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Abstract: A novel PWM switching method and control algorithm for synchronous reluctance drive
systems is proposed. First, in different switching modes, the current slope of the stator current can
be systematically derived. The current slope is related to the dc-bus voltage, operating conditions,
and parameters of the motor. Then, by computing the derivation of the current slope command
and the real current slope, an optimum switching state can be determined and used to trigger the
inverter. After that, the nonlinear controllers for an adjustable speed drive system and a position
control system are proposed. Using the proposed method, the synchronous reluctance drive system
performs very well. It has smaller current harmonics, lower switching frequency, and less switching
loss when compared to the hysteretic or bang-bang current control. In addition, a fast transient
response, good load disturbance rejection ability, and good tracking performance of speed control
and position control can be achieved. No extra hardware is required. Several experimental results
validate the theoretical analysis.

1 Introduction

The synchronous reluctance motor (SynRM) has been
recognised to have many advantages due to its simple and
rugged structure. In addition, the SynRM has no winding
or magnetic material on its rotor. The SynRM is shown
to be very suitable for ac drive systems due to many
factors. First, the field-oriented control of the SynRM does
not require computing slip frequency as required for the
induction motor. As a result, there is no parameter sensi-
tivity problem [1]. Next, the SynRM does not require any
permanent magnetic material as the permanent-magnet
synchronous motor does [2]. Moreover, the SynRM is more
suitable for a sensorless drive due to the obvious difference
in d-axis inductance and q-axis inductance. As a result, it is
possible to use the inductances to estimate the shaft position
of the SynRM [3–6].

To achieve a high performance drive system, the motor
design, PWM switching strategy, and controller design
are all important. Several researchers have studied and
proposed many different techniques in these fields. In PWM
techniques, the most popular method is the hysteretic or
bang-bang current regulated control. This method is
very simple; however, it provides a highly variable PWM
switching frequency. In addition, its current ripple and
harmonic content are large [7]. To solve this problem, the
space vector modulation is proposed. The performance of
the space vector modulation is excellent; nevertheless, this
method requires a lot of complicated computations. As a

result, a digital signal processor for space vector modulation
is required [8–9]. Research on PWM strategies in induc-
tion motors or permanent magnet synchronous motors is
popular; however, research on PWM strategies for synchro-
nous reluctance motors is not common. This has motivated
us to study the PWM strategy for SynRM drives. On the
other hand, in the fields of motor design, motor drive, and
controller design, several techniques have been proposed
for SynRM drives. For example, Platt designed a new
reluctance motor with strong rotor anisotropy [10]. Vagati
et al. proposed a flux-observer-based control scheme to
achieve a high performance SynRM drive system [11].
Sul et al. developed a high dynamic torque control for
a SynRM [12]. Liu et al. implemented an HN to improve
the dynamic response of a position control system for a
SynRM [13]. These papers [11–13], however, only focus
on linear controller design. To improve the performance of
the SynRM drive system, nonlinear controllers are more
effective and have been proposed. For example, Shyu et al.
implemented a combination of the classical state feedback
and the variable structure control [14]. The idea is good:
however, a chattering problem appears in steady-state.
Sul et al. proposed a nonlinear input-output linearisation
technique for a SynRM. The results achieved optimal
efficiency. However, the computation of the control
algorithm is very complicated [15].

In this paper, a novel PWM scheme for the SynRM is
proposed to improve the torque response and reduce the
switching frequency. The method is based on the measure-
ment of the current slope. Although the computation
is simple, the performance of the proposed method is
satisfactory. Experimental results show that this method has
a lower switching frequency, lower harmonics, and better
current tracking ability. In addition, in order to improve the
transient response, load disturbance rejection and tracking
ability, a nonlinear controller is proposed here. To the
best of the authors’ knowledge, this is the first time that
the novel switching method and the nonlinear controller
for a SynRM drive system have been proposed. The details
follow.
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2 Switching strategy

2.1 Dynamic model of a SynRM
The mathematical model of a SynRM in d-q synchronous
frame can be expressed as

did
dt
¼ ðoeLqiq � rsid þ vdÞ=Ld ð1Þ

and

diq
dt
¼ ð�oeLdid � rsiq þ vqÞ=Lq ð2Þ

where d
dt is the differential operator, id is the d-axis current,

iq is the q-axis current, oe is the electrical speed, Lq is the
q-axis inductance, Ld is the d-axis inductance, rs is the
stator resistance, vd is the d-axis voltage and vq is the q-axis
voltage. The electro-magnetic torque expressed in the d-q
synchronous frame is

