
IEEE TENCON '93 / B e i i n ~

DESIGN & TEST OF MEMORY MANAGEMENT
UNIT AND CACHE CONTROLLER CHIP

David Hsieh and Feipei Lai
Dept. of Electrical Eng. National Taiwan University

Taipei, Taiwan, China

ABSTRACT

A design and test of memory management unit and
cache controller (MMU/CC) chip for the Multiproces-
sor Architecture Reconciling Symbolic with numerical
processing (MARS are presented in this paper. M-

the MARS system for one load per cycle in the absence
of cache m i s s , TLB miss, exception or interrupt. Not
only the cache and memory operations are supported,
but also an invalidation cache coherence protocol is em-
bedded. The MMU/CC chip has 66290 transistors and
144 pins. The die size is 8653 pm * 7114 pm. We take
a detailed look at critical issues of the design trade-offs,
floor-planning, and testing.

INTRODUCTION

MARS is a multiprocessing system, which has a number
of processor board 111. Each processor board is linked
together via an interconnection network , as depicted
in Fig. 1. Inside each board, there are CPU chips, i.e.,
the instruction fetch unit (IFU) combined with an on-
chip instruction cache [2, 31 and the integer processing
unit (IPU) 14-61 as well as special chips, the floating-
point processing unit (FPU) and the list processing unit
(LPU) [7, 81 dedicated for floating point and list opera-
tions, external cache for data and instruction along with
MMUjCC [9], interleaved global memory, a '32-bit in-
struction bus, and a 64-bit data bus whose lower half is
time-multiplexed with a 32-bit address bus. Icterleaving
memory into each processor board, instead of a lumped
global shared memory, is to mainly reduce bus traffic
and the transaction latency[lO-l2]. The MMUjCC of
the MARS system performs the memory operations for
both data and instruction requested by other units in the
system. MMU/CC handles all of the situations includ-
ing a cache-hit, cache-miss, and TLB-miss, excluding a
page fault which will cause an interrupt to the system.
This chip also supports an invalidation cache coherence
protocol for the multiprocessor system.

MU/CC can provi d e the memory access requirement of

DESIGN TRADE-OFFS

The virtual memory system of MARS is a paged vir-
tual memory with two-level page tables and page size of
4 kbytes. The virtual space of MARS is partit.ioned into

6 PL'

I I +
h1ur"unNe.d

Fig. 1 Architectural Partitioning of the MARS System

two spaces as shown in Fig. 2, the user space and the
system space. The most significant bit, bit 31, is used
to specify the addressed region. Each region is given a
page table, the system page table (SPT) and the user
page table (UPT). User processes are assigned to the
user space and all of them share the same system space.

1. Location of Page Tables

If page tables were located flexibly, extra registers are
required to keep the address of page tables. To remove
the hardware dedicated for the virtual base registers of
the SPT and the system root page table (SRPT), the
SPT is fixed in the upper region of the system space,
ranging from OxffeOOOOO to Oxffffffff, and so is the S-
RPT, from Oxfffff800 to O d f f f f f f . In order not to limit
the number of active user processes that can run at the
same time and to remove the virtual base registers for
UPT and user root page table (URPT), the UPT and
URPT are also allocated in the precise part of the user
space, from Ox7feOOOOO to Oxi'fffffff and from Ox7fffff800
to Ox7fffffff, respectively.

The system space is further divided into two regions
by the bit 30, the mapped and unmapped regions. The
data of the unmapped region are also non-cacheable and
the purpose to define this region is for running initial-
izing programs when the system is booted since at this
time the contents of page tables, TLB and the caches are

-10-

Fig. 2 The Virtual Memory

all invalid. It also removes the need to design a control
bit to bypass the TLB and cache for this period.

