行政院國家科學委員會專題研究計畫 成果報告

具線性限制的 IIR 埃根濾波器設計

計畫類別：個別型計畫

計畫編號：NSC91－2219－E－002－039－
執行期間：91年08月01日至92年07月31日
執行單位：國立臺灣大學電機工程學系暨研究所

計畫主持人：貝蘇章

報告類型：精簡報告

處理方式：本計畫可公開查詢

中 華 民 國 92年8月4日

具線性限制的 IIR 埃根濾波器設計

Design of IIR Eigenfilters with Linear Constraints計畫編號：NSC 91－2219－E－002－039執行期限：91年8月1日至92年7月31日
 主持人：貝蘇章 台灣大學電機系教授

Abstract

中文摘要 此研究計劃針對使用埃根逼近法來設計 IIR 濾波器，傳統 上只要考慮濾波器是否有符合頻率響應的規格，然而，在某些通訊應用下我們還需要加入特殊時域及頻域線性限制， 例如要設計通訊系統用的 Nyquist filter ，在某個特定頻率需要較高的精確度，如凹谷道型濾波器等等，埃根逼近法 是個很有效加入線性限制的設計方 法。

關鍵詞：IIR 埃根濾波器，FIR 埃根濾波器，時域及頻域線性限制

Abstract

An effective eigenfilter approach to design causal stable IIR filters with time and frequency domain constraints is presented．By minimizing a quadratic measure of the error in the passband and stopband，an eigenvector of an appropriate real symmetric and positive－definite matrix is computed to get the filter coefficients．Several IIR filters such as notch filters，Nyquist filters and partial response filters can be easily designed by this approach．Some numerical design examples are illustrated to show the effectiveness of this approach．

Keywords ：IIR Eigenfilters ，FIR Eigenfilters ，Time and
Frequency Domain Linear Constraints

I．Introduction

The eigenfilter approach has been recently used to effecitvely design linear phase FIR digital filters［1］，FIR Hilbert transformers［2］，and digital differentiators［3］．Also this approach has been applied to design complex FIR filters with arbitrary complex frequency response ［4］［5］．The design of 1－D and 2－D IIR eigenfilters in time domain has been studied in［6］．In this approach，we compute the filter coefficients by approximating an ideal desired impulse response．Recently，the eigenfilter approach is extended to design stable causal IIR filters in frequency domain with an arbitrary number of zeros and poles［7］［8］．These methods work out in the frequency domain and allow to design filters with arbitrary prescribed magnitude frequency response．

Eigenfilter approach consists of expressing the error function between a desired target and actual filter response as a real，symmetric，positive－definite quadratic eigen＿form in the filter coefficients．The eigenvector corresponding to the minimum eigenvalue minimizes the weighted error function and is the filter solution we need．The eigenfilter approach is widely used for its simplicity and easy implementation．Here we present another advantage of this approach in which adding the time domain or frequency domain constraints is quite flexible and easy．In this paper，the eigenfilter approach is used to design IIR notch filters，Nyquist filters，and partial response filters which have special frequency domain or time domain constraints．

In many applications of signal processing，it is necessary to eliminate narrowband or sinusoidal disturbance while leaving the broardband signal unchanged．Usually this work can be done by the notch filters characterized by a unit gain over the whole frequency domain except at some certain frequencies in which their gain are zero．So far，several methods to
effectively design IIR or FIR notch filters have been developed [9]. Adaptive notch filter design has been studied, too [10][11]. When the frequencies of narrowband interferences are known in advance, fixed notch filters can be used. In section 2, we study the properties of notch filters and formulate the design algorithm by adding the frequency-domain constraints to the eigenfilter approach. In section 3, we present the effectiveness of this method by showing some examples with arbitrarily chosen frequencies of notches.

Nyquist filters play an important role in digital data transmission for its intersymbol interference (ISI)-free property. Also they can be adopted in decimation or interpolation multirate systems. To achieve zero ISI, Nyquist filters must satisfy some criteria in time domain that they should have zeros equally spaced in the impulse response coefficients except one specified. There are two conventional methods, which are IIR and FIR filter forms, to implement Nyquist filters. Designing of FIR Nyquist filters are more straightforward than those of IIR filters because FIR filters have exact linear phase characteristic, are always stable and the filter coefficients are directly its impulse response. So far the design procedures on FIR Nyquist filters have been widely studied [12][13]. However, FIR Nyquist filters usually require higher filter order to meet the magnitude specification. In contrast to FIR filters, IIR filters have lower orders, but their impulse responses are more difficult to keep the zero-crossing time constrained property and the problem of filter stability should also be carefully concerned.

Recently, Nakayama and Mizukami have proposed a novel expression of transfer functions for IIR Nyquist filters that we can keep exact zero intersymbol interference [14]. They have used the iterative Chebyshev approximation procedure but without considering its filter stability [15]. After adopting the proposed transfer function, the frequency response of the filters can be optimized without taking care of its time domain constraints (zero-crossing property). In this paper, we study this transfer function of Nyquist filters and present a new process based on eigenfilter method to design a Nyquist filter satisfying the arbitrarily selected time and frequency criteria. With some adequate constraints added, we can solve the optimal solution by the eigen_method to get the equal-ripple, low-pass stable IIR Nyquist filter with well behaved group delay. Then we summarize the design procedures and conclude some remarks worthy to be noted. Some design examples to demonstrate the validity of the proposed method are also illustrated.

