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ABSTRACT

Based on the Hermitian and Toeplitz properties of Lhe signal correlation matrix, we
develop an approach Lo recursively compute the adaptive weights required for optimum
processing ol array signals. The preseuted approach finds the elements of the correspond-
ing adaptive weight vector with size n from the elements of the adaptive weight vectors
with size less than 2. There are no matrix inversions required during the computation
process. This results in a saving in the number of operations and storage locations.
Simnulation result demonstrating the proposed approach is given.

I. PROBLEM FORMULATION

Consider the case of a linearly periodic adaptive array with N isotropic receiving
sensor clements. The signal data vector X received by the sensors has the correlation
matrix 12 given by R = {.X X}, The ideal corrclation matrix I2 has the properlies
of Hermitian and Tocplitz structure. Based on the MAMSE criterion, the problem of
adaplive array processing can be described as follows [1}. 1t is desired to sclect the
weight vector I Lo minimize the mean squared error between. the desired array response
d and the actual array output W"X. That is,

Minimize

v B d-wTX P Q)

Lo find the Wicner weight vector 1Y, from (1), any algorithm based on the direct ma-
trix inverse (DA 1) ol I possesses more rapid convergence than the least- mean-square
(£.MS) or maximum signal-to-noise ratio (SN R) algorithins. However, the computa-
tional burden due to DM method is about (L3/2 -+ 2L%) complex multiplications {11,
where L is the number of adaptive weights uscd. 1lence the value of L dominates the over-

all computational requirement. Furthermore, DM I may cause computational difficulties

when 12 is ill—comlitinnc('l.

1. WEIGIIT RECURSION BASED ON IDEAL CORRELATIONS

Let the X, = (w0 &2 -+~ 2,]7 denote the input signal vector of size n reccived
by n successive clements of a lincarly periodic array and the corresponding corrclation
matrix of size n be given by R, = E{X, XY The optimal weight vector W, =
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[War wpp -+~ W) of size 1 is Lhie solution of the following cquation R, W, =P, where
Po=E{d'X,)=mp - Pa]” denotes the cross—correlation veclor of Lhe desired
array response d and inpul signal vector X,,. * denotes the complex conjugate. The
ih element of P, is p; = E{d*z;}, i = 1,2, --- n. To derive the desired order-update
formula for W,,,, we start witl the case of n = 3. It follows that

r(0) (1) r(2) w3 P
RaWes = | »*(1) r(0) =(1) w32 £ P2 (2)
(2) 1) r(0) w33 P3

where r(j) = E {=; z3;}, 7 = 0,1,2. Since the correlation matrix 12 possesses the
property that 12, is Toeplitz and thus contains as subblocks ail the lower order correlation
malrices, we can write

w2y n
Ry Y] = P2 (3)
0 Ls)

where g3 is given by ¢y = r*(2) wy, + *(1) wy. From (2) and (3), we have

[ w3y ] 0 r-a ]
Ita w5, — wjy = 0 (4)
L w3 | | Wi ] 0]

Next, consider the case of n = 4. From (4), it follows that

[ iy ] [0 ] Pi-4i ]
wiy w3, _ 0
R wiy w3, B 0 ®)
wy, J L w3, J (L

where g4 is given by ¢4 = +"(3) ws; + 77(2) wa + r*(1) waz. From the results of (3) and
(4), we may wrile

w3y 0 ¥4
w wy
R 32 - 22 =
4 "’;1 w.;l 0 (6)
0 0 AN

where Az is given by Ay = (wy) — wy) r(1) + (1032 — wyg) 1(2) 4 wyy 7(3). Irom the
matrix coeflicients of (5) and (6), it is appropriate to relate them as follows
.

Wiy 0 Wi, 0 0 0
. . . «
wiy | )l wi | « wi | | wi + 8 wa || wy G
Wiz w3, w3, w3, W32 w2z
wy, wy 0 0 waz 0
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The results shown in (7) can be straightforwardly generalized to any order 1 as follows

N
. Wy _3,n-1 0
Wan 0 * De w - w,
wy, w* Wy in-2 ~ Wn-2,n-2 n-1,1 n-2,1
nn—1 n—in-1 . .
= . + : +B : (®)
.
w? w Wi_g1 ~ Wiz, Wn—1n-2 = Wn-2n-2
nl n-1l 0 Wn-1n-1
and
Pro1 — dni AV - -
0 0 Pn =~ n
. . 0
a : + f B = . 9
0 0 .
. 0
TA N Pn—1 —(n-1
where g, and A, are given by
n-1 n-—]
= . .
= L (1) wnor,i and Doy = z (1) (Wao1,i — Wn_2,i)
=1 i=1

respectively. By solving (9), the scalars « and § in (8) can be found as

(Pt = gn=1) (P = )” d = % A
= = oA ; and fil= ————
[Puet —@uo1 P = | D Pn—1 = u-1

Therclore, the optimal weight vecior with size n can be recursively computed from the
optimal weight vectors with sizesn —1 and n -2 without the need of matrix inversion.

We now evaluale the computational complexity of the proposed recursive procedure
in terms of the required multiplications. To initiate the recursion, compuling wy, and
[ w31 wy]" needs 6 complex multiplications (C M) and 3 real multiplications (12M). From
qn and A, _q, we note thal finding the g, and A, _; bolh require (n—1) CM. To compute
« requires 3 CM and 1 RM. L requires 2 CM and 1 RAM to compute g. Furthermore,
compuling the nth-order weighl vector from (8) needs (2n — 2) CM. Therefore, when
using a linearly periodic array with N elements, the proposed order-update recursion
requires about

N
6+ Y, (4n+1)=2N*+3N -8 CM and 2N -1 RM (10)
n=3 0

in order to obtain the Nth-order optimal weight vector. (10) indicates that the main
computalional burden is O (N?) complex multiplications. This represents a factor of N

savings over solving the optimal weight vector by direct matrix inversion.
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III. SIMULATION RESULTS

We examine the application of the proposed recursive approach in adaptive array
beamforming. In the example under consideration, a linearly periodic array of 15 elements
in which the wcights are derived adaptively using the a priori information conlained
in Lhe steering vector of sleering angle = 0°. The optimal weight vector W, salisfies
[3] B Wo = S, where S is the steering vector. There are lwo incoherent jammers of
(JNIT) = 20 dB and 30 dB al 20° and 30° with respect to the broadside, respeclively.

The array noise is Laken to be spatially white Gaussian. The interclement, spacing is half
wavelength.

Let the required correlation malrix be the ideal . Then we compute the optimal
weight vector using the DM 1 method and the proposed order-update recursion, respec-
tively. The resulling array paltern is shown in Figure 1, for DM T method (dotted line),
and order-updale recursion (solid line). We note that these two palterns are alimost the

same. This confirms the theorelical work described in Section 71,
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