Te ¼
3

2

P0

2
ðLd � LqÞid iq ð3Þ

where Te is the electro-magnetic torque of the motor, P0 is
the number of poles of the motor, id is the d-axis equivalent
current and iq is the q-axis equivalent current. The rotor
speed and position of the motor can be expressed as

d
dt
or ¼

1

J
ðTe � Tl � BorÞ ð4Þ

and

d
dt
yr ¼ or ð5Þ

where J is the inertia constant of the motor and load, Tl

is the external load torque, B is the viscous frictional
coefficient of the motor and load, yr is the mechanical rotor
position and or is the mechanical rotor speed. The electrical
rotor speed and position are

oe ¼
P0

2
or ð6Þ

and

ye ¼
P0

2
yr ð7Þ

where oe is the electrical rotor speed and ye is the electrical
rotor position of the motor.

2.2 Proposed switching strategy
In this paper, a new switching strategy for the SynRM is
proposed. The details are discussed here. If the inverter is
switched in mode A+, which is shown in Fig. 1, the
switching state is (1, 0, 0).

From Fig. 1, we can easily obtain

van ¼
2

3
Vdc ð8aÞ

vbn ¼ �
1

3
Vdc ð8bÞ

and

vcn ¼ �
1

3
Vdc ð8cÞ

The relationship of the voltages between the a-b-c axis to
d-q axis is

vd

vq

� �
¼

sin ye sinðye � 2p
3
Þ sinðye þ 2p

3
Þ

cos ye cosðye � 2p
3
Þ cosðye þ 2p

3
Þ

" # van

vbn

vcn

2
64

3
75
ð9Þ

By substituting (8a), (8b) and (8c) into (9), one can obtain

vd ¼
2

3
Vdc sin ye ð10aÞ

and

vq ¼
2

3
Vdc cos ye ð10bÞ

After that, by substituting (10a) and (10b) into (1) and (2),
we can derive that the dynamic equations of the d-q axis
currents can be expressed as:

did
dt

����
modeAþ

¼ oeLqiq � rsid

Ld
þ 2

3

Vdc sin ye

Ld
ð11Þ

and

diq

dt

����
modeAþ

¼ �oeLd id � rsiq

Lq
þ 2

3

Vdc sin ye

Lq
ð12Þ

When the inverter is switched in a zero-voltage mode ( free-
wheeling mode), the switching state is (1, 1, 1) or (0, 0, 0).
Then, the motor is three-phase shorted and is disconnected
with the input voltage. The input voltage, therefore, is equal
to zero. By substituting Vdc¼ 0 into (11) and (12), one can
obtain

did

dt

����
mode 0

¼ oeLqiq � rsid

Ld
ð13Þ

diq

dt

����
mode 0

¼ �oeLd id � rsiq

Lq
ð14Þ

Combining (11)–(14), one can easily obtain

did
dt

����
modeAþ

¼ did
dt

����
mode 0

þ 2

3

Vdc sin ye

Ld
ð15Þ

diq
dt

����
modeAþ

¼ diq

dt

����
mode 0

þ 2

3

Vdc cos ye

Lq
ð16Þ

By using the same method, one can derive that the
switching modes B+ and C+ have the following dynamic
equations:

did

dt

����
modeBþ

¼ did
dt

����
mode 0

þ 2

3

Vdc sinðye � 2p
3
Þ

Ld
ð17Þ

fb

fc
fd

V3
V2

V1

V4

V5

V6

fq

fa

∆idLd

∆iqLq

�e �
0°

Fig. 1 The circuits of different modes
a Mode A+

b Mode B+

c Mode C+
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diq
dt

����
modeBþ

¼ diq

dt

����
mode 0

þ 2

3

Vdc cosðye � 2p
3
Þ

Lq
ð18Þ

and

did

dt

����
modeCþ

¼ did

dt

����
mode 0

þ 2

3

Vdc sinðye � 2p
3
Þ

Ld
ð19Þ

diq
dt

����
modeCþ

¼ diq
dt

����
mode 0

þ 2

3

Vdc cosðye � 2p
3
Þ

Lq
ð20Þ

To realise the proposed method, first we measure the
current slope in the free-wheeling switching state. Then, we
compute the desired d-axis current slope between the
current command i�d and the real current id, and the desired
q-axis current slope between the current command i�q and

