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Abstract: A neurofuzzy logic controller with a compensating neural network and a fine-tuning 
mechanism in the consequent membership functions is proposed to design the model-following 
control of MIMO nonlinear systems. The control strategy is developed to facilitate interconnec- 
tion compensation among subsystems by the compensating neural network and to realise feedback 
linearisation by online function approximation. By tailoring the fine-tuning mechanism to 
overcome the equivalent uncertainty appearing within subsystems or as a result of plant 
uncertainty, function approximation error, external disturbances, or measurement noise, the 
system is robust to some extent. The overall neurofuzzy control system is proved to be uniform 
ultimate bounded by using Lyapunov stability theory. Simulation results of a two-link manipulator 
demonstrate the effectiveness and robustness of the proposed controller. 

1 Introduction 

Researchers have investigated variant designs of model- 
following control such as variable structure model-follow- 
ing control (VSMFC) [ 1-31 and adaptive model-following 
control (AMFC) [4-61. The VSMFC design is capable of 
achieving a robust controller. But it is based on the 
restrictive assumption that the ranges of the variation of 
parameters are known and the resulting control efforts are 
excessive [7]. The Lyapunov stability method [4], hyperst- 
ability theory [5], and a deterministic approach [6] were 
usually considered in the AMFC. These methods can 
obtain continuous control laws. But for some MIMO 
nonlinear systems, an adaptive approach cannot guarantee 
tracking performance or even stability in the presence of 
unstructured uncertainty or disturbance [8]. 

In recent years, neural networks and fuzzy logic have 
been applied to model-following adaptive control [9-131. 
Jagannathan et al. showed good tracking performance 
through a Lyapunov stability approach in their model- 
reference adaptive control using multilayer neural network 
[13]. Chen and Teng [ l l ]  and Kawaji [12] proposed a 
model-reference control structure of indirect adaptive 
control type by using fuzzy linguistically system and 
fuzzy neural network. Yin and Lee [9] designed a fuzzy 
model-reference adaptive controller by using the fuzzy 
basis function expansion proposed by Wang [ 141 to repre- 
sent the parameter information. A robust adaptive law to 
adaptively compensate the modelling error introduced by 
fuzzy approximation was constructed in [lo]. The methods 
mentioned take advantage of fuzzy control systems, ability 
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to easily incorporate linguistic information into the con- 
troller. However, the majority of research effort in this area 
has focused on nth-order SISO nonlinear systems. For the 
cases of nonlinear MIMO systems, very few results have 
been obtained. 

In this paper the control of unknown MIMO nonlinear 
affine systems subject to unmodelled dynamics, bounded 
exogenous disturbance and measurement noise is 
addressed. The nonlinear functions in the system are 
assumed to be completely unknown. A novel design of 
neurofuzzy-model-following control is proposed to accom- 
plish the trajectory tracking of the system. The neurofuzzy 
logic controller (NFLC) is functionally equivalent to a 
multilayer fuzzy system cascaded with a compensating 
neural network. The adjustable weights are meaningful 
and it can be incorporated with, and directly extracted 
from, linguistic rules. The proposed scheme has been 
inspired from previous works [9,10,14,15], and here we 
extend the application field to MIMO systems. The fuzzy 
IF-THEN rule used in this paper is a more reasonable one 
in the sense that it is in the form of “IF situation THEN the 
control input” rather than “IF situation THEN the value of 
some nonlinear function” [9,10,14]. The later rule exists 
inherently in the plant but is hard to obtain from human 
expert knowledge. The proposed NFLC consists o f  a part 
for asymptotically nonlinear cancellation and a fine tuning 
mechanism to take care of the plant uncertainty, approx- 
imation error, external disturbance, and measurement 
noise. The robust property and the convergence of output 
tracking error are also studied. 

