them with their

inverse conjugate.
3) Update the phase of the target function by using . =D ; update the weighting

(), | LA
function according to (14).

gD,

4) Compute the poles outside the unit circle and substitute them with their inverse conjugate.

5) Repeat step.2 to step.4 until some stop criterion is met. In our experiments, we take fifty
iterations in each result for that the error converges within twenty iterations.

6) Using (1) and (2) to get the desired transfer function coefficients.

B. Nyquist Filter

As mentioned in the introduction, to obtain the zero intersymbol interference, Nyquist filter



H(» has the impulse response p,; with the time domain constraints, i.e.,

h(K+kN)=}Cl 0, if k=0 (15)

10, otherwise

, Where K and N are integers. Then the impulse response crosses the time axis every N
samples. According to [15], the conditions in (15) can be rearranged and written as

Pl e
K+ ki =1y O if k=0

1 O, otherwise

(16)

, where K and N are integers. It is known that the transfer function of an IIR Nyquist filter can
be expressed in the form

Ny
abz ) (17)
H(Z) = bKZK + i=0,i* kN+K , bK -

Ng/ N
- IN
a anZ
i=0

1
N

where , , , areintegers, and all the filter coefficients ,, , arereal, , -;. , isamultiple

of N. Hence, only frequency-response optimization should be considered when the above

transfer function is employed. The specification of Nyquist filters in frequency domain should
be a lowpass filter with passband and stopband cutoff frequency , and , expressed as

w, = l—Nr o (18a)
U (18b)

, Where ~is the interpolation ratio and r is the rolloff rate.

Now we can formulate the design procedure of Nyquist filters with the zero-crossing time
domain constraints of Nyquist filters. According to (17), assume the calculated frequency
response of a Nyquist filter is given by

g be™ (19)

1 0,1

Wy — 5 JKw i=0,i* kN+K

H(e")=—¢ M
a aye™"
=0

and the desired frequency response is <+ ,a lowpass filter described by (18). Then the

current error function is
aw) = H(e") - H(e™)- (20)
Let the cost function be

EW) = ew) B an(e ™)™ (21)

i=0

a 1 88" i &

— w s jkw G ;wyi ; ijw

=¢H%(e")- —e"™=q ay(e™)" - a be”’
e N 9 i=0 i=0,i+ kN+K

and the global cost function of the whole frequency range will be

o (22)

F W) = A Ew) Wiw)dw

Y
A

I o (23a)

where

(23b)
A= @-Id(elw) i i_t,er /KW(—:)fl er jw - jNw er jZNw“.e- JNaw



B=l-1 - e e e |t kN+ K (23c)

and  4-[a a, ay.a, b b b.b.b] . it knek(24)

d

so we can rewrite the cost function to be

. (25)
F(w) = 9A'C W)C(w) AWMw) dw = A7 PA

w

, (26)
P=oC (W) C(w)W(w)dw

In (25) and (26), ) is the weighting function of each frequency grid. Since Eq.25 matches

the eigenform, we can solve the minimization problem by eigenfilter approach to obtain the
optimal filter coefficients.

As the notch filter design discussed in the previous section, we need a weighting
function ) when computing the matrix P. Here we can use the weighting function
prescribed in (14) to get a non-equiripple response. If the equiripple response is desired,
another kind of weighting function should be employed. In the previous works proposed [8], a
recursive updating of the weighting function was introduced to obtain an almost equiripple
solution. Also we adopted the recursive procedure to get a convergent solution satisfying the
given specification. An adequate choice of the recursively updating weighting function is given
below.

Let 4» be the solution vector at the n-th iteration and 40, the corresponding
frequency response. The magnitude error is

& W) =|H* W) |H" W)’ (27)
and the weighting function used in the (n+1) iteration will be
W(nﬂ) (W) = W(n)(W)mV(e(n) (W)) y (28)

where gy is the envelope of the positive function gn (. Then the resulting solution will
be almost equiripple.

The Nyquist filters are lowpass filters and have no constraints of the phase response.

Usually we use a linear phase as the initial target phase response. So that we can initially set
PHW) =- Mw» 1N Which y is a constant, as the desired phase response when we calculated

H,w)- Experimentally we use the given integer « to be wm, then
H (W) =|H, (w)]e " (29)

We can conclude the design procedure into some steps:

1) Give the desired numerator and denominator order ,, and N two integers «, v, rolloff

d

rate I . And we will need the initial weighting function to control the amplitude ratio of the
ripples of each band.
2) Calculate according to (18a) and (18b). Calculate matrix C and P according to (23)

[N EYAN

and (26), respectively.