The eigenfilter approach can also be applied to design the partial response filters which have similiar zero-crossings as Nyquist filters but sinusoidal shape magnitude response over the passband [16]. Partial response filters have received considerable attention since they can be employed at an increased bit rate under a prescribed available bandwidth for data transmission [16][17]. They play an important role in binary data communication for that the intersymbol interference can be reduced by introducing rolloff around the Nyquist frequency. These filters can be classified for the different time domain or frequency domain responses. We introduce the filters in section 2.3 and formulate the design algorithm in this paper. The designing procedures of class 1 to class 5 partial response filters are mainly based on Nyquist filter design for we can take one partial response filter as the multiplication of one Nyquist filter and a polynomial which shapes the filter. In the section 3, some satisfactory experiment examples are presented.

II. Problem Formulation and Design Procedures

A. Notch Filter

Assume the transfer function of a notch filter is defined by

If we need this filter to have a notch at frequency ω_{i}, i.e. the ideal desired frequency response is unity everywhere in the frequency domain except $\omega=\omega_{i}$. The transfer function (1) should have a pair of zeroes at $z=e^{ \pm j \omega_{i}}$, that is,

```
(1-2\cdot\operatorname{cos}(\mp@subsup{\omega}{i}{})\cdot\mp@subsup{z}{}{-1}+\mp@subsup{z}{}{-2})|N(z)
```

Eq. 2 means that if we need K different notch positions in the frequency domain, the order of numerator polynomial should be at least $2 K$.

When the positions of the notches of the desired filter are given, from (1) and (2), the transfer function of this filter can be written as

$$
\begin{equation*}
H(z)=\frac{N(z)}{D(z)}=\frac{b_{0} \cdot C(z)}{a_{0}+a_{1} z^{-1}+a_{2} z^{-2}+\cdots+a_{2 K} z^{-2 K}}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
C(z)=\prod_{i=1}^{K}\left(1-2 \cdot \cos \left(\omega_{i}\right) \cdot z^{-1}+z^{-2}\right)^{0} \tag{4}
\end{equation*}
$$

Clearly, $C_{(z)}$ is known when we have chosen the position of the notches. Then we will use the eigenfilter approach to find the optimal b_{0} and denominator coefficients.

Let $H^{d}(\omega)$ denotes the desired target function representing the notch filter with the bandwidth $0.001 \cdot \pi$ at each chosen notch position in our examples. With K notches, we can divide the frequency domain into $3 K+1$ intervals to express different desired frequency response in each interval. The response inside the notch consists two transition bands: one decreasing function from 1 to 0 and the other increasing function from 0 to 1 , respectively, and is unity elsewhere.

To proceed with the formulation of notch filters, consider a cost function related to the error of the difference between the calculated response $H_{H(\omega)}$ and target response $H^{d}(\omega)$:

$$
\begin{align*}
& E(\omega)=(\text { error }) D(\omega) \tag{5}\\
& =\left(H^{d}(\omega)-H(\omega)\right) D(\omega)
\end{align*}
$$

Let $E_{E_{k}(\omega)}$ be the cost function in the frequency interval I_{k}, so,

$$
\begin{equation*}
E_{k}(\omega)=D(\omega) H_{k}^{d}(\omega)-b_{0} \prod_{i=1}^{K}\left(1-2 \cdot \cos \left(\omega_{i}\right) \cdot e^{-j \omega}+e^{-2 j \omega}\right) \tag{6}
\end{equation*}
$$

To minimize ${ }_{E(\omega)}$ somehow means a weighted minimization of the error, in which ${ }_{D(\omega)}$ acts as the weighting function. Consider the global square cost function given by ${ }_{\Phi=\sum_{k} \beta_{k} \phi_{k}}$, where β_{k} is a positive constant that weights the k-thband cost function. And ${ }_{\phi_{k}}$ is given by

$$
\begin{equation*}
\phi_{k}=\int_{k_{k}}\left|E_{k}(\omega)\right|^{2} W_{k}(\omega) d \omega{ }^{\prime} \tag{7}
\end{equation*}
$$

where $W_{k}(\omega)$ denotes the positive weighting function. Consider the vectors

$$
\begin{align*}
C_{k}(\omega)= & {\left[\begin{array}{llll}
H_{k}^{d}(\omega) & H_{k}^{d}(\omega) e^{-j \omega} & \cdots & H_{k}^{d}(\omega) e^{-\rho 2 K \omega} \\
& -\prod_{i=1}^{k}\left(1-2 \cdot \cos \left(\omega_{i}\right) \cdot e^{-j \omega}+e^{-\Omega \omega}\right)
\end{array}\right]^{T} } \tag{8}
\end{align*}
$$

and

$$
A=\left[\begin{array}{lllll}
a_{0} & a_{1} & \cdots & a_{2 K} & b_{0} \tag{9}
\end{array}\right]^{T},
$$