2 Problem formulation 

Consider an m-input, m-output, n-dimensional nonlinear 
system governed by 

y‘” = f ( x )  + G(x)u + d(x, t )  
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Fig. 1 Configuration of proposed neurojuzz,v logic control system 

where y =  [y l , .  . . ,y,]? j = El,  . . . , jmlT,  x( . )  and X(.) 
denote the output, measured output, state and measured 
state vectors, respectively, y(") = [y(ly~), ?P), . . . , y f i ' ]?  r = 
[ r , ,  . . . , r,] denotes the system relative degree, G(x) = 

. . . ,gln2(.)] are smooth functions, and U = [ u l ,  . . . , U,] is 
the system input. The time-varying disturbance d(x, t )  = 
[dI(x,  t),  . . . , d,(x, t ) ]?  the exogenous signals U,= [v , ,~ ,  
. . . , v , , ~ ] ~  and = [vY,, , . . . , vyJT where vy,* E Cri are 
assumed to have the properties of standard smoothness 
and boundedness. The zero dynamics equation 

C g l ( X ) ,  ' ' . >$*(X)I> f(.> = v;(.),. . ' >fm(.)lT and g,(.)= kllp 

li = d o ,  Y) (2) 

is assumed to be exponentially stable, or the system is 
hyperbolically minimum phase. Let y~~ and v, denote the 
reference output and input, respectively. The aim of control 
is to make each subsystem of eqns. 1 asymptotically match 
a linear reference model of the following form 

in the presence of bounded disturbance d(x, t )  and meas- 
urement noise v, and vy. The constants a,1, . . . ,a,,., are 
selected so that eqn. 3 is asymptotically stable. The control 
of such a MIMO nonlinear system poses difficulties, in 
three main aspects. First the interactions between different 
subsystems often cause the input applied to one subsystem 
affecting the other subsystem in an undesirable way. 
Secondly, the functions G(x),  f ( x ) ,  and q(x),  or parameters 
of the system, may be unknown or difficult to measure. The 
third one is the disturbance and measurement noise. 

Fig. I shows the configuration of the neurofuzzy model 
following control system. The NFLC, which is formed 
mainly by cascading a multi-input/multi-output fuzzy 
system with an adjustable-rule credit assignment unit and 
interconnections compensating network, is used to 
approximately cancel the unknown nonlinearity and to 
decompose the unknown interconnections of the composite 
nonlinear system into decoupled subsystems. The weights 
of the NFLC as well as the consequent membership func- 
tions of fuzzy rules are directly adjusted by the robust 
weight-adaptation law and the fine-tuning mechanism to 
meet some performance specification. 

3 
controller 

Design and analysis of neurofuzzy logic 

The MIMO fuzzy-set rule credit assignments (FS-RCA), 
the interconnections compensating network and the non- 
singular supervisor are described as follows. 
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3.1 FS-RCA 
The configuration of the proposed FS-RCA is shown in 
Fig. 2. For simplicity, the subscript i of the ith-rule credit 
assignment for the ith subsystem is omitted by the follow- 
ing expressions. Consider the hzzy  rule being of the 
following form: 

RJ: IF xI is A{ AND. ' . AND x, is A i  
THEN U is BJ,j = 1 , .  . . , N + 1 

where n + 1 is the number of fuzzy rules, the antecedent 
part AL is defined as the following gaussian type 

(4) J 2 $1 A;(%) = exp(-([(x, - cl(k)/akl I 
and the consequent membership function of the consequent 
part is defined as 

(1 + ((CUJ - U ) / a y : > - ' ,  if U 5 CUJ 

(1 + ( ( U  - c U J ) / a ; ) b y ,  if U > c,/ 
( 5 )  BJ(u) = 

where { a i ,  b i ,  c&} and { a i ,  a i ,  b i ,  bd, c;} are referred 
to the premise and consequence parameters, respectively. 
Given an arbitrary fuzzy input vector A'(x) to the fuzzy 
system, each rule determines a fuzzy set in the output 
space U 

A'(x) 0 RJ(x, U) (6) 

where 0 represents the compositional operator, and R' (x ,  U )  

is the fuzzy relation which represents the fuzzy implica- 
tion. Two rule credit assignment stages are present in Fig. 
2. The basic idea of the stage 1 rule credit assignment is to 
reward good rules by increasing the certainties of the 
consequent fuzzy sets and punish bad ones by decreasing 
the certainties of them. After the stage 1 rule credit 

control rule b a s e d z l  
credit assignment [m*q 1-0 
credit assignment 

Fig. 2 
ble rule credit assignment 

Diagrammatic representation of fuzzy system with stage adjusta- 
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assignment, the consequent membership function (eqns. 5) 
is reshaped into 

