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ABSTRACT 

A design and test of memory management unit and 
cache controller (MMU/CC) chip for the Multiproces- 
sor Architecture Reconciling Symbolic with numerical 
processing (MARS are presented in this paper. M- 

the MARS system for one load per cycle in the absence 
of cache m i s s ,  TLB miss, exception or interrupt. Not 
only the cache and memory operations are supported, 
but also an invalidation cache coherence protocol is em- 
bedded. The MMU/CC chip has 66290 transistors and 
144 pins. The die size is 8653 pm * 7114 pm. We take 
a detailed look at critical issues of the design trade-offs, 
floor-planning, and testing. 

INTRODUCTION 

MARS is a multiprocessing system, which has a number 
of processor board 111. Each processor board is linked 
together via an interconnection network , as depicted 
in Fig. 1. Inside each board, there are CPU chips, i.e., 
the instruction fetch unit (IFU) combined with an on- 
chip instruction cache [2, 31 and the integer processing 
unit (IPU) 14-61 as well as special chips, the floating- 
point processing unit (FPU) and the list processing unit 
(LPU) [7, 81 dedicated for floating point and list opera- 
tions, external cache for data and instruction along with 
MMUjCC [9], interleaved global memory, a '32-bit in- 
struction bus, and a 64-bit data  bus whose lower half is 
time-multiplexed with a 32-bit address bus. Icterleaving 
memory into each processor board, instead of a lumped 
global shared memory, is to  mainly reduce bus traffic 
and the transaction latency[lO-l2]. The MMUjCC of 
the MARS system performs the memory operations for 
both data and instruction requested by other units in the 
system. MMU/CC handles all of the situations includ- 
ing a cache-hit, cache-miss, and TLB-miss, excluding a 
page fault which will cause an interrupt to the system. 
This chip also supports an invalidation cache coherence 
protocol for the multiprocessor system. 

MU/CC can provi d e the memory access requirement of 

DESIGN TRADE-OFFS 

The virtual memory system of MARS is a paged vir- 
tual memory with two-level page tables and page size of 
4 kbytes. The virtual space of MARS is partit.ioned into 
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Fig. 1 Architectural Partitioning of the MARS System 

two spaces as shown in Fig. 2, the user space and the 
system space. The most significant bit, bit 31, is used 
to specify the addressed region. Each region is given a 
page table, the system page table (SPT) and the user 
page table (UPT). User processes are assigned to the 
user space and all of them share the same system space. 

1. Location of Page Tables 

If page tables were located flexibly, extra registers are 
required to  keep the address of page tables. To remove 
the hardware dedicated for the virtual base registers of 
the SPT and the system root page table (SRPT), the 
SPT is fixed in the upper region of the system space, 
ranging from OxffeOOOOO to Oxffffffff, and so is the S- 
RPT, from Oxfffff800 to O d f f f f f f .  In order not to limit 
the number of active user processes that can run at  the 
same time and to remove the virtual base registers for 
UPT and user root page table (URPT), the UPT and 
URPT are also allocated in the precise part of the user 
space, from Ox7feOOOOO to Oxi'fffffff and from Ox7fffff800 
to Ox7fffffff, respectively. 

The system space is further divided into two regions 
by the bit 30, the mapped and unmapped regions. The 
data of the unmapped region are also non-cacheable and 
the purpose to define this region is for running initial- 
izing programs when the system is booted since at  this 
time the contents of page tables, TLB and the caches are 
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Fig. 2 The Virtual Memory 

all invalid. It also removes the need to design a control 
bit to bypass the TLB and cache for this period. 

Each virtual address has its own pa e table entry 
(PTE) and root page table entry (RPTEJ. The process 
of generating the PTE and RPTE of a virtual address, 
shown in Fig. 3, is very simple. To form the PTE from 
a virtual address, the most significant bit, system bit, is 
reserved and the other bits are shifted right ten bits and 
ten ones are inserted. Since the size of PTE is four bytes 
and aligned on word boundary, the bottom two bits of 
the address must be "0". Since the RPTE is practically 
the PTE's page table entry. The same process is applied 
to form RPTE from PTE. The PTE of a virtual page, 
shown in Fig. 4, includes the physical page number (PP- 
N) of this page, the cacheable bit (Ca), access control 
bit S), status bits (C),  and invalid bit (I). The reset of 
Ca [cacheable) bit will cause the cache to be bypassed. 
The S (System) bit controls the access of the user pro- 
cess. The operating system can allow a user program 
to  have access privilege, or no access to a given page. 
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Fig. 3 Virtual Addresses of PTE and RPTE 

The C (Clean) bit is used to record whether the page 
has been modified or not. These bits help the operating 
system designers reduce the unnecessary T g e  swap, and 
select the victim to be replaced. The I invalid) bit, if 
reset, indicates that the page exists in the memory. 