The cost function ${ }_{\phi_{k}}$ can be expressed as

$$
\phi^{k}=\int^{A^{T}} C^{*}(\omega) C^{T}(\omega) A W k(\omega) d \omega
$$

where superscript ${ }^{T}$ and ${ }^{*}$ denote the transposition and conjugation operations, respectively. (r. since the filter coefficients are assumed real). Therefore, is given by
and
$P_{i}=\int^{c^{*}}(\omega) C^{r}(\omega) W(\omega) d \omega$
is a real, symmetric, positive-definite
matrix. The global square cost function
now can be expressed as

$$
\begin{equation*}
\Phi=\sum_{k} \beta_{k} \phi_{k}=A^{T}\left(\sum_{k} P_{k}\right) A=A^{T} P A . \tag{13}
\end{equation*}
$$

Applying the eigenfilter approach, the optimum filter coefficients, which minimize the cost function, are the elements of the eigenvector of the matrix ${ }_{P}$ corresponding to the minimum eigenvalue. After some calculation iterations and computing the corresponding eigenvector, we obtain the solution of

$$
A=\left[\begin{array}{lllll}
a_{0} & a_{1} & \cdots & a_{2 K} & b_{0}
\end{array}\right]^{\top}
$$

Then we can get the transfer function coefficients of numerator and denominator by (3) and (4).

Experimentally, some remarks need to be mentioned.

1. Updating of the target function phase: Reference to [1], here we only approximate the magnitude response of $H^{d}(\omega)$. Yet the cost function $E(\omega)$ also depends on the phase of $H^{d}(\omega)$. In absence of any information, we can initially assume the desired phase response linear, i.e. $\varphi(\omega)=M_{\omega}$, where M is a given constant. Reference to [1][8], to have a well-behaved response and fast convergence, an iterative phase updating can be adopted. Here we describe this method in brief. At the n-th iteration, let $A^{(n)}$ be the coefficient vector obtained and $H_{H^{(n)}(\omega)}$ the corresponding frequency response. Assume that $\varphi^{(n+1)}(\omega)$ be the phase of $H^{d}(\omega)$ at the $(n+1)$-th iteration. Assign $\varphi^{(r+1)}(\omega)=L_{H^{(n)}(\omega)}$, and redo the design procedure until some criterion is met.
2. Choice of weighting function $w_{\epsilon}(\omega)$: As discussed previously, to compute the quadratic matrix P in (12)(13), we need to decide the weighting function. Let $W^{(\omega)}(\omega)$ be the weighting function in the n-thiteration. We adopt the recommendation of [8] in our experiments, let

$$
\begin{equation*}
W^{(\omega)}(\omega)=\frac{1}{\left|D^{(\omega-1)}(\omega)\right|}, \tag{14}
\end{equation*}
$$

where $D^{(m)}(\omega)$ is the denominator of $H^{(m)}(\omega)$. So at each iteration, we can give higher weights to the regions where $D^{n-11)}(\omega)$ is small and the error will be smaller in the regions.
3. Stability check: The stability of the filters we designed should be carefully concerned. To ensure the stability of the IIR filters, we need to calculate the roots of denominator polynomial to find unstable poles and substitute them with their inverse conjugate. So that we can make this filter always stable without changing its magnitude response.
To summarize the method to design IIR multiple notch filters, we can take the following steps:

1) Decide the positions of notches and calculate polynomial $C_{(z)}$ according to (4). The initial state can be set $\varphi^{(0)}(\omega)=K \omega$ (we use K denotes the number of notches we need) and $w_{k}^{(0)}(\omega)=1 \quad \forall k$.
2) Compute the matrix P by using (12), (13), and (14), where P is a function of ${ }_{\varphi^{(1)}(\omega)}$ and $W_{x}^{(m)}(\omega)$. Let $A^{(m)}$ be the eigenvector corresponding to the minimum eigenvalue of P, and let be the relative transfer function; find unstable poles and substitute them with their inverse conjugate.
3) Update the phase of the target function by using $=\angle_{(, n t)}$; update the weighting function ${ }^{(\text {m/4t) }}$, according to (14).
4) Compute the poles outside the unit circle and substitute them with their inverse conjugate.
5) Repeat step. 2 to step. 4 until some stop criterion is met. In our experiments, we take fifty iterations in each result for that the error converges within twenty iterations.
6) Using (1) and (2) to get the desired transfer function coefficients.

B. Nyquist Filter

As mentioned in the introduction, to obtain the zero intersymbol interference, Nyquist filter
$H(z)$ has the impulse response $h(n)$ with the time domain constraints, i.e.,

$$
h(K+k M)=\left\{\begin{array}{l}
c \neq 0, \text { if } k=0 \tag{15}\\
0, \text { othenwise }
\end{array}\right.
$$

, where K and N are integers. Then the impulse response crosses the time axis every N samples. According to [15], the conditions in (15) can be rearranged and written as

$$
h(K+k N)=\left\{\begin{array}{l}
\frac{1}{N} \neq 0, \text { if } k=0 \tag{16}\\
0, \text { otherwise }
\end{array}\right.
$$

, where K and N are integers. It is known that the transfer function of an IIR Nyquist filter can be expressed in the form
where N_{n}, N_{d} are integers, and all the filter coefficients a_{i}, b_{i} are real, $a_{0}=1 \cdot N_{d}$ is a multiple of N. Hence, only frequency-response optimization should be considered when the above transfer function is employed. The specification of Nyquist filters in frequency domain should be a lowpass filter with passband and stopband cutoff frequency ω_{p} and ω_{s} expressed as

$$
\begin{align*}
& \omega_{p}=\frac{1-\rho}{N} \pi \tag{18a}\\
& \omega_{s}=\frac{1+\rho}{N} \pi \tag{18b}
\end{align*}
$$