(1 + ((CL - U ) / p J a y p ,  

(1 + ( ( U  - cC)/pJa;)gR)-', 

i f  U 5 Ck 

i f  U > ck 
(7) BJ(u )  = 

where fi' < 1 (or p J  > 1 ) whenever the rule is rewarded (or 
punished). The second stage rule credit assignment is 
imposed on the recommendation fuzzy output of each 
rule. Giving a credit (aJ to the jth rule refines them and 
its recommendation output becomes 

wJ ' A'(x) 0 Rqx, U) (8) 
where, dot represents multiplication operation and CO' > 1 
(or wJ < 1) denotes a reward (or a punishment) offered to 
the jth rule. 

Considering the request of numerical input/output of the 
fuzzy system, a particular class of fuzzy system with the 
singleton fuzzified, algebraic product T-norm, the sup star 
compositional operator [ 141, the local mean-of-maximum 
(LMOM) [ 161 method and centre average defuzzification 
are used here. Thus, given input xo = (xy, . . . ,xE), the final 
output of the hzzy  model can be expressed as 

where U J  is the point in U at which A'(xo)oRJ(x", U') 
achieves its maximum value. Using the local mean-of- 
maximum method, the recommendation output (expr. 6) of 
each rule is determined by 

A'(xo) 0 RJ(x0, U ; )  = Sup [A'(xo)*I(A'(xo), B'(u))] 
U€U 

= Z(k(XO), & U ) )  

where A'(xo) =A{(xy )  A? (x;) . . . A: (x!) is the matching 
degree corresponding to the numerical input xo, F l  denotes 
the location of the singleton implication hzzy set and is 
defined as 

2; = centroid of { U :  E.'(u) 2 Aj(xo)) (11) 
Thus, the output response of the FS-RCA becomes 

By using eqns. 7 and choosing b/ = b i=  2, expr. 11 can be 
resolved into 

c u  - J  - - cu .i - pJdLRJ- (13) 

where aiR = (af - a1)/2. In the rule base, the (N+ 1)th 
rule is chosen to be of the Takagi-Sugeno [ 171 type and its 
consequent membership hnction B"+ ' is singleton with 
support represented as the form of the synthesis input 

(14) CN+l U = Z l j  + x; + ' . . + Nrjj(r-')  + I ;  

where r denotes the relative degree of the plant. The 
curvature control parameter of its antecedent membership 
function ' is assumed to a roach to infinity so that 
this rule will be fired whatever x is. The credit assignment 
takes place in rules RJ, j = 1, . . . , N and assigned to be 1 f o ~  
RN+ '. To reduce the number of adaptive weights, /3-' = l i d  
is chosen so that credits are assigned simultaneously in 

BP 
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stage 1 and 2. Accordingly, using eqns. 13 and 14, the 
analytical formulation of the FS-RCA in eqn. 12 resolves 
into 

uo(t) = 

-O(c)Tj@(x) + Z"? + z$ f . . . + cxrj(r-I) + - QL&R<X> 

W T k "  (XI 
(15) 

where 0") andfo(x) are n x 1 column vectors composed of 
dc,' and -A'(x), w and go,(.) are (n  + 1) x 1 column 

RCA of eqn. 15, the dehzzification of a multi-inputimulti- 
output FS-RCA is defined as 

U ( ) ( [ )  = P ( X ,  wJ(-j(x, 0'") + U') (16) 

where 

. . .  iurn(x) 0 1  

L + urn - aLK.rn ~ R , m ( x >  1 
with gwi = [A' ,  . . . , A N +  ' I T ,  wii = . . . , C O ~ + ~ ] ~ ,  d i  is 
the credit to the jth rule in the ith knowledge rule base, 

[ -A ' ,  . . . - An]T ,  andLR,i = C , " = : ' A J J m .  
@(C) = [O"" ' , . . . , yj;y O/"'O[Oii1 ct i , .  . . , O i i C U i ]  N N T  1 ,  f o i  A = 