Each virtual address has its own pa e table entry
(PTE) and root page table entry (RPTEJ. The process
of generating the PTE and RPTE of a virtual address,
shown in Fig. 3, is very simple. To form the PTE from
a virtual address, the most significant bit, system bit, is
reserved and the other bits are shifted right ten bits and
ten ones are inserted. Since the size of PTE is four bytes
and aligned on word boundary, the bottom two bits of
the address must be "0". Since the RPTE is practically
the PTE's page table entry. The same process is applied
to form RPTE from PTE. The PTE of a virtual page,
shown in Fig. 4, includes the physical page number (PP-
N) of this page, the cacheable bit (Ca), access control
bit S), status bits (C), and invalid bit (I). The reset of
Ca [cacheable) bit will cause the cache to be bypassed.
The S (System) bit controls the access of the user pro-
cess. The operating system can allow a user program
to have access privilege, or no access to a given page.

l l l i l l l l l l m

I s [1111111111 I I(I 0

Fig. 3 Virtual Addresses of PTE and RPTE

The C (Clean) bit is used to record whether the page
has been modified or not. These bits help the operating
system designers reduce the unnecessary T g e swap, and
select the victim to be replaced. The I invalid) bit, if
reset, indicates that the page exists in the memory.

The TLB is two-way set-associative with 128 entries,
shown in Fi 5 The hit ratio of this TLB can be high
up to 9 9 . d ; Each entry of TLB includes two parts,

EntryLow and EntryHigh. The EntryLow is used to
determine the hit condition of the TLB access. It con-
tains the virtual tag, the valid bit of TLB entry (Tv)
and the process identity PID) The PID is used to re-
duce the probability of hushing TLB when a context
switch happens. If the current address is in the system
space, this field is ignored since the SPT is shared by
all processes. The EntryHigh contains the content of
the PTE and is used to determine the hit condition of
the cache access. Each set of the TLB also has a first
come (FC) bit to select the entry which enters the TLB
earlier and is to be replaced when there is no room for
the new coming P T E

Caclivible *

Cleat1 -
hvalld *

RES=Rcsm>

Fig. 4 Format of Page Table Entry

b- 2Entneamearhra -4

TI I

lKf, First Come hil

+ E r ~ n ~ I m v i E l . ~ E n t l y l f ~ e h ~ W ~ - Virtual Ta pm W N C.SCI

'TLEEntly P- ValidBii Identity A I ----.

Fig. 5 Two-way Set-Associative TLB

2. Cache Selection

Due to the lack of on-chip data cache for our unique
configuration, the need of a fast external cache excludes
the use of physically addressed physically tagged cache
(PAPT cache). The three virtually addressed cache or-
ganizations that have the same access time are virtually
addressed virtually tagged cache (VAVT cache), virtual-
ly addressed physically tagged cache (VAPT cache) and
virtually addressed dually tagged cache (VADT cache)
(91. We choose the VAPT cache organization because of
the following reasons:

A. The constraint of processes sharing is small. The
granularity of sharing of two processes is a page. This
gives the system better protection.
B. The modification of snooping bus is small. Since the
size of cache page number is small, it is easy to be im-
plemented by using the non-used signals of commerciai
bus.
C. Owing to the physical tag of this scheme, the re-
placed block can be written back immediately without

- 1 1 -

additional address translation. This simplifies the con-
troller design. For the VAVT cache, a physical tag may
be necessary in addition to virtual tag to prevent possi-
ble &dlock and to reduce the complexity of controller.
D. The protection bits, the dirty bit and the process
identity are kept in TLB without being duplicated for
each cache entry. The separation of the TLB and the
cache memory makes the total chip area for memory
cells smaller and increases the probability of integrating
cache tag and MMU/CC together. Some states of page
such as the dirty bit and access bit are easier to support
in the TLB than in the cache.
E. The memory cells with two read ports can be used to
implement the BTag and CTag. They occupy less silicon
area than the two tags with only a single read port of
the VADT cache and also simplify the tag updating,

In addition to the VAPT scheme, our cache is a write-
back, unified cache to reduce the bus traffic, and a direct-
mapped cache to match the cycle time of CPU. The
cache size is 256 Kbytes and the block size is 32 bytes.
An invalidation coherence protocol is adopted for this
snooping cache. Exception-b is used by MMUjCC to
signal the CPU that a page fault occurs. Fig. 6 shows
the timing diagram of an exception. The exception line
is precharged at %1 and asserted during 02. The code
of exception is presented during 01 of the next cycle
through the ad_bus[24:21]. The code of page fault in-
cludes a bit to determine whether this exception is gen-
erated by MMU/CC, a bit to decide which entry of the
two-way TLB is used to detect this fault and two hits for
determining the access is for data read, data write, PTE
read or RPTE read. In addition, the data address of the
page fault is also latched in the bad address register of
MMU/CC and accessible by the loadsr instruction.