, where N is the interpolation ratio and ρ is the rolloff rate.
Now we can formulate the design procedure of Nyquist filters with the zero-crossing time domain constraints of Nyquist filters. According to (17), assume the calculated frequency response of a Nyquist filter is given by

$$
\begin{equation*}
H\left(e^{j \omega}\right)=\frac{1}{N} e^{-j K \omega}+\frac{\sum_{i=0, i \neq k i N+K}^{N_{n}} b_{i} e^{-j j \omega}}{\sum_{i=0}^{N_{j l} / N} a_{i N}\left(e^{-j \omega}\right)^{-j N}} \tag{19}
\end{equation*}
$$

and the desired frequency response is $H^{d}\left(e^{j \omega}\right)$,a lowpass filter described by (18). Then the current error function is

$$
\begin{equation*}
\varepsilon(\omega)=H^{d}\left(e^{j \omega}\right)-H\left(e^{j \omega}\right) . \tag{20}
\end{equation*}
$$

Let the cost function be

$$
\begin{align*}
E(\omega) & =\varepsilon(\omega) \sum_{i=0}^{N_{d} / N} a_{i N}\left(e^{-j \omega}\right)^{i N} \tag{21}\\
& =\left(H^{d}\left(e^{j \omega}\right)-\frac{1}{N} e^{-j K \omega}\right)^{N_{d} / N} a_{i=0}\left(e^{-j \omega}\right)^{i N}-\sum_{i=0, i \neq k N+K}^{N_{H}} b_{i} e^{-i j \omega}
\end{align*}
$$

and the global cost function of the whole frequency range will be

$$
\begin{equation*}
\Phi(\omega)=\int E(\omega)^{\left.\right|^{2}} W(\omega) d \omega \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
A^{\prime}=\left(H^{d}\left(e^{j \omega}\right)-T_{n}^{-j K_{0}} e_{1} e^{-j \omega_{\theta}} e^{-j N_{\omega}} e^{-j 2 N_{0}} \ldots e^{-j N_{\omega} \omega}\right. \tag{23b}
\end{equation*}
$$

$$
\begin{align*}
& B=\left[-1-e^{-j \theta}-e^{-2 \rho \omega} \ldots-e^{-j \theta} \ldots-e^{-j N_{0}, \theta} \mid, i \neq k N+K\right. \text {, } \tag{23c}\\
& \text { and } A=\left[\begin{array}{llllllll}
a_{0} & a_{N} & a_{2 N} & \ldots a_{N_{N}} & b_{0} & a_{1} & b_{2} \ldots b_{1} & \ldots b_{N}
\end{array}\right]^{\top}, i \neq k N+K \tag{24}
\end{align*}
$$

so we can rewrite the cost function to be

$$
\begin{equation*}
\Phi(\omega)=\int_{\omega} A^{T} C^{t}(\omega) C(\omega) A W(\omega) d \omega=A^{T} P A \tag{25}
\end{equation*}
$$

$P=\int_{\omega} C^{*}(\omega) C(\omega) W(\omega) d \omega$
In (25) and (26), ${ }_{W(\omega)}$ is the weighting function of each frequency grid. Since Eq. 25 matches the eigenform, we can solve the minimization problem by eigenfilter approach to obtain the optimal filter coefficients.

As the notch filter design discussed in the previous section, we need a weighting function $W_{(\omega)}$ when computing the matrix P. Here we can use the weighting function prescribed in (14) to get a non-equiripple response. If the equiripple response is desired, another kind of weighting function should be employed. In the previous works proposed [8], a recursive updating of the weighting function was introduced to obtain an almost equiripple solution. Also we adopted the recursive procedure to get a convergent solution satisfying the given specification. An adequate choice of the recursively updating weighting function is given below.

Let $A^{(m)}$ be the solution vector at the n-th iteration and $H^{(m)}(\omega)$ the corresponding frequency response. The magnitude error is

$$
\begin{equation*}
e^{(\omega)}(\omega)=\left|H^{d}(\omega)\right|-\left|H^{(\omega)}(\omega)\right|, \tag{27}
\end{equation*}
$$

and the weighting function used in the $(n+1)$ iteration will be

$$
\begin{equation*}
W^{(n+1)}(\omega)=W^{(n)}(\omega) \operatorname{env}\left(e^{(n)}(\omega)\right) \tag{28}
\end{equation*}
$$

where $\left.\operatorname{env}^{\left(e^{(\omega)}\right)}(\omega)\right)$ is the envelope of the positive function ${ }_{e^{(\omega)}(\omega)}$. Then the resulting solution will be almost equiripple.