the real current iq, which are expressed as:

did
dt

� ��
¼ i�d � id

T
ð21Þ

and

diq
qt

� ��
¼

i�q � iq
T

ð22Þ

where (did/dt)* is the desired current slope, and T is the
switching interval of the inverter. After that, we can
compute the current deviation between the desired current
slope and the current slope at mode 0:

Did ¼
did

dt

� ��
� did

dt

����
mode 0

� �
T ð23Þ

and

Diq ¼
diq

dt

� ��
� diq

dt

����
mode 0

� �
T ð24Þ

The required voltage vector angle is

g ¼ � tan�1
LdDid
LqDiq

� �
þ ye ð25Þ

Finally, the voltage vector of the inverter can be selected
according to the vector angle g. In Fig. 1, for example, the
vector V1 is selected when g is between �301 and 301. In
the real world, if the required voltage amplitude is small, we
choose a free-wheeling voltage vector to reduce the current
harmonics.

3 Nonlinear controller design

Many papers have proposed different control methods to
improve the dynamic performance of synchronous reluc-
tance drive systems. For example, Thanaa et al. proposed
a sliding mode controller for position control of a vector-
controlled synchronous reluctance drive system. The results
are satisfactory; however, the control method requires
knowing the parameter variation bounds of the motor. In
addition, a boundary layer is required to alleviate the
chattering problem [16]. Lee et al. used the feedback

linearisation technique to obtain an efficiency-optimised
direct torque control. The idea is of great interest; however,
the controller is very complicated and requires a lot of
computations [15]. Liu et al. proposed an HN controller to
improve the transient response and load disturbance
response of a position control system for a synchronous
reluctance motor. The experimental results are satisfactory;
however, the controller is complicated [17]. Chiang et al.
proposed an integral variable structure controller with grey
prediction for a synchronous reluctance drive system. The
method can significantly reduce chattering and steady-state
error; however, the control method requires a lot of
computing time using a digital signal processor [18].
Recently, Shyu et al. proposed a state feedback controller
combined with a variable structure controller for position
control of a synchronous reluctance motor. The idea is new
and interesting; however, a chattering problem exists due to
the high frequency switching of the variable structure
controller [19].

In order to reduce the complexity of the controllers
mentioned above [15–19], this paper proposes a simple
nonlinear controller for a SynRM drive system. Only the
error signal is used here. By combining the integral and
proportional items of the error signal and its nonlinear
operation, a control input can be obtained. A systematic
stability analysis of the control system is discussed. The
proposed method can be applied for a speed control system
and a position control system. To the authors’ best
knowledge, this is the first time that the proposed method
has been applied to a SynRM drive system. The details are
shown as follows.

3.1 Speed-loop controller
The block diagram of the closed-loop speed control system
is shown in Fig. 2a. To obtain a nonlinear controller, the
control input of the drive system is selected as

u ¼ Ge
@V
@e
þ Gi

Z
@V
@e

dt ð26Þ

where u is the control input, Ge is the proportional gain, Gi

is the integral gain, V is the Lyapunov function, e is the
error between the command and output, d is the differential
operator and t is time. In this paper, the Lyapunov function
is selected as [20]:

V ðeÞ ¼ 3

4
Kp0e

4
3 þ 1

2
Kp1e2 þ

3

4
Ki0e

4
3 þ 1

2
Ki1e2 ð27Þ

The general results in stability theory were developed by
Lyapunov. As we know, Lyapunov formulated a basic
concept of stability and derived sufficient stability condi-
tions for dynamic systems, described by ordinary differ-
ential equations. In recent years, there has been considerable
research in developing innovative non-quadratic forms
of Lyapunov candidate. The application of efficient and
flexible software, such as MATLAB, has changed the aim
of the Lyapunov theory. Owing to the improvement of
the computing ability for software, the value of Lyapunov’s
theory is shifted from the descriptive theory to the design of
stabilising controllers. The Lyapunov concept is a viable
tool in solution of stabilisation and optimisation problems,
encountered in the wide areas of control [20]. The basic
motivation of this paper is to apply the Lyapunov concept
to design nonlinear controllers for a synchronous reluctance
drive system. As a result, the fractional powers of the error
signal are selected. It is demonstrated that the application of
the complicated Lyapunov candidates is an important step.
This allows one to design a high performance nonlinear
controller. In this paper, the Lyapunov concept is used to
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design both a speed controller and a position controller for
the synchronous drive systems.