3) Calculate the eigenvalue of matrix P and obtain the eigenvector corresponding to the
minimum eigenvalue and the vector is the coefficients we need.

4) Compute the frequency response according to the coefficients obtained and decide
the weighting function used in the n'e”xt\ iteration. We adopt (14) or (28) to be the weighting



function in the non-equiripple case or equiripple case respectively.

5) Find unstable poles and substitute them with their inverse conjugate to ensure the stability
of filters.

6) Update the phase of the target function by using ; e»,)=D 4 (,); update the weighting
function () .

7) Repeat the step.4 to step.6 until a stop criterion is met. In our experiments, we stop the
iteration until the maximum of the error of each frequency grid is smaller than 0.005.

C. Partial Response Filters
The partial response filters can be thought as a modification of Nyquist filters but have some
specified magnitude and impulse response. These filters can be classified to five classes and
summarized in Table.A [16].

In Table.A, each binary symbol C

n
successive transmitted impulses p p,,..p, as C, = kb, + kb, -tk b, [16]. Partial response filters

is chosen to be a prescribed superposition of n

can achieve high data rates with better error rate performance.
And the class of binary in Table.A is the original Nyquist filter.

Table.A The Properties of class 1 to class 5partial response
filters [16].

Class |Impulse response F(1) | H(f) over  the
kl k2 k3 k4 k5 passband [0< f<F]

Binary |1 1
1 1 1 2cos(pf | 2F)
2 1 2 1 4cos? (pf | 2F)

2 +cos( pflF)- cos( 2p
3 2 1 -1 Jjlsin( pf 1/ F)- sin( 2pf/
4 1 0 -1 2sin(pf | F)

1 0 2 o0 -1 4sin?(pf | F)

The transfer function of partial response filters is assumed as 1, = num 2/ pen(2)» 10 Obtain

the impulse and magnitude response prescribed, the numerator polynomial of the transfer
function must be divided by some specified polynomial. That is,
R | Nun(2) (30)
which
P1+2" class(2) (31)
11427Y + 72 glass(2)

R(Z)=}2+z""- z class(3)

-z class(4)

f-1+22°"- Z*N  class(5)
So the transfer functions of the classified partial response filters can be thought as Nyquist
filters cascade with some specified R(2) . We can assume the calculated frequency response

of a partial response filter as

Nn
¢ pe™ U 32
¢ o U
jw ‘ET - jKw =6; l‘,'l jw
H(e )=€ e  +win URe )
enN - jw iN (1
é g.av(e ) g

and the desired frequency response Hd(e’W) is given in the table, then the current error is
(33)

LN N



Let the cost function to be
Ew) = e(w) 1 2, (e )" (34)

i=0

N/ N Ny )
=§4d(evW)- %e’fkwo(em?é a,(e™)"- Re") & be™

=0 i=0,i* kN+K

and the total error function of the whole frequency range will be

F () = W) Ww)aw’ (35)
If
cw)=[4 8] (36a)
where
(36h)

A':@d(dW)-%e'/KWR(eJW)gl er e e'fz“W...e"NdW]
e
B=Re")|-1 -e™ -e™. .-e -e™|  jtkN+K (36¢)

and -3 a, a,.a, b b bbb , itkvek  (37)

d

then we can rewrite the cost function as:
. (38)
F W) = A’ C' (W) C(w) AMw) dw = AT PA

and . (39)
P= ¢ W) C(w)W(w)dw

In (38) and (39), ww) is the weighting function of each frequency grid.

Since Eq.(38) results an eigen_form, we can solve the minimization problem by eigenfilter
approach to obtain the optimal solution. At last, according to (32), we should multiply the
calculated numerator by R(2) specified by (31) and obtain the desired transfer function

coefficients. The resulting numerator order will be N, + degl R2)] - The same as designing the

Nyquist filters, we can also adopt the suitable weighting function in (39) to obtain equiripple or
non-equiripple solutions by iterative procedures. The design procedure of partial response
filters is summarized as below:

1) Give the desired numerator and denominator order n and , . And we will need the
n d

initial weighting function to control the amplitude ratio of the ripples of each band.

2) Find p ) according to table.1. Calculate matrix C and P according to (36) and (39),
respectively.

3) Calculate the eigenvalue of matrix P and obtain the eigenvector corresponding to the
minimum eigenvalue and the vector is the desired coefficients we need.

4) Compute the frequency response p(w) based on the coefficients obtained and decide
the weighting function used in the next iteration. We adopt (14) or (28) to be the weighting
function in the non-equiripple case or equiripple case, respectively.

5) Find unstable poles and substitute them with their inverse conjugate to ensure the stability
of filters.

6) Normalize the numerator polynomial by its unit DC gain.
7) Update the phase of the target function by using ,, =B

o, update the weighting
function

W,



8) Repeat the step.3 to step.7 until a stop criterion is met. We take 50 iterations in our
experiments to obtain satisfactory results.

It is worthy to notice that we need to normalize the calculated coefficients by unit DC gain in
each iteration to ensure the convergence of solutions for designing class 1 to class 3 partial
response filters. For DC equals to zero in class 4 and class 5 partial response filters,
normalization is not used then.

lll. Experimental Results
A. Notch Filter Design
Here we present some design examples using our proposed method. First for the notch filters.
We show the effectiveness of the proposed approach with arbitrarily prescribed notch
frequencies and bandwidth.
Example 1: A notch filter with one notch at W=0.25p after 100 iterations. The magnitude
response and pole-zero plotting are given in Fig.1, and the computed coefficients are given in
Table.1.
Example 2: A notch filter with two notches at W=0.3p and 0.7 p and plotted in Fig.2, and the
coefficients are given in Table.2.
Example 3: A notch filter with three different notches at W=0.3p, 0.6 p and 0.9p . Besides
that, we can arbitrarily specify the notch bandwidth. Here the widths of three notches are
0.002p, 0.02p, and 0.04p , respectively. The responses are shown in Fig.3, and Table.3
gives the resultant coefficients.

Designing the notch filter using the eigenfilter approach with constraints can obtain exact
zeroes at the desired locations and very flat pasband elsewhere, and the solution converges
after several iterations.

B. Nyquist Filter Design
Example 4: A Nyquist filter with with n =15, n =4, I =0.3, N=4, K=9 and the weighting of

ripple ratio d,/d, =1000- To express the properties of Nyquist filters completely, the magnitude

response, impulse response, and pole-zero plotting are given in Fig.4. The resultant
coefficients are given in Table.4.

Example 5: We design the filter with same specification as example 4 but equiripple is
presented in Fig.5. The resultant coefficients are given in Table.5.

The specification of the last two examples is the same as illustrated in [14]. Compared with the
attenuation 38 dB in [14], an improved minimum stopband attenuation of almost 40 dB is
obtained but the ripples are not quite equal. The coefficients of example 5 are also listed in
Table.5.

Example 6: A Nyquist filter with n =17, n =4, I =0.2, N=4, K=10 and shown in Fig.6. The
resultant coefficients are given in Table.6.

In these examples, we plot the frequency response, impulse response, and pole-zero positions.
Since we formulate the design procedure of Nyquist filters according to the zero-crossing time
domain constraints, we can obtain exact zeroes in the specific positions. Also the magnitude
responses are wellbehaved.

C. Partial Response Filter Design

At last we design the partial response filters with class 1 to 5 as example 7 to example 11,
respectively. Both equiripple and non-equiripple cases are displayed.

Example 7: Class 1 partial response filter with the specifications: n =10, n, =2, N=2, k=6. The

maghnitude responses and impulse responses of both equiripple and non-equiripple cases are



given in Fig.7. To express the cosine shape of the magnitude response of the class 1 partial
response filter, the magnitude response of the non-equal ripple is given in linear scale in
Fig.7.1. Other magnitude responses are given in log scale to show the attenuation of the

stopband. The coefficients of equiripple case of class 1 filter are given in Table.7.
Example 8: Class 2 partial response filter with specification: y =12, , =2, N=2, K=7. The

responses of both equiripple and non-equiripple cases are given in Fig.8.
Example 9: Class 3 partial response filter with specification: n =13, n,=2, N=2, kK=5. The

responses are given in Fig.9.
Example 10: Class 4 partial response filter with specification: , =12, » =2, N=2, k=7. The

responses are given in Fig.10.
Example 11: Class 5 partial response filter with specification: n =12, n,=2, N=2, K=9. The

responses are given in Fig.11.
Both equiripple and non-equiripple cases are presented. The impulse responses and
magnitude responses are very satisfactory.

IV. Conclusion

In this paper, we have presented a new method to design digital IR notch filters, Nyquist
filters, and partial response filters. To design these filters, many methods have been proposed
before. However, designing these filters with time-domain or frequency-domain constraints, 1IR
eigenfilter approach is a better choice and easier to handle. Here we first formulated the
properties of these IIR filters and extended the existing IIR eigenfilter approach to design these
filters. The effectiveness of eigenfilter approach has been revealed for adding the time-domain
or frequency-domain constraints. We have employed an iteration process to obtain an
equiripple, stable solution of the desired IIR filters.
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Fig.1.1 Magnitude response of Example 1.
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Fig.1.2 Pole-zero plotting of Example 1.