3.2 Interconnections compensating network 
Control of nonlinear MIMO systems with the MIMO 
FS-RCA directly does not take interconnections among 
subsystems into consideration, therefore the interconnec- 
tions compensating network is proposed. By cascading the 
MIMO FS-RCA with the network, interconnection 
compensation will occur when the MIMO FS-RCA 
computes control signals for each subsystem of the compo- 
site nonlinear system. The interconnections compensating 
network maps the out ut of the MIMO FS-RCA, uo, to 
the control effort uNFtC in the output space U E %", by 
performing the transformation 

U N F L C ( t )  = Mu, = ( I ,  + W)u, (18) 

where I ,  denotes a m x m identity matrix. The structure of 
M reflects that the control effort is combined with uo and 
its modification to compensate the interconnection of the 
subsystems. To derive a guaranteed performance weight- 
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adaptation law for the NFLC, the algorithm for calculating 
the weight matrix W is chosen as 

3.3 Nonsingularity supervisor 
The non singularitynsupervisor_is introduced to monitor the 
situation of rank IC) < rn. If C is found to be singular, it 
is perturbed as C +  [d,], to obtain full rank, where 
[d& is a rn x rn matrix with small value component 6,. 
Then weight matrix W in eqn. 19 is guaranteed to exist. 
Using eqns. 16, 18, 19 and the matrix inversion lemma, 
(A + BCD)- =A- (DA- ' B  + C- ' ) -  'DA- ' 
[ 181, the analytical formulation of the NFLC resolves into 

- A -  ' B  

uNFLC ( t)  = (Z, - (Zm + ii-'h)-')h-'<-j(x, 0'") + v') 
= G-'<x, @'~))(-j(X, 0'"') + U ' )  (21) 

where &= c+D, uNFLc t = [uyFLc,. . . ,U,""""]', and 
a'")= [8$"), . . . , 0iu)]7 Ob(= [ m i l , .  . . , wim]? Referring 
to the NFLC, it seems that G is used to approximate G, 
and O?)'fei(x) is used to IeamJ infof the controlled plant. 
If the rough mathematical model and th_e nominal value of 
the system's parameters are available G can be trained in 
advance. On the other hand, if expert knowledge for each 
subsystem presented in fuzzy rule form is provided, the 
initial weights of the 0"' in the FS-RCA can also be 
selected at the design stage. 

4 Learning algorithm and performance analysis 

Define Bi = [Bi(C)=, 8i(co)r]T and assume that there exists 
weights 87,. . . ,e;, or and e(")* such that 

where Ef and are small constants. Then eqn. 1 can be 
rewritten in terms of the measured output j and the ith 
component is 
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and 

(25) 
Afai<x, vx> =hi(?) -foj<.> 

A i w i ( x ,  v x )  = i w j ( ? >  - i w j ( x >  

are measures of the sensitivity of the nominal model (d(x, 
t)  = U ,  uy = 0) with respect to the measurement noise U,. 
It is then possible to derive the error equation from the ith 
subsystem of eqns. 23 and 3 as 

-ajlyMi - aisMi  - . . . - a.  ~'~~7') - vi (26) ir, MI 
j y  -$j/ = 

m 

+ Oy)*Tjoi(X) + w,*T~,;(i)uj + ii 
j= 1 

where 
m 

ii = [{ + $Uj + d,(x, t )  + U;,) 
j=  1 

By eqn. 21 subtracting Cy= w i  gwi ( i ) u T "  and adding 

to the right-hand side of eqn. 26, we obtain 
fii(i) + + + . . . + a.  ir jW1) I - aLRi&Ri(X) 

jl"' -&/ = ail 6; - J I M )  + - jMi)  + . . . + a. rr, @?-I) 

(ri-1) + - ~ ? ) ~ ) j k , ( ? )  
- Y M i  

m 

or 

(28) e .  I  = A.e.  I I  - b.w. I Te i  + bi(ci - uLR,i.&R,i) 

where ei = Fj  -yMi,j i  - jMi,  . . . , jp- ' )  -y2171)]T and 
Oi = 8, - Oi* denote the tracking error vector and weight 
estimation error, respectively, and 

A robust tuning algorithm for 8, and u L R , ~  motivated by an 
attempt to modify the basic steepest descent technique and 
to provide treatment to the exogenous signals, disturbance 
nd approximation error term i,, is proposed in the 

!Q llowing paragraph. 