< W W I
"-._,l oi

a* i ~

T--DL* U
28 7 l 11 7 .

r~TUrC-MlaYMuxc I..d~bY.,>.I1, _* __lp

_YCrrYLm
",,61*11ILB * T' I '

_-".-ldo,.-WI *
,<.*,ER- X , > w T S R d

Fig. 6 Exception Timing of Memory Instruction

The width of data part of the caches is 2 words (64
bits), If the instruction is to load or store double words,
the data is transferred through both the system address
bus and the system data bus. If the instruction is to load
or store a single word, the data is transferred through
either the system address bus or the system data bus
depending on the address hit 2. Only one pair of signals
are used to handshake the data transfer. But there are
three types of snooping operations and they are writing
data to bus, reading data from bus and sending a block
to bus for snooping access, respectively. They can he d-
ifferentiated by the snooping command sending to/from

the bus controller. At the end of each transfer cycle,
the transfer can be retried if errors are detected. This
facilitates the error correction of the received data. The
data is sent directly to the cache and the error is detect-
ed, then the cache controller is informed after the last
transfer.

FLOOR-PLANNING OF MMU/CC

We used GENESIL to design our architecture. Although
GENESIL can process the floor-planning and fusion au-
tomatically. The designer should not expect to get a
good result by these automatic designs. In addition to
the constraints of parallel datapaths, one of the prob-
lems in the design using GENESIL is the pitch match-
ing of different blocks. Lots of silicon area are wasted
in the routing of unmatched connections. The sequences
and alignments of fusing small modules to make a larger
module are also important. A better result will comeout
if designers put the size of components, floor-planning
and routing into consideration during hierarchically de-
composing the function modules.

We consider two serious factors of module position and
pad distribution when doing the floor-planning of the
MMU/CC layout , shown in Fig. 7. These factors have
a great influence on chip performance. The principle of
the first factor is to align modules and assign the priority
of routing channels, The area overhead becomes small-
er when the principle is obeyed. The principle of the
second factor in to put pads in a line, keep the distance
from one pad to the next one equal, and make pads close
to the chip core. The area overhead is smaller and so is
the delay time when the principle is followed. The equal
delay time is crucial since it influences the input delay
and output sampling time used in the testing stage.

Fig. 7 MMU/CC Chip Layout

TESTING OF MMU/CC

The MMU/CC chips are tested by usin the test vec-
tors generated from the GENESIL simuktor. The sim-
ulator simulates a design with functional and switch-
level models to verify the design functionality and to
generate manufacturing tests. We specify the design

- 1 2 -

functionality and the netlist, and GENESIL builds the
functional simulation models. The simulator uses these
models and test vector files or check functions supplied
by user, which contain initialization conditions and ad-
ditional simulation commands, to verify the operations
of the design. The simulator can be controlled directly
on an interactive screen interface or run in batch. After
the layout is specified and compiled, switch-level models
are available for design verification. Test vectors, check
functions, or both can be used for all simulation of a
design. The former can he written in assembly-level or
machine-level format. Test vectors evaluate arithmetic
and logic expressions easily, but has limited flow-control
techniques. Check functions are a series of assertions
and verify the design programmatically. They are writ-
ten in GENIE using both basic and simulation-specific
commands. Test vectors are generated to initial the chip
and test all operations. They are not exhaustive since
there are more than billion test patterns required in an
exhaustive test vector file. Switch-level (GSL) modules
are derived from the layout of a GENESIL design and
include routing delays. Running the same set of test
vectors successfully on both the GFL (functional) mod-
ule and the GSL module verifies the correspondence of
the GFL modules for the initial simulation debugging
of a chip design, and with the GSL modules for a final
verification of the design and the test vectors, thus the
user can shorten the design verification (DV) process in
GENESIL. Designers who prefer to do their own design
verification should proceed with the switch-level simu-
lation after the functional-level simulation.