The TLB is two-way set-associative with 128 entries, 
shown in Fi 5 The hit ratio of this TLB can be high 
up to 9 9 . d ;  Each entry of TLB includes two parts, 

EntryLow and EntryHigh. The EntryLow is used to 
determine the hit condition of the TLB access. It con- 
tains the virtual tag, the valid bit of TLB entry (Tv) 
and the process identity PID) The PID is used to  re- 
duce the probability of hushing TLB when a context 
switch happens. If the current address is in the system 
space, this field is ignored since the SPT is shared by 
all processes. The EntryHigh contains the content of 
the PTE and is used to determine the hit condition of 
the cache access. Each set of the TLB also has a first 
come (FC) bit to  select the entry which enters the TLB 
earlier and is to be replaced when there is no room for 
the new coming P T E  
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Fig. 4 Format of Page Table Entry 
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Fig. 5 Two-way Set-Associative TLB 

2. Cache  Selection 

Due to  the lack of on-chip data cache for our unique 
configuration, the need of a fast external cache excludes 
the use of physically addressed physically tagged cache 
(PAPT cache). The three virtually addressed cache or- 
ganizations that have the same access time are virtually 
addressed virtually tagged cache (VAVT cache), virtual- 
ly addressed physically tagged cache (VAPT cache) and 
virtually addressed dually tagged cache (VADT cache) 
(91. We choose the VAPT cache organization because of 
the following reasons: 

A. The constraint of processes sharing is small. The 
granularity of sharing of two processes is a page. This 
gives the system better protection. 
B. The modification of snooping bus is small. Since the 
size of cache page number is small, it is easy to be im- 
plemented by using the non-used signals of commerciai 
bus. 
C. Owing to  the physical tag of this scheme, the re- 
placed block can be written back immediately without 
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additional address translation. This simplifies the con- 
troller design. For the VAVT cache, a physical tag may 
be necessary in addition to  virtual tag to prevent possi- 
ble &dlock and to reduce the complexity of controller. 
D. The protection bits, the dirty bit and the process 
identity are kept in TLB without being duplicated for 
each cache entry. The separation of the TLB and the 
cache memory makes the total chip area for memory 
cells smaller and increases the probability of integrating 
cache tag and MMU/CC together. Some states of page 
such as the dirty bit and access bit are easier to support 
in the TLB than in the cache. 
E. The memory cells with two read ports can be used to 
implement the BTag and CTag. They occupy less silicon 
area than the two tags with only a single read port of 
the VADT cache and also simplify the tag updating, 

In addition to the VAPT scheme, our cache is a write- 
back, unified cache to reduce the bus traffic, and a direct- 
mapped cache to match the cycle time of CPU. The 
cache size is 256 Kbytes and the block size is 32 bytes. 
An invalidation coherence protocol is adopted for this 
snooping cache. Exception-b is used by MMUjCC to 
signal the CPU that a page fault occurs. Fig. 6 shows 
the timing diagram of an exception. The exception line 
is precharged at %1 and asserted during 02. The code 
of exception is presented during 01 of the next cycle 
through the ad_bus[24:21]. The code of page fault in- 
cludes a bit to  determine whether this exception is gen- 
erated by MMU/CC, a bit to decide which entry of the 
two-way TLB is used to detect this fault and two hits for 
determining the access is for data read, data write, PTE 
read or RPTE read. In addition, the data address of the 
page fault is also latched in the bad address register of 
MMU/CC and accessible by the loadsr instruction. 
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Fig. 6 Exception Timing of Memory Instruction 

The width of data part of the caches is 2 words (64 
bits), If the instruction is to load or store double words, 
the data is transferred through both the system address 
bus and the system data bus. If the instruction is to load 
or store a single word, the data is transferred through 
either the system address bus or the system data bus 
depending on the address hit 2. Only one pair of signals 
are used to handshake the data transfer. But there are 
three types of snooping operations and they are writing 
data to bus, reading data from bus and sending a block 
to bus for snooping access, respectively. They can he d- 
ifferentiated by the snooping command sending to/from 

the bus controller. At the end of each transfer cycle, 
the transfer can be retried if errors are detected. This 
facilitates the error correction of the received data. The 
data is sent directly to the cache and the error is detect- 
ed, then the cache controller is informed after the last 
transfer. 