Assumption 1: There exists the smallest non-negative 
parameter values 8: 2 0 such that for all X E V and t E % + 

1 5 91 * & R I ( ~ )  (30) 

Let Rg, = {8,(t): lQ1(t)( 5 d1,,,,} be the bounds of 8,, ail, 
be the union of ne, and its boundary layer of thickness EO, 

and asl = {&(t): 19,(t)l 5 
be the union of a ,  and its boundary layer of thickness 6s. 
The prefix i3 denotes the boundary and = 8,/)8,) is the 

be the bounds of $,, 
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unit normal vector. A smooth robust weight-adaptation law 
is 

if eTPbbTPe 5 do2 
- de,t)ilt)~)R;'[wibirPiei - cT1(Oi - t ) i H ) ] ,  

I otherwise 
(31) 

with 

de, = 

where 

satisfj 
[blr, ' . 

with 
R!"' 

, b:]: Pi is a symmetric positive-definite matrix 
. ng the Lyapunov equation AiT Pi+PiAi=- i ,  

1. RiC) and Rj"' are diagonal matrices with positive 
diagonal elements and o1 is chosen small but positive 
constant to keep Oi from growing unbounded. To counter- 
act the weight estimation errors and disturbances, the 
control component aLRij&j is employed in the NFLC law 
(eqn. 21). The parameter of the fine-tuning mechanism 
aLRi, which represents the difference between the left and 
right spread of the consequent membership functions, is 
chosen as aLRi (S i )  = G i  tanh (bir Pi eihRi( i ) /E)  where g i  is 
an auxiliary adjustable parameter and E is a small positive 
constant. ,!Ji is adjusted according to the following adapta- 
tion laws 

the design parameters Qi > 0, Ri = Block diag[R:), 7 

with 

if Si[w:b~Plei  - c2(Q - So)] 

otherwise 
Omin[l, dist(S,, M , , ) / E ~ ] ,  (34) 

w I ( ~ )  =ARi(?) tanh 

and cr2 is chosen small but positive constant to keep g i  
from growing unbounded. 

Theorem I: Consider the nonlinear composite system of 
eqn. 1 with the NFLC law (eqn. 21), the weight-adaptation 
laws eqns. 3 1 and 33 operating in the bounded state .Y E Q,. 
Then 
(i) Oi,  gi  and the control input uNFLC ( t )  are uniformly 

ultimately bounded. 
(ii) Given any p satisfying p* < p where 

p* = 

(36) 

with Qim=max {Sf, $io} and K being a constant that 
satisfies IC = i.e. ti = 0.2785, there exists T such 
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that for Tc t 5 00 the tracking error e converges to the 
residual set 

{ e  : eTPe 5 p or eTPbbTPe 5 d i }  (37) 

Proof Refer to the appendix (Section 9) for details. 
The overall procedure of the proposed algorithm is 

summarised as follows. 

(i) Specify the design parameters Q,, Rg,, Q,, and Q, 
based on practical constraints. 
(ii) Specify the design constraints E ,  crl, cr2, r9,, and Ri. 
Specify a positive definite n x n matrix Qi and solve the 
Lyapunov equation to obtain a symmetric Pi> 0, 
i =  1 , .  . . ,m. 
(iii) Construct the antecedent part A i  of the NFLC whose 
membership function uniformly covers Q, where 

(iv) Collect the initial centre CL and the difference between 
left and right spread a/Ri of the consequent part BJ rule 
credit oii and the network weightings oij, i # j ,  into the 
vectors Oi and g i ,  with the constraints that Q i ~ Q ,  and 

(v) Apply NFLC (eqn. 21) to the plant, and the robust 
tuning algorithms eqns. 31 and 33 to adjust the weights Oi 
and g i .  
Remark I :  Inspecting the NFLC (eqn. 21), f H  (x) and gw, 
(x) formed by the antecedent membership function become 
exact gaussian basis functions that have been proven to be 
universal approximators. On the other hand, aLRfLRj is seen 
to be a robust control component and used as a fine-tuning 
mechanism for encountering approximation errors, distur- 
bance and measurement noise. 