By substituting (27) into (26), one can obtain

u ¼ i�q ¼ GeðKp0 þ Ki0Þe
1
3 þ GeðKp1 þ Ki1Þe

þ GiðKp0 þ Ki0Þ
Z

e
1
3dt þ GiðKp1 þ Ki1Þ

Z
e dt

ð28Þ

In order to simply the expression of (28), we define

Kpn ¼ GeðKp0 þ Ki0Þ ð29Þ

Kpe ¼ GeðKp1 þ Ki1Þ ð30Þ

Kin ¼ GiðKp0 þ Ki0Þ ð31Þ

Kie ¼ GiðKp1 þ Ki1Þ ð32Þ

Then, the control input of the drive system can be expressed
as

u ¼ Kpme
1
3 þ Kpeeþ Kin

Z
e
1
3dt þ Kie

Z
e dt ð33Þ

We can observe that the first and third terms are increased
as compared with the traditional PI controller. In fact, the
first and third terms are used to provide an extra effort to
improve the dynamics of the system including transient
response and load disturbance response.

3.2 Position-loop controller
The block diagram of the closed-loop position control
system is shown in Fig. 2b. From Fig. 2b, we can obtain

i�q ¼ Kpðo�r � KvorÞ ð34Þ

By substituting (34) into (3) and (4), we can derive

o
�

r ¼
K 0t
J

Kpðo�r � KvorÞ
TL

J
ð35Þ

Js + B
1

�r

∆�r Te

TL

�r
�∗

r

�r

�r

s
1

b

+
equation (40) Kp

Kv

SynRM simplified model

− − +

−

+

�∗
r (Ld − Lq)

P0
22

3

Js + B

1
(Ld − Lq)

P0

22
3�∗

r

�r

∆�r

i ∗

Te

TL

�r

a

equation (26)

SynRM simplified model

+

− +

−q

i ∗
d

i ∗
q

i ∗
d

Fig. 2 The block diagram of the proposed system
a Speed control system
b Position control system

0 0.03 0.06 0.09 0.12 0.15

−200

−150

−100

−50

0

50

100

150

200

s

v ab
,V

a

0 0.03 0.06 0.09 0.12 0.15

−200

−150

−100

−50

0

50

100

150

200

s

v ab
,V

b

Fig. 3 The voltage vab at a steady-state
a Proposed
b Bang-bang

50 IEE Proc.-Electr. Power Appl., Vol. 153, No. 1, January 2006



Define the position error as

ey ¼ y�r � yr ð36Þ

By taking the derivative of (36), we can obtain

e
�
y ¼ y

��

r � y
�

r ð37Þ

To obtain a nonlinear position controller, the control input
of the position control system is selected as

u ¼Gep
@V ðey;orÞ

@ey
þ Gip

Z
@V ðey;orÞ

@ey
dt

þ Gxp
@V ðey;orÞ

@or

ð38Þ

where Gep is the proportional gain of the position-loop
controller. Gip is the integral gain of the position-loop
controllers, and Gxp is the feedback gain of velocity.

In this paper, the Lyapunov function of the position
control system is selected as [20]:

V ðey;orÞ ¼
3

4
Kp0e

4
3

y þ
1

2
Kp1e2y

þ 3

4
Ki0e

4
3

y þ
1

2
Ki1e2y þ

1

2
Kx0o2

r
ð39Þ

Substituting (39) into (38), we can obtain

u ¼GepðKp0 þ Ki0Þe
1
3

y þ GepðKp1 þ Ki1Þey

þ GipðKp0 þ Ki0Þ
Z

e
1
3

ydt þ GipðKp1 þ Ki1Þ

�
Z

eydt þ GxpKx0or ð40Þ

In order to simplify the expression of (40), we define

Kpnr ¼ GepðKp0 þ Ki0Þ ð41Þ

Kper ¼ GepðKp1 þ Ki1Þ ð42Þ

Kinr ¼ GipðKp0 þ Ki0Þ ð43Þ

Kier ¼ GipðKp1 þ Ki1Þ ð44Þ
and

Kxpr ¼ GxpKx0 ð45Þ

By substituting (41)–(45) into (40), we can derive the control
input as

u ¼o�r ¼ Kpnre
1
3

y þ Kperey

þ Kinr

Z
e
1
3

ydt þ Kier

Z
eydt þ Kxpror ð46Þ
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4 Experimental results