FLOOR-PLANNING OF MMU/CC 

We used GENESIL to design our architecture. Although 
GENESIL can process the floor-planning and fusion au- 
tomatically. The designer should not expect to get a 
good result by these automatic designs. In addition to 
the constraints of parallel datapaths, one of the prob- 
lems in the design using GENESIL is the pitch match- 
ing of different blocks. Lots of silicon area are wasted 
in the routing of unmatched connections. The sequences 
and alignments of fusing small modules to make a larger 
module are also important. A better result will comeout 
if designers put the size of components, floor-planning 
and routing into consideration during hierarchically de- 
composing the function modules. 

We consider two serious factors of module position and 
pad distribution when doing the floor-planning of the 
MMU/CC layout , shown in Fig. 7. These factors have 
a great influence on chip performance. The principle of 
the first factor is to align modules and assign the priority 
of routing channels, The area overhead becomes small- 
er when the principle is obeyed. The principle of the 
second factor in to put pads in a line, keep the distance 
from one pad to  the next one equal, and make pads close 
to the chip core. The area overhead is smaller and so is 
the delay time when the principle is followed. The equal 
delay time is crucial since it influences the input delay 
and output sampling time used in the testing stage. 

Fig. 7 MMU/CC Chip Layout 

TESTING OF MMU/CC 

The MMU/CC chips are tested by usin the test vec- 
tors generated from the GENESIL simuktor. The sim- 
ulator simulates a design with functional and switch- 
level models to verify the design functionality and to 
generate manufacturing tests. We specify the design 
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functionality and the netlist, and GENESIL builds the 
functional simulation models. The simulator uses these 
models and test vector files or check functions supplied 
by user, which contain initialization conditions and ad- 
ditional simulation commands, to verify the operations 
of the design. The simulator can be controlled directly 
on an interactive screen interface or run in batch. After 
the layout is specified and compiled, switch-level models 
are available for design verification. Test vectors, check 
functions, or both can be used for all simulation of a 
design. The former can he written in assembly-level or 
machine-level format. Test vectors evaluate arithmetic 
and logic expressions easily, but has limited flow-control 
techniques. Check functions are a series of assertions 
and verify the design programmatically. They are writ- 
ten in GENIE using both basic and simulation-specific 
commands. Test vectors are generated to initial the chip 
and test all operations. They are not exhaustive since 
there are more than billion test patterns required in an 
exhaustive test vector file. Switch-level (GSL) modules 
are derived from the layout of a GENESIL design and 
include routing delays. Running the same set of test 
vectors successfully on both the GFL (functional) mod- 
ule and the GSL module verifies the correspondence of 
the GFL modules for the initial simulation debugging 
of a chip design, and with the GSL modules for a final 
verification of the design and the test vectors, thus the 
user can shorten the design verification (DV) process in 
GENESIL. Designers who prefer to do their own design 
verification should proceed with the switch-level simu- 
lation after the functional-level simulation. 

A bottom-up simulation approach is used to veri- 
fy the MMU/CC architecture from the blocks up to 
the chip level hierarchically. We verify the functionali- 
ty of MMU/CC and simulate every memory operation. 
We also test every possible situation could happen to a 
memory access such as cache miss, TLB m i s s ,  or both. 
An invalidation cache coherence protocol is also fully 
implemented to keep the memory system consistent all 
the t h e .  We use test vectors to test the blocks at the 
bottom level first, then the upper levels, i.e. the gener- 
al modules are simulated using the check functions. In 
others words, after the function of the RAM blocks and 
$he datapath blocks are verified, we test the controller 
modules individually. Then the large controller module 
containing the five controllers and the TLB module is 
proved to work. At last, the whole chip is tested and 
verified. The critical path of MMU/CC is the MISS 
signal output to the MARS system. A testing machine 
provided by IMS is used to test 17 chips and 4 of them 
work properly. The clock time of MMU/CC is 200 ns. 

CONCLUSION 

The MMU/CC chip for the MARS system has been 
designed and tested. MMU/CC contains a two-way 
set-associative TLB with 64 sets and controls an ex- 
ternal cache with 8192 blocks. In the MARS system, 
MMUjCC is responsible for all memory operations in 
our multiprocessor architecture. In each cycle, it can 
supply a 64-bit data or instruction to  the CPU. The 
correctness and effectiveness of the MMU/CC chip are 
verified during the simulation and testing stages. 
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