Remark 2: It is possible that, during the early stage of 
learning when if the initial gaussian basis function approx- 
imations are quite poor, the tracking error might become so 
large that the plant state would not be in the set Q,. To 
obtain a global stable strategy subject to the mentioned 
situation, a nonlinear control methodology known as 
supervisory control [14, 19, 201 can be used to drive x 
toward Q, at this time. Moreover, the smooth integration of 
the NFLC and the supervisory control can be not only a 
globally stable solution to the tracking problem, but also a 
guidance to specify parameters such that the control U are 
within the constraint sets, 0, [14]. 

Remark 3: It is interesting to observe that the parameter 
matrices R!", and I?!'") in Ri represent the inverses of the 
learning rate of 0;'' and Oi'"', respectively. For instance, 
suppose the variations of the components of G being 
smaller than those off, then the learning rate of 0:") can 
be chosen smaller than that of @'), and vice versa. This 
provides a guideline to design the parameters. 

Remark 4: From eqn. 36 the tracking error residual is 
determined by the design parameter p*. If the design 
constants E ,  0 1 ,  02, rg,, R i ,  Qi and Pi are appropriately 
chosen, it is possible to make p* as small as desired and 
therefore better tracking performance can be achieved. 

Remark 5: The initial designs of Oio and $io in the NFLC 
can be considered as initial estimates of the best weights 0: 
and $7 respectively. The closer Oio and to t)T and $T, 
respectively, the smaller p* becomes. This, in turn, results 
in better tracking. 

Remark 6: Suppose that some partial knowledge about the 
dynamic system to be controlled are known in the form of 
"approximation to f (x )"  and "approximation to G(x)" 
denoted by the terms f" (XI nominal system parameters) 

k= 1 , .  . . , n , j =  1, .  . . ,n  + 1. 

9j E n,i. 
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and @ (XI nominal system parameters), respectively. 
Then a set of initial weights 06“’ and Oba) can be selected 
by using the well-known least square (LS) algorithm, 
etc., such that Ojo will be close to St and small p* can 
be achieved. 

5 Simulation 

Consider a two-link robot manipulator, which was also 
investigated in [3],  characterised by 

(ml + m2>4 + m2< + 2m2rlr2~2 + J I  m24 + 
m2r; + m2rlr2c2 m2r: + J2 

(3 8) 
where m l ,  1112, J , ,  J2, rl  = 0.511, and r2 = 0.512 are the mass, 
the moment of inertia, the half length of link 1 and 2, and 
c1 cos(ql), s12 sin(ql + q 2 ) ,  etc. For comparison, com- 
puter simulations have been conducted with conditions the 
same as used in [3].  The inertia parameters are chosen to be 
ZI = 2.0 m, 12 = 1.6 m, J1 = J2 = 5.0 kg . m, ml  = 0.5 kg, and 
m2 = 6.25 kg, and the trajectories to be followed are 
described by two decoupled linear systems as 

ijMj = ail qMj + ai2qMj + vi, i = 1,2.  (3 9) 
Their responses are shown in Fig. 3. The model parameters 
and the driving inputs are chosen to be ail = ai2 = - 1, 
i = 1 ,  2 and u1 = v2 = 1 ,  respectively. The situation char- 
acterised by the same initial conditions on the reference 
model and the plant are considered. The values are set to be 
ql(0)  = - 1.57 rad, q 2  (0)  = 0 rad, q1 (0)  = 0 rud/s, q2(0) = 
0 rud/s. The membership functions of states q l ,  q l ,  q2, and 
q2 (represented by generic variable xi )  for the qualitative 
statements are defined as {NB, NS, ZE, PS, PB) where NB: 
A&) = exp(-4(xi + l.8)2), NS:Aj(x,)=exp(-4(xi+0.8)22), 
ZE: A&) = exp(-4~?), PS: A&) = exp(-4(xi - 0.8) ), 
PB: Ai(xj)  = exp(-4(xi - 1.8)’). The elements in G I t )  and 