The proposed system uses a 32-bit digital signal processor,
TMS 320C30, to determine the PWM switching states
and execute the control algorithms. The dc bus voltage
of the inverter is 150V. The sampling interval of the
current-loop is 100ms, and the sampling intervals of the
speed- and position-loop are 1ms, respectively. The motor
is a 3-phase, 4 pole, rated speed 1800 r/min, 0.75hp. It
was manufactured by the Reliance Electric Company.
The parameters of the motor are: rs¼ 2O, Ld¼ 0.148H,
Lq¼ 0.0672H, J¼ 0.00239kg�m2, B¼ 0.012N.m/s, Po¼ 4
poles.

Several experimental results are shown here. Figures 3a
and 3b show the measured line-to-line voltage of the
motor. Figure 3a is the result of the proposed PWM
control. Figure 3b is the waveform of the bang-bang
PWM control. As can be observed, the proposed PWM
method has a lower switching frequency than the traditional
bang-bang control. Figures 4a and 4b show the measured
a-phase currents of the motor. Figure 4a is the current
waveform of the proposed control method and Fig. 4b
is the waveform of the bang-bang control. The proposed
method has lower harmonics than the bang-bang
control. Figure 5 compares the switching times/s of the
proposed method and bang-bang control. When the
motor is operated at a heavy load, both of them have very
similar switching times; however, when the motor is
operated at a light load, the bang-bang control has twice
the number of switching times as compared to the proposed
method.
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Fig. 7 The measured transient speed responses
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Figure 6 shows the tracking performance of the
torque. Again, the proposed method performs better than
the bang-bang control although the proposed method has
a lower switching frequency than the traditional bang-bang
control.

Figures 7a, 7b, and 7c show the measured transient speed
responses of different speed commands. According to the
measured results, the proposed nonlinear controller per-
forms better than the PI controller at different operating
speeds. Figure 8 shows the load disturbance responses
when a 2 N-m load is added to the motor at the speed of
500 r/min. Again, the nonlinear controller has a lower
speed dip than the PI controller. Figures 9a and 9b show the
measured sinusoidal speed responses. As can be observed
the nonlinear controller tracks the sinusoidal command
well; however, the PI controller produces a lagging res-
ponse. Figures 10a and 10b show the measured triangular
speed responses. The nonlinear controller performs better
again. Figures 11a, 11b, and 11c show the measured
responses of position, velocity, and q-axis current of the
nonlinear controller as the shaft of the motor is controlled
from 180 degrees to�180 degrees. Figure 12 shows the load
disturbance position response when a 2N-m load is added.
Figures 13a and 13b show the measured sinusoidal position
responses of the two controllers. The nonlinear controller
performs better. Figures 14a and 14b show the measured
triangular position responses. A similar conclusion can be
obtained.
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5 Conclusions

A new PWM strategy and a novel control algorithm have
been proposed. The PWM strategy and the control
algorithm are implemented by a 32-bit digital signal
processor. As a result, the hardware is very simple and a
fully digital control system is achieved. In addition, the
proposed method can be applied to a speed control
system and a position control system. Experimental results
show that the proposed system has satisfactory performance
and can be applied to a synchronous reluctance drive
system.
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8 Appendices

8.1 The selection of the parameters for the
proposed speed controller
The Lyapunov theorem is used to validate the stability of
the drive system. We can take the derivation of the
Lyapunov function and express it as:

V
�
ðeÞ ¼ ðKp0 þ Ki0Þe

1
3 e
� þ ðKp1 þ Ki1Þee

� ð47Þ

The speed error is defined as

e ¼ o�r � or ð48Þ

and the derivation of speed error is

e
� ¼ �o� r ¼ �

1

J
ðTe � TLÞ ¼ �

1

J
ðK 0t u� TLÞ ð49Þ

K 0t ¼
3

2

P0

2
ðLd � LqÞid ð50Þ

where K 0t is the torque constant. The viscous frictional
coefficient B is ignored here because its value is small. By
substituting (48)–(50) into (47), and doing some mathema-
tical processes, we can derive

V
�
ðeÞ¼� K

0
t

J
KpnðKp0 þ Ki0Þe

2
3 þ ½KpeðKp0 þ Ki0Þ

n
þ KpnðKp1 þ Ki1Þ�e

4
3 þ KpeðKp1 þ Ki1Þe2

þ KinðKp0 þ Ki0Þe
1
3

Z
e
1
3dt þ KieðKp0 þ Ki0Þe

1
3

�
Z

edt þ KinðKp1 þ Ki1Þe
Z

e
1
3dt þ KieðKp1 þ Ki1Þe

�
Z

edt
o
þ 1

J
ðKp0 þ Ki0Þe

1
3 þ 1

J
ðKp1 þ Ki1Þe

� �
TL

ð51Þ

By letting

Kpno Kin

Z
e
1
3dt þ TL

K 0t

����
���� ð52Þ

and

Kpe4 Kie

Z
edt

����
���� ð53Þ

We can derive

V
�
ðeÞo�K 0t

J
KinðKp0 þ Ki0Þ e

2
3

Z
e
1
3dt

����
����þe13

Z
e
1
3dt
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4
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Z
e
1
3dt

����
����

�
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Z
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Z
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Z
edt

� �

þ
�
ðKp0 þ Ki0Þ þ e

2
3

TL

K 0
t

����
����� e

1
3
TL

K 0
t

� �

þðKp1 þ Ki1Þ e
4
3

TL

K 0
t

����
����� e

TL

K 0
t

� ���
� 0 ð54Þ

When the drive system does not add an external load, the
TL¼ 0. Then, (54) becomes
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8.2 The selection of the parameters for the
proposed position controller
The Lyapunov theorem is used to validate the stability of
the position control system. We can take the derivation of
the Lyapunov function and express it as

V
�
ðey;orÞ ¼ ðKp0 þ Ki0Þe

1
3

y e
�
y þ ðKp1 þ Ki1Þeye

�
y

þ Kx0oro
�

r

ð56Þ

By substituting (35) and (37) into (56), and doing some
mathematical process, we can obtain

V
�
ðey;orÞ ¼ � ðKp0 þ Ki0Þe

1
3

y or � ðKp1 þ Ki1Þeyor

þ Kx0
KpK 0t

J

�
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1
3
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�

þ Kinror

Z
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1
3dt þ Kieror

�
Z
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r

�
� TLor

J

�
ð57Þ

Next, by choosing

Kx0 ¼
J

KpGepK 0t
ð58Þ

Then, substituting (58) into (57), we can obtain

V
�
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1
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Kinror

Z
ey

1
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�
Z
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ð59Þ

In this paper, we select

Kv4 Kinr

Z
e
1
3

ydt þ Kier

Z
eydt þ Kxpr þ

TL

KpK 0t

����
���� ð60Þ

Substituting (60) into (59), we can obtain
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�
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From (59)–(61), we can obtain and define

Z1ðtÞ ¼
1

Gep

�
Kinror

Z
ey

1
3dt þ Kieror

�
Z

eydt þ Kxpro2
r � Kvo2

r �
TLor

KpK 0t

�
� 0

ð62Þ

By integrating (62), we can derive

Z t

0

Z1ðtÞdt ¼ V ðeyðtÞ;orðtÞÞ � V ðeyð0Þ;orð0ÞÞ ð63Þ

Because eyðtÞ and orðtÞ are bounded, from equation (63),
we can obtain

lim
t!1

Z t

0

Z1ðtÞdtðtÞdto1 ð64Þ

Because Z1(t) and Z
�
1ðtÞ are bounded, and Z1(t) is a uniform

and continuous function. From Barbalet’s lemma, we can
obtain

lim
t!1

z1ðtÞ ¼ 0 ð65Þ

Combining (61) and (65), we can conclude that the
proposed position control system converges to a zero
steady-state error. As a result, the position control system is
an asymptotically stable system.
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