The Nyquist filters are lowpass filters and have no constraints of the phase response. Usually we use a linear phase as the initial target phase response. So that we can initially set $\angle H(\omega)=-M \omega$, in which m is a constant, as the desired phase response when we calculated $H_{d}(\omega)$. Experimentally we use the given integer K to be M, then

$$
\begin{equation*}
H_{d}(\omega)=\mid H_{d}(\omega) e^{-\mu k_{0}} . \tag{29}
\end{equation*}
$$

We can conclude the design procedure into some steps:

1) Give the desired numerator and denominator order ${ }_{N_{n}}$ and ${ }_{N_{d}}$, two integers K_{K}, N, rolloff rate ρ. And we will need the initial weighting function to control the amplitude ratio of the ripples of each band.
2) Calculate according to (18a) and (18b). Calculate matrix C and P according to (23) and (26), respectively.
3) Calculate the eigenvalue of matrix P and obtain the eigenvector corresponding to the minimum eigenvalue and the vector is the coefficients we need.
4) Compute the frequency response
according to the coefficients obtained and decide the weighting function used in the next iteration. We adopt (14) or (28) to be the weighting
function in the non-equiripple case or equiripple case respectively.
5) Find unstable poles and substitute them with their inverse conjugate to ensure the stability of filters.
6) Update the phase of the target function by using $\varphi^{(m+1)}(\omega)=\angle_{H^{(m)}(\omega)}$; update the weighting function $w_{t}^{(t+1)}(\omega)$.
7) Repeat the step. 4 to step. 6 until a stop criterion is met. In our experiments, we stop the iteration until the maximum of the error of each frequency grid is smaller than 0.005 .

C. Partial Response Filters

The partial response filters can be thought as a modification of Nyquist filters but have some specified magnitude and impulse response. These filters can be classified to five classes and summarized in Table.A [16].

In Table.A, each binary symbol C_{n} is chosen to be a prescribed superposition of n successive transmitted impulses $b_{1}, b_{2}, \ldots b_{n}$ as $c_{n}=k_{1} b_{n}+k_{2} b_{n-1}+\cdots+k_{n} b_{1}$ [16]. Partial response filters can achieve high data rates with better error rate performance.
And the class of binary in Table.A is the original Nyquist filter.

Table.A The Properties of class 1 to class 5partial response
filters [16].

The transfer function of partial response filters is assumed as $H(z)=\operatorname{Numm}(z) / \operatorname{Den}(z)$, to obtain the impulse and magnitude response prescribed, the numerator polynomial of the transfer function must be divided by some specified polynomial. That is,

$$
\begin{equation*}
R(z) \mid \operatorname{Num}(z), \tag{30}
\end{equation*}
$$

which

$$
R(z)= \begin{cases}1+z^{-N} & \text { class(1) } \tag{31}\\ 1+z^{-N}+z^{-2 N} & \text { casass } 2) \\ 2+z^{-2-}-z^{-2 N} & \text { cass }(3) \\ 1-z^{-2 N} & \text { class } 4) \\ -1+2 z^{-2 N}-z^{-4 N} & \text { class }(5)\end{cases}
$$

So the transfer functions of the classified partial response filters can be thought as Nyquist filters cascade with some specified $R(z)$. We can assume the calculated frequency response of a partial response filter as
and the desired frequency response $H^{d}\left(e^{j \omega}\right)$ is given in the table, then the current error is

Let the cost function to be

$$
\begin{align*}
E(\omega) & =\varepsilon(\omega) \sum_{i=0}^{N_{d} / N} a_{i N}\left(e^{-j \omega}\right)^{i N} \tag{34}\\
& =\left(H^{d}\left(e^{j \omega}\right)-\frac{1}{N} e^{-j K \omega} D\left(e^{j \omega}\right) \sum_{i=0}^{N_{d} / N} a_{i N}\left(e^{-j \omega}\right)^{i N}-R\left(e^{j \omega}\right) \sum_{i=0, i \neq k N+K}^{N_{n}} b_{i} e^{-i j \omega}\right.
\end{align*}
$$

and the total error function of the whole frequency range will be

$$
\begin{equation*}
\Phi(\omega)=\int_{\omega}|E(\omega)|^{2} W(\omega) d \omega \tag{35}
\end{equation*}
$$

If

$$
\begin{equation*}
C(\omega)=\left[A^{\prime} B\right] \tag{36a}
\end{equation*}
$$

where

$$
\begin{align*}
& A^{\prime}=\left(H^{d}\left(e^{j \omega}\right)-\frac{1}{N} e^{-j / \omega} R\left(e^{j \omega}\right)\right)\left[\begin{array}{lllll}
1 & e^{-j \omega} & e^{-j N \omega} & e^{-j 2 N \omega} \ldots e^{-j N_{d} \omega}
\end{array}\right] \tag{36b}\\
& B=R\left(e^{j \omega}\right)\left[\begin{array}{lllll}
-1 & -e^{-j \omega} & -e^{-j 2 \omega} \ldots-e^{-j \omega} \ldots-e^{-j N_{1} \omega}
\end{array}\right], \quad i \neq k N+K \tag{36c}\\
& \operatorname{and}_{A=}\left[\begin{array}{llllll}
a_{0} & a_{N} & a_{2 N} \ldots a_{N_{\alpha}} & b_{0} & b_{1} & b_{2} \ldots b_{i} \ldots b_{N_{N}}
\end{array}\right]^{\top}, \quad i \neq k N+K \tag{37}
\end{align*}
$$

then we can rewrite the cost function as:

$$
\begin{equation*}
\Phi(\omega)=\int_{\omega} A^{T} C^{*}(\omega) C(\omega) A W(\omega) d \omega=A^{T} P A \tag{38}
\end{equation*}
$$

and

In (38) and (39), $W(\omega)$ is the weighting function of each frequency grid.
Since Eq.(38) results an eigen_form, we can solve the minimization problem by eigenfilter approach to obtain the optimal solution. At last, according to (32), we should multiply the calculated numerator by $R(z)$ specified by (31) and obtain the desired transfer function coefficients. The resulting numerator order will be ${ }_{N_{n}+\operatorname{deg}[R(z)]}$. The same as designing the Nyquist filters, we can also adopt the suitable weighting function in (39) to obtain equiripple or non-equiripple solutions by iterative procedures. The design procedure of partial response filters is summarized as below:

1) Give the desired numerator and denominator order N_{n} and ${ }_{N_{d}}$. And we will need the initial weighting function to control the amplitude ratio of the ripples of each band.
2) Find $H_{d}(\omega)$ according to table.1. Calculate matrix C and P according to (36) and (39), respectively.
3) Calculate the eigenvalue of matrix P and obtain the eigenvector corresponding to the minimum eigenvalue and the vector is the desired coefficients we need.
4) Compute the frequency response $H(\omega)$ based on the coefficients obtained and decide the weighting function used in the next iteration. We adopt (14) or (28) to be the weighting function in the non-equiripple case or equiripple case, respectively.
5) Find unstable poles and substitute them with their inverse conjugate to ensure the stability of filters.
6) Normalize the numerator polynomial by its unit DC gain.
7) Update the phase of the target function by using $\ldots_{\mu^{(n+1)}, \ldots}=L_{r r^{(n)}, \ldots}$; update the weighting function ${ }_{(n+1)}$.
8) Repeat the step. 3 to step. 7 until a stop criterion is met. We take 50 iterations in our experiments to obtain satisfactory results.

It is worthy to notice that we need to normalize the calculated coefficients by unit DC gain in each iteration to ensure the convergence of solutions for designing class 1 to class 3 partial response filters. For DC equals to zero in class 4 and class 5 partial response filters, normalization is not used then.

III. Experimental Results

A. Notch Filter Design

Here we present some design examples using our proposed method. First for the notch filters. We show the effectiveness of the proposed approach with arbitrarily prescribed notch frequencies and bandwidth.
Example 1: A notch filter with one notch at $\omega=0.25 \pi$ after 100 iterations. The magnitude response and pole-zero plotting are given in Fig.1, and the computed coefficients are given in Table. 1.
Example 2: A notch filter with two notches at $\omega=0.3 \pi$ and 0.7π and plotted in Fig.2, and the coefficients are given in Table.2.
Example 3: A notch filter with three different notches at $\omega=0.3 \pi, 0.6 \pi$ and 0.9π. Besides that, we can arbitrarily specify the notch bandwidth. Here the widths of three notches are $0.002 \pi, 0.02 \pi$, and 0.04π, respectively. The responses are shown in Fig.3, and Table. 3 gives the resultant coefficients.

Designing the notch filter using the eigenfilter approach with constraints can obtain exact zeroes at the desired locations and very flat pasband elsewhere, and the solution converges after several iterations.

B. Nyquist Filter Design

Example 4: A Nyquist filter with with $N_{n}=15, N_{d}=4, \quad \rho=0.3, N=4, K=9$ and the weighting of ripple ratio $\delta_{p} / \delta_{s}=1000$. To express the properties of Nyquist filters completely, the magnitude response, impulse response, and pole-zero plotting are given in Fig.4. The resultant coefficients are given in Table.4.
Example 5: We design the filter with same specification as example 4 but equiripple is presented in Fig.5. The resultant coefficients are given in Table.5.
The specification of the last two examples is the same as illustrated in [14]. Compared with the attenuation 38 dB in [14], an improved minimum stopband attenuation of almost 40 dB is obtained but the ripples are not quite equal. The coefficients of example 5 are also listed in Table.5.
Example 6: A Nyquist filter with $N_{n}=17, N_{d}=4, \rho=0.2, N=4, K=10$ and shown in Fig.6. The resultant coefficients are given in Table.6.
In these examples, we plot the frequency response, impulse response, and pole-zero positions Since we formulate the design procedure of Nyquist filters according to the zero-crossing time domain constraints, we can obtain exact zeroes in the specific positions. Also the magnitude responses are wellbehaved.

C. Partial Response Filter Design

At last we design the partial response filters with class 1 to 5 as example 7 to example 11, respectively. Both equiripple and non-equiripple cases are displayed.
Example 7: Class 1 partial response filter with the specifications: $N_{n}=10, N_{d}=2, N=2, K=6$. The magnitude responses and impulse responses of both equiripple and non-equiripple cases are
given in Fig.7. To express the cosine shape of the magnitude response of the class 1 partial response filter, the magnitude response of the non-equal ripple is given in linear scale in Fig.7.1. Other magnitude responses are given in log scale to show the attenuation of the stopband. The coefficients of equiripple case of class 1 filter are given in Table.7.
Example 8: Class 2 partial response filter with specification: ${ }_{N_{n}}=12, N_{d}=2, N=2, K=7$. The responses of both equiripple and non-equiripple cases are given in Fig.8.
Example 9: Class 3 partial response filter with specification: $N_{n}=13, N_{d}=2, N=2, K=5$. The responses are given in Fig.9.
Example 10: Class 4 partial response filter with specification: ${ }_{N_{n}}=12, N_{d}=2, N=2, K=7$. The responses are given in Fig. 10.
Example 11: Class 5 partial response filter with specification: $N_{n}=12, N_{d}=2, N=2, K=9$. The responses are given in Fig.11.
Both equiripple and non-equiripple cases are presented. The impulse responses and magnitude responses are very satisfactory.