are chosen randomly within the interval (- 10, 10) 
and ( -2 ,  2),  respectively. In eqns. 31 and 33, the design 
parameters are given by Q, = Q2 = 101, 2, R1 =Block 
diag [0.011625 x 625, 320001625 x 625,  20000~625 x 6251, R2 = 
Blockdiag L0.0251625 x 625,200001625 x 625,  320001625 x 6251, 
oI = 0.002, g2 = 0.001, and 8 = 0.005. Two sets of simula- 
tion results are in order. 

1.6 I I I I 

-1.6 
0 2.5 5.0 7.5 10.0 

timet, s 
Fig. 3 Reference outputs ofjoints 
__joint 1 
. . .  . . .  joint 2 
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b Joint 2 

Trucking errors ofjoints U 

5. I Tracking without measurement noise 
Fig. 4 shows the results of simulation without considering 
measurement noise. It depicts that the robot tracks the 
desired trajectory nicely, and the NFLC performs much 
better in terms of accuracy, in comparison with the adap- 
tive variable structure model following control (AVSMFC) 
scheme [3].  

5.2 Tracking with measurement noise 
and torque disturbance 
In this simulation the combined effects of the friction and 
the external torque disturbances given as 

d ,  = 2.0 sin(q,) + 2.5 sin(q2) + 0.5 sin(t) 
d2 = 5.0 sin(q,) + 4.0 sin(q2) + 0.4 sin(t) 

and the measurement noise are applied. The noise are 
assumed to be white with uniform distribution within 
[-0.01, 0.011 (rad). The effects of noise of different 
sensors are assumed to be independent of each other. 
The simulation results are depicted in Fig. 5. It is well 
known that even a small measurement noise can affect 
significantly the stability of a control system [8]. But in the 
proposed NFLC-based control, by tailoring the fine-tuning 
mechanism to overcome the equivalent uncertainty, the 
system is shown to be stable in the presence of both 
measurement noise and disturbances. This agrees with 
our analytical result (theorem 1). 

(40) 

5.3 Tracking with reinitialisation error 
and prelearning 
In Fig. 6 the reinitialisation errors are set as ql(0) - 
qml(0)  =- 0.05, and q2(0) - qm2(0) = 0.05. The simula- 
tions are conducted for cases with and without prelearning 
by using the rough mathematical model and nominal 
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parameters of the robot manipulator. The nominal para- 
meters are chosen as 

1 ~ = 2 . 2 m , 1 ~ = 1 . 4 m , J ~ = 4 . 8 k g ~ m , J ~ = 5 . 1 k g ~ m , m ~  

= 0.48 kg, m; = 6.30 kg 

When the robot’s nominal parameters are known a priori 
through the application of the training data {x(k)}, the 
initial weights Of’ and Op) are chosen based on 
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element-by-element minimisation of the following objec- 
tive function 

I[fo(x(k)lnominal robot parameters) -?(A?), Ob‘’) [ I 2  

IIGo(x(k)(nominaZ robot parameters) - Ol;“’)l12 

32 testing points from either along the desired tra’ectories 
or near them are chosen as the training data {x (Jk) }. The 
dash and solid lines show ‘respectively’ the simulation 
results of the NFLC with and without a priori knowledge 
of the robot’s nominal parameters. It is obvious that the 
prelearning one obtains much better tracking performance. 

k 

k 

6 Conclusion 

Two novel approaches have been introduced into the design 
of neurofuzzy logic controller for the model following 
control of unknown MIMO nonlinear systems. A compen- 
sating neural network is used to deal with the interconnec- 
tions of composite nonlinear systems. A fine-tuning 
mechanism in the consequent membership function is 
developed to obtain the robust property. It has been 
proved that the overall neurofuzzy control system is able 
to guarantee the output tracking error to converge to a 
residual set ultimately. The simulation results of robot 
control show that the proposed NFLC can be trained 
automatically to give a satisfactory model-following 
performance, and the system is robust to the disturbance 
and measurement noise. 
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9 Appendix 