Table 1 The resulting coefficients of Example 1.
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0.44721416257553
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Fig.2.1 Magnitude response of Example 2.

Fig.2.2 Pole-zero plotting of Example 2.

Table.2 The resulting coefficients of Example 2.

0.54377099289015

0.54440003292807

0 a

0.00000001968196

0.33606895570239

0.33607333526488

0 a,

-0.00000002024473

0.54377099289015

0.54313573327771
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Fig.3.1 Magnitude response of Example 3.
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Fig.3.2 Pole-zero plotting of Example 3.

Table.3 The resulting coefficients of Example 3.

Real Patt

0.29801430260418

0.30692859574000

0.40070303293878

0.39958611590026

0.36147942821254

0.35985811773165

0.38956042881218

0.38939406634299

0.36147942821254

0.36292519208517

0.40070303293878

0.40128160491205
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Fig.4.1 Magnitude response of Fig.4.2 Impulse response of
Example 4. Example 4.

Nyquist filter with specification
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Fig.4.3 Pole-zero plotting of

Example 4.

Table.4 The resulting coefficients of Example 4.

0.00458461115022 | By, 0.25239597909338
0 b, |0.19754485652388
-0.00682683757339 | B}, 0.12961566918558
-0.01740969380899 | B, |0.06790172230435
-0.01811987645841 | B |0.02480208206431
0 &, |1.00000000000000
0.04727636125958 | &, [0
0.11634386187788 | &, [0
0.19151334697879 | &, [0
0.25000000000000 | &, |0.51846267674232
0.27231999915970
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Fig.5.1 Magnitude response of

Example5:

Equiripple case of example 4.
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Fig.5.3 Pole-zero plotting of

Example 5.

Fig.5.2 Impulse response of

Example 5.

Table.5 The resulting coefficients of Example 5.

b, |0.00373701676675 by, |0.25204710373311
b o b, |0.19736549464621
b, |-0.01124615922963 by, |0.13402787767668
b, |-0.02174419712868 by, |o.06879712348272
b, |-0.02126344009409 by |0.02727697661389
b o a, |10
b, |o.04660624802311 a |o
b, |0.11623394636996 a, |o
b, |0.10049647956317 a, |o
b, |o2s 8, |0.53611151070671
by, |0.27100557266568
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Fig.6.1 Magnitude response of

Example 6.

Nyquist filter with specification
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Fig.6.3 Pole-zero plotting of

Example 6.

Table.6 The resulting coefficients of Example 6.

Fig.6.2 Impulse response of

Example 6.

b, |0.00510870405594 | b, |0.27723094576975
b, |0.00302751851227 | B, |0.24109149576972
b, |o b, |0.17449621243145
b, |-0.01424096402269 | b5 |0.11185237075775
b, |-0.02125305506918 | b [0.05274927478049
b, |-0.02406533221737 | b, |0.01960823484487
b o &, |10

b, |0.04505808586477 | & |0

b, |0.11388103120750 | &, |0

b, |0.18865812448367 | &, |0

b, |o.25 8, |0.69798484972580
b, |0.28535192595900
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Fig.7.1 Linear magnitude

response of

Example 7 : Class 1 partia

response filter.
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Fig.7.2 Impulse response of

Example 7.
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Fig.7.3 Magnitude response of Fig.7.4 Impulse response of

equiripple case of Example 7. equiripple case of Example

Table.7 The resulting coefficients of equiripple case of Example 7.

7.

Class 2 partial responsefilter.

b, |0.01446798102295 b, |0.45110472197426
b o b, |0.37240643153797
b, |-0.00961818862706 by |0.20708477391566
b, o by, |0.08488537433446
b, |0.08634022042579 a, |10
by |0.24401994805860 a o
by |0.39794744727930 a, |0.84863870992193
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Fig.8.1 Magnituderesponse  Fig.8.2 Impulse
of Example 8: response of Example 8.
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Fig.9.1 Magnituderesponse  Fig.9.2 Impulse

of Example 9: response of Example 9.
Class 3 partia responsefilter.
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of equiripple case of Example equiripple case of Example

10. 10.
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Fig.11.1 Magnitude response  Fig.11.2 Impulse response of
of Example 11: Example 11.

Class 5 partia responsefilter.
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