A bottom-up simulation approach is used to veri-
fy the MMU/CC architecture from the blocks up to
the chip level hierarchically. We verify the functionali-
ty of MMU/CC and simulate every memory operation.
We also test every possible situation could happen to a
memory access such as cache miss, TLB m i s s , or both.
An invalidation cache coherence protocol is also fully
implemented to keep the memory system consistent all
the t h e . We use test vectors to test the blocks at the
bottom level first, then the upper levels, i.e. the gener-
al modules are simulated using the check functions. In
others words, after the function of the RAM blocks and
$he datapath blocks are verified, we test the controller
modules individually. Then the large controller module
containing the five controllers and the TLB module is
proved to work. At last, the whole chip is tested and
verified. The critical path of MMU/CC is the MISS
signal output to the MARS system. A testing machine
provided by IMS is used to test 17 chips and 4 of them
work properly. The clock time of MMU/CC is 200 ns.

CONCLUSION

The MMU/CC chip for the MARS system has been
designed and tested. MMU/CC contains a two-way
set-associative TLB with 64 sets and controls an ex-
ternal cache with 8192 blocks. In the MARS system,
MMUjCC is responsible for all memory operations in
our multiprocessor architecture. In each cycle, it can
supply a 64-bit data or instruction to the CPU. The
correctness and effectiveness of the MMU/CC chip are
verified during the simulation and testing stages.

ACKNOWLEDGEMENT

The work was supported in part by the National Sci-
ence Council under Grant NO. 81-0404-E002-121.

REFERENCES

1. jang89-1 G . 3 . Jang, F. Lai, H. C. Lee, Y. C. Maa,
T. M. Parng, and J. Y . Tsai, ”MARS - Multiproces-
sor Architecture Reconciling Symbolic with Numer-
ical Processing,” International Symposzum on VLSI
Technology, System, and Apphcations, May 1989.

2. maa89 Y . 4 . Maa, ”Designing Instruction Fetch U-
nix of the MARS System”, Master Thesis, Computer
Science Div., Dept. of Electrical Engineering, Na-
tional Taiwan University, 1989.

3. tsai90 W:C. Tsai, ”The Design of Instruction Fet&
Unit for the MARS System”, Master Thesis, Corn-
puter Science Div., Dept. of Electrical Engineering,
National Taiwan University, 1990.

4. jang89-2 G:S. Jang, ”The Design of Integer Pro-
cessing Unit for the MARS System”, Master Thesis,
Computer Science Div., Dept. of Electrical Engineer-
ing, National Taiwan University, 1989.

5. horng90 C.-J. Horng, ”The Design and Implementa-
tion of Integer Processing Unit (IPU) for the MARS
System”, Master Thesis, Computer Science Div.,
Dept. of Electrical Engineering, National Taiwan U-
niversity, 1990.

6. chang91 T.-N. Chang, ”The Implementation and
Simulation of Integer Processing Unit (IPU) of the
MARS System”, Master Thesis, Computer Science
Div., Dept. of Electrical Engineering, National Tai-
wan University, 1991.

7. tsai89 J.-Y. Tsai, ”The Design of Lisp Processing
Unit for the MARS System”, Master Thesis, Com-
puter Science Div., Dept. of Electrical Engineering,
National Taiwan University, 1989.

8. chen9O C.-Y. Chen ”The Uesign and Implementa-
tion of Lisp Processing Unit for the MARS Sys-
tem”, Master Thesis, Computer Science Div., Dept.
of Electrical Engineering, National Taiwan Univer-

9. sity, wu90 1990. C.-Y. Wu, ”The Implementation and Simula-

tion of Memory Management Unit and Cache Con-
troller for the MARS System”, Master Thesis, Com-
puter Science Div., Dept. of Electrical Engineering,
National Taiwan University, 1990,

10. tzeng89 L:M. Tzeng ”MARS Performance Evalua-
tion with Different Interconnection Networks”, Mas-
ter Thesis, Computer Science Div., Dept. of Electri-
cal Engineering, National Taiwan University, 1990.

11. goodman83 J.R. Goodman, ”Using Cache Memory
To Reduce Processor-Memory Traffic”, PTOC. 10th
Symposium on Computer Architecture, 1982, pp.124-
131.

12. smith82 A.J. Smith, ”Cache Memory”, ACM Com-
puting surueys, vo1.14, No.3, September 1982,
pp.473-530.

- 1 3 -