IV. Conclusion

In this paper, we have presented a new method to design digital IIR notch filters, Nyquist filters, and partial response filters. To design these filters, many methods have been proposed before. However, designing these filters with time-domain or frequency-domain constraints, IIR eigenfilter approach is a better choice and easier to handle. Here we first formulated the properties of these IIR filters and extended the existing IIR eigenfilter approach to design these filters. The effectiveness of eigenfilter approach has been revealed for adding the time-domain or frequency-domain constraints. We have employed an iteration process to obtain an equiripple, stable solution of the desired IIR filters.

V. References

[1] P. P. Vaidyanathan and T. Q. Nguyen, "Eigenfilters: A new approach to least-squares FIR filter design and applications including Nyquist filters," IEEE Trans. Circuits Syst., vol. CAS-34, pp. 11-23, Jan. 1987.
[2] S. C. Pei and J. J. Shyu, "Design of FIR Hilbert transformers and differentiators by eigenfilter," IEEE Trans. Circuits Syst., vol. 35, pp. 1457-1461, Nov. 1993.
[3] S. C. Pei and J. J. Shyu, "Eigenfilter design of higher-order digital differentiators," IEEE Trans. Signal Processing, vol. 37, pp. 505-511, Apr. 1989.
[4] T. Q. Nguyen, "The design of arbitrary FIR digital filters using the Eigenfilter method," IEEE Trans. Signal Processing, vol. 41, pp. 1128-1139, Nov. 1993.
[5] S. C. Pei and J. J. Shyu, "Complex eigenfilter design of arbitrary complex coefficient FIR digital filters," IEEE Trans. Circuits Syst.-II: Analog and Digital Signal Processing, vol. 40, no. 1, pp. 32-40, Jun. 1993.
[6] S. C. Pei and J. J. Shyu, "Design of 1-D and 2-D IIR eigenfilters," IEEE Trans. Signal Processing, vol. 42, pp.962-966, Apr. 1994.
[7] X. Zhang and H. Iwakura, "Design of IIR digital filters based on eigenvaule problem," IEEE Trans. Signal Processing, vol. 44, pp. 1325-1333, Jun. 1996.
[8] F. Argenti and E. Del Re, "Design of IIR Eigenfilters in the frequency domain," IEEE Trans. Signal Processing, vol. 46, no. 6, pp. 1694-1698, Jun. 1998.
[9] Tian-Hu Yu, S. K. Mitra, and H. Babic, "Design of linear phase FIR notch filters," Sadhana, vol. 15, Iss.3, pp. 133-155, Nov. 1990, India.
[10] A. Nehorai, "A minimal parameter adaptive notch filter with constrained poles and zeros," IEEE Trans. Acoust. Speech, Signal Processing, vol. ASSP-33, pp. 983-966, Aug. 1985.
[11] T. S. Ng, "Some aspects of an adaptive digital notch filter with constrained poles and zeros," IEEE Trans. Acoust. Speech, Signal Processing, vol. ASSP-35, pp. 158-161, Feb. 1987.
[12] J. K. Liang, R. J. Pefigueriredo and F. C. Lu, "Design of optimal Nyquist, partial response, Nth band and nonuniform tap spacing FIR digital filters using linear programming techniques," IEEE Trans. Circuits Syst., vol. 32, pp. 386-392, Apr. 1985.
[13] X. Zhang and H. Iwakura, "Design of FIR Nyquist filters using Remez exchange
algorithm," IEICE Trans., vol. J79-A, no. 8, pp. 1378-1384, Aug. 1996.
[14] K. Nakayama and T. Mizukami, "A new IIR Nyquist filter with zero intersymbol interference and its frequency response approximation," IEEE Trans. Circuits Syst., vol. CAS-29, no. 1, pp. 23-34, Jan. 1982.
[15] S. J. Maeng and B. G. Lee, "A design of linear-phased IIR Nyquist filters," IEEE Trans. on Selected Areas in Comm., vol. 13, no. 1, pp. 167-175, Jan 1995.
[16] E. R. Kretzmer, "Generalization of a technique for binary data communication," IEEE Trans. Comm. Tech., pp. 1966-1969, Feb. 1966.
[17] R. W. Lucky, J. Salz, and E. J. Jr. Weldon, "Principles of data communication," New York: McGraw-Hill, 1968.

Fig.1.1 Magnitude response of Example 1.

Fig.1.2 Pole-zero plotting of Example 1.

Table 1 The resulting coefficients of Example 1.

b_{0}	0.44721416257553	a_{0}	0.44748014854380
b_{1}	-0.63245633399964	a_{1}	-0.63245085376586
b_{2}	0.44721416257553	a_{2}	0.44695293602563

Fig.2.1 Magnitude response of Example 2.

Fig.2.2 Pole-zero plotting of Example 2.

Table. 2 The resulting coefficients of Example 2.

b_{0}	0.54377099289015	a_{0}	0.54440003292807
b_{1}	0	a_{1}	0.00000001968196
b_{2}	0.33606895570239	a_{2}	0.33607333526488
b_{3}	0	a_{3}	-0.00000002024473
b_{4}	0.54377099289015	a_{4}	0.54313573327771

Fig.3.1 Magnitude response of Example 3.

Fig.3.2 Pole-zero plotting of Example 3.

Table. 3 The resulting coefficients of Example 3.

b_{0}	0.29801430260418	a_{0}	0.30692859574000
b_{1}	0.40070303293878	a_{1}	0.39958611590026
b_{2}	0.36147942821254	a_{2}	0.35985811773165
b_{3}	0.38956042881218	a_{3}	0.38939406634299
b_{4}	0.36147942821254	a_{4}	0.36292519208517
b_{5}	0.40070303293878	a_{5}	0.40128160491205
b_{6}	0.29801430260418	a_{6}	0.28887025331247

Fig.4.1 Magnitude response of
Example 4.
Nyquist filter with specification
$N_{n}=15, N_{d}=4, \rho=0.3, N=4, K=9$

Fig.4.3 Pole-zero plotting of

Example 4.

Fig.4.2 Impulse response of Example 4.

Fig.5.1 Magnitude response of Fig.5.2 Impulse response of
Example 5 :
Example 5.
Equiripple case of example 4.

Fig.5.3 Pole-zero plotting of

Example 5.

Table. 5 The resulting coefficients of Example 5.

b_{0}	0.00373701676675	b_{11}	0.25294719373311
b_{1}	0	b_{12}	0.19736549464621
b_{2}	-0.01124615922963	b_{13}	0.13402787767668
b_{3}	-0.02174419712868	b_{14}	0.06879712348272
b_{4}	-0.02126344099409	b_{15}	0.02727697661389
b_{5}	0	a_{0}	1.0
b_{6}	0.04660624892311	a_{1}	0
b_{7}	0.11623394636996	a_{2}	0
b_{8}	0.19049647956317	a_{3}	0
b_{9}	0.25	a_{4}	0.53611151070671
b_{10}	0.27100557266568		

Fig.6.1 Magnitude response of
Fig.6.2 Impulse response of
Example 6.
Example 6.
Nyquist filter with specification
$N_{n}=17, N_{d}=4, \rho=0.2, N=4, K=10$

Fig.6.3 Pole-zero plotting of
Example 6.

Table. 6 The resulting coefficients of Example 6.

b_{0}	0.00510870405594	b_{12}	0.27723994576975
b_{1}	0.00302751851227	b_{13}	0.24109149576972
b_{2}	0	b_{14}	0.17449621243145
b_{3}	-0.01424096402269	b_{15}	0.11185237075775
b_{4}	-0.02125305506918	b_{16}	0.05274927478049
b_{5}	-0.02406533221737	b_{17}	0.01960823484487
b_{6}	0	a_{0}	1.0
b_{7}	0.04505898586477	a_{1}	0
b_{8}	0.11388103120759	a_{2}	0
b_{9}	0.18865812448367	a_{3}	0
b_{10}	0.25	a_{4}	0.69798484972580
b_{11}	0.28535192595900		

Fig.7.1 Linear magnitude Fig.7.2 Impulse response of response of Example 7.

Example 7 : Class 1 partial
response filter

Fig.7.3 Magnitude response of Fig.7.4 Impulse response of equiripple case of Example 7. equiripple case of Example
7.

Table. 7 The resulting coefficients of equiripple case of Example 7.

b_{0}	0.01446798102295	b_{7}	0.45110472197426
b_{1}	0	b_{8}	0.37240643153797
b_{2}	-0.00961818862706	b_{9}	0.20708477391566
b_{3}	0	b_{10}	0.08488537433446
b_{4}	0.08634022042579	a_{0}	1.0
b_{5}	0.24401994805860	a_{1}	0
b_{6}	0.39794744727930	a_{2}	0.84863870992193

Fig.8.1 Magnitude response
of Example 8:

Fig.8.2 Impulse
response of Example 8

Class 2 partial response filter.

Fig.8.4 Impulse
of equiripple case of Example response of equiripple case of Example 8.

Fig.9.1 Magnitude response
of Example 9:

Fig.9.2 Impulse
response of Example 9.

Class 3 partial response filter.

Fig.9.3 Magnitude response of equiripple case of Example 9.

Fig.10.1 Magnitude

Fig.10.2 Impulse response of Example 10.

Fig.9.4 Impulse response of equiripple case of Example 9.
0.

10 :
Class 4 partial response filter.

Fig.10.3 Magnitude response Fig.10.4 Impulse response of of equiripple case of Example equiripple case of Example
10.

10.

Fig.11.1 Magnitude response Fig.11.2 Impulse response of of Example 11: Example 11.

Class 5 partial response filter.

Fig.11.3 Magnitude response Fig.11.4 Impulse response of of equiripple case of Example equiripple case of Example
11.
11.