9.1 Proof of theorem I 
Let VQ and V ,  be positive-definite functions of the forms 
Vo =.iCL1(HTdi),. -V, = i,Csl g2. Their time derivative 
are Vo = OTO, and v, = ELl $Tji, respectively. If 
the first line of eqn. 32 is true, then do,=O and the 
conclusion Po 5 0 is trivial. If the second line ofeqn. 32 
is true then do, < 1 and Bi E Riz. Therefore either Vo 5 0 or 
B i ~ R i L  is obtained. Similarly, either Vg < 0 or & E  Rg,'. 
Therefore the boundedness of Bi, &, and uNFLc is guaran- 
teed. To show the performance of the closed-loop system 
formed by eqns. 1 , 2  1 , 3  1, and 33, we choose the following 
positive-definite functions: 

v =  V,+. . .+V*  (38) 
where 

i d :  + i@Rie i  + f r9 ,$ ,  
1 eTPiei + @Rigi + 4 r8, @, 

if eTPbbTPe 5 d: 
otherwise 

(39) 

q t )  = 

si(t) = si(t) - $? are the auxiliary adjustable parameter 
error and gim = max {si*,  Taking the derivative of V,  
along the trajectories of the closed-loop system and taking 
e ns. 28, 31, and 33 into account we obtain 5 = 0 for 9 e Pbb' Pe 5 d i ,  and 

c(t) = erPi(Aie, - bi@w + bi(ci - aL,j&>> 

+ er(r - doOilB~)[wb~P,e,  - o,(o, - e,,)] 
+ ji(l - dg)[wibrPiei - 02(gi - 

+ i3fwbrPiei - ol@'(Oi - eio) + 9. iw~b~pje i  

- a29.i(9i - 

- d&8,,0~[wbrPiei - al(ei - eio)l 

= feT(ATP, + PjAi>ei - eTPjbL@w + eTp,bi(ci - g,w:> 

- i T  
- dggi[wibi Piei - 02(gi  - Sio)] 

(40) 

for eTPbbTPe> do2. By eqn. 32, if ei', [w,b~P,e,  - o1 
(ei - O i O ) ]  _< 0, we have de,= 0 and the last term of the 
preceding equation is equal to zero. When O;, [wjbTPi 
ei - ol(8i - Bio)] > 0, if di E we also have do, = 0 and 
the conclusion holds. If Bi$R0, and suppose that Rg, and 
R-9, are appropriately selected such that Op and SF are in 
the interior of 00, and 03,  respectively, we have 

ereil = (e, - eT)Te,/leil 
= +[(e, - @?)'(e, - 07) + ere, - etTey/lejl 2 o 

(41) 

or 

In a similar way we can show that 

Using assumption 1, the second term on the right-hand side 
satisfies the inequality 

where K is a constant that satisfies K =e-("+ I ) ,  i.e. K = 
0.2785. Since the following fact can be shown easily by 
straightforward algebraic manipulation. 

Claim 1 

(46) 0 5 - y tanh - 5 K E  (3 
for any y E R .  Furthermore it can be readily shown that 

6T(oi - e,,,) = ;e;e, + i (o i  - eio)T(ei - eio) 
- ;(e: - e,o)T(e? - e,) 

5i(9i - 9'0) = 4 5; + $(S i  - gi0)* - $(Si* - (47) 

Hence 

V.  < --e'(Q:)e. 1 -"'ere. -si? 
2 2 "  2 I  

2 2 

I -  

o M + - eio)T(BT - Oi0) + A($? - + si ICE 

- < -aiV, + A i  (48) 

where 

and 
cr. o M 

i, ' 2  = (e; - eio)T(BT - e;,) + 2 2 ($T - g i 0 y  + $i K &  

or 

V s - a V + I  (49) 

where a = min ai and I = E y = l I i .  The differential 
inequality (e&. 49) satisfies 

Therefore ei(t), el, gi are uniformly ultimately bounded. Let 
p* = 2 2 a  then from expr. 50 we readily obtain expr. 37